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Abstract In this paper, based on the properties of almost periodic function and expo-
nential dichotomy of linear system on time scales as well as Krasnoselskii’s fixed
point theorem, some sufficient conditions are established for the existence of almost
periodic solutions of delayed neutral functional differential equations on time scales.
Finally, an example is presented to illustrate the feasibility and effectiveness of the
results.
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1 Introduction

Neutral differential and difference equations arise in many areas of applied mathemat-
ics, such as population dynamics [1], stability theory [2], circuit theory [3], bifurcation
analysis [4], and dynamical behavior of delayed network systems [5]. Also, qualita-
tive analysis such as periodicity and almost periodicity of neutral differential and
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difference equations received more recently researchers’ special attention due to their
applications, see [6–8] and the references therein.

However, in the real world, there are many systems whose developing processes are
both continuous and discrete. Hence, using the only differential equation or difference
equation cannot accurately describe the law of their developments. Therefore, there is
a need to establish correspondent dynamic models on new time scales.

The theory of calculus on time scales (see [9] and references cited therein) was
initiated by Stefan Hilger in his Ph.D. thesis in 1988 [10] in order to unify continuous
and discrete analysis, and it has a tremendous potential for applications and has recently
received much attention since his foundational work, one may see [11–15]. Therefore,
it is practicable to study that on time scales which can unify the continuous and discrete
situations.

Motivated by the above, in the present paper, we focus on the following neutral
delay functional differential equations on time scales:

x�(t) = A(t)x(t)+ Q�(t, xt )+ G(t, x(t), xt ), t ∈ T, (1.1)

where T is an almost periodic time scale, A(t) is a nonsingular n × n matrix with
continuous real-valued functions as its elements; the functions Q : T × R

n → R
n

and G : T × R
n × R

n → R
n are continuous with their arguments, respectively;

xt ∈ C(T,Rn), and xt (s) = x(t + s), for all s ∈ T.

Remark 1.1 The neutral differential and difference equations considered in [6–8] are
the special cases of (1.1). To the best knowledge of the authors, there are few papers
in literature dealing with the existence of almost periodic solutions of neutral delayed
functional differential equations on time scales.

The purpose of this paper is to establish the existence of almost periodic solutions
of (1.1) based on the properties of almost periodic function and exponential dichotomy
of linear system on time scales as well as Krasnoselskii’s fixed point theorem.

In this paper, for each φ = (φ1, φ2, · · · , φn)
T ∈ C(T,Rn), the norm of φ is

defined as ‖φ‖ = sup
t∈T

|φ(t)|0, where |φ(t)|0 =
n∑

i=1
|φi (t)|; and when it comes to that

φ is continuous, delta derivative, delta integrable, and so forth, we mean that each
element φi is continuous, delta derivative, delta integrable, and so forth.

2 Preliminaries

Let T be a nonempty closed subset (time scale) of R. The forward and backward jump
operators σ, ρ : T → T and the graininess μ : T → R

+ are defined, respectively, by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, μ(t) = σ(t)− t.

A point t ∈ T is called left-dense if t > inf T and ρ(t) = t , left-scattered if
ρ(t) < t , right-dense if t < sup T and σ(t) = t , and right-scattered if σ(t) > t . If
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T has a left-scattered maximum m, then T
k = T\{m}; otherwise T

k = T. If T has a
right-scattered minimum m, then Tk = T\{m}; otherwise Tk = T.

A function f : T → R is right-dense continuous provided it is continuous at
right-dense point in T, and its left-side limits exist at left-dense points in T. If f is
continuous at each right-dense point and each left-dense point, then f is said to be a
continuous function on T.

The basic theories of calculus on time scales, one can see [9].
A function p : T → R is called regressive provided 1 + μ(t)p(t) �= 0 for all

t ∈ T
k . The set of all regressive and rd-continuous functions p : T → R will be

denoted by R = R(T,R).
If r is a regressive function, then the generalized exponential function er is defined

by

er (t, s) = exp

{ ∫ t

s
ξμ(τ)(r(τ ))�τ

}

for all s, t ∈ T, with the cylinder transformation

ξh(z) =
{ Log(1+hz)

h , if h �= 0,
z, if h = 0.

Let p, q : T → R be two regressive functions, define

p ⊕ q = p + q + μpq, �p = − p

1 + μp
, p � q = p ⊕ (�q).

Lemma 2.1 (see [9]) Assume that p, q : T → R be two regressive functions, then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
(ii) ep(σ (t), s) = (1 + μ(t)p(t))ep(t, s);

(iii) ep(t, s) = 1
ep(s,t)

= e�p(s, t);

(iv) ep(t, s)ep(s, r) = ep(t, r);
(v) (e�p(t, s))� = (�p)(t)e�p(t, s).

Lemma 2.2 (see [9]) If p ∈ R be an n ×n-matrix-valued function on T and a, b, c ∈
T, then

[ep(c, ·)]� = −p[ep(c, ·)]σ and
∫ b

a
p(t)ep(c, σ (t))�t = ep(c, a)− ep(c, b).

The definitions of almost periodic function and uniformly almost periodic function
on time scales can be found in [16,17].

In what follows, we need the following notation. For every real sequence α = (αn)

and a continuous function f : T → R
n , define Tα f = lim

n→∞ f (t+αn) if lim
n→∞ f (t+αn)

exists.
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Lemma 2.3 A function f : T → R
n is almost periodic if and only if f is continuous

and for each α = (αn), there exists a subsequence α
′

of (αn) such that T
α

′ f = g
uniformly on T.

Lemma 2.4 Let f : T → R
n is an almost periodic function, then f (t) is bounded

and uniformly continuous on T.

The proofs of Lemma 2.3 and 2.4 are similar to the Theorem 3.13 in [18] and the
Theorem 1.1 in [19], respectively. Hence, we omit it.

Lemma 2.5 If f : T × R
n → R

n is an almost periodic function in t uniformly for
x ∈ R

n, then f (t, x) is bounded on T × D, where D is any compact subset of R
n.

Proof For given ε ≤ 1 and a compact subset D ⊂ R
n , there exists a constant l, such

that in any interval of length l(ε, D), f (t, x) is uniformly continuous on [0, l(ε, D)]×
D. Therefore, there exists a number M > 0, such that

| f (t, x)|0 < M, for (t, x) ∈ [0, l(ε, D)] × D.

For any t ∈ T, we can take τ ∈ E{ε, f } ∩ [−t,−t + l(ε, D)], then we have t + τ ∈
[0, l(ε, D)]. Hence, we can obtain

| f (t + τ, x)|0 < M, ∀ x ∈ D

and

| f (t + τ, x)− f (t, x)|0 < ε ≤ 1, ∀ (t, x) ∈ T × D.

Hence, for any (t, x) ∈ T × D, we have

| f (t, x)|0 ≤ | f (t + τ, x)|0 + | f (t + τ, x)− f (t, x)|0 < M + 1.

That is, f (t, x) is bounded on T × D. The proof is completed. ��
Lemma 2.6 If f : T × R

n → R
n is an almost periodic function in t uniformly for

x ∈ R
n, φ(t) is also an almost periodic function and φ(t) ⊂ S for all t ∈ T, S is a

compact subset of R
n, then f (t, φ(t)) is almost periodic.

Proof For any real sequence α
′
, we can find a subsequence α ⊂ α

′
. Assume that ϕ(t)

is an almost periodic function, g(t, x) is an almost periodic function in t uniformly
for x ∈ R

n , we make that Tα f (t, x) = g(t, x) uniformly on T and Tαφ(t) = ϕ(t)
also uniformly on T. Hence, g(t, x) is uniformly continuous on T× S. For any ε > 0,
there exists a positive number δ( ε2 ) > 0, ∀x1, x2 ∈ S, such that |x1 − x2|0 < δ( ε2 )

implies |g(t, x1) − g(t, x2)|0 < ε
2 , for any t ∈ T, and there exists a positive integer

N0(ε) > 0, when n ≥ N0(ε), we have

| f (t + αn, x)− g(t, x)|0 < ε

2
, ∀ (t, x) ∈ T × S
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and

|φ(t + αn)− ϕ(t)|0 < δ(
ε

2
), ∀ t ∈ T.

Moreover, φ(t + αn) ⊂ S,ϕ(t) ⊂ S for all t ∈ T. Then, when n ≥ N0(ε), it is easy to
see that

| f (t + αn, φ(t + αn))− g(t, ϕ(t))|0
≤ | f (t + αn, φ(t + αn))− g(t, φ(t + αn))|0 + |g(t, φ(t + αn))− g(t, ϕ(t))|0
<
ε

2
+ ε

2
= ε.

Hence, Tα f (t, φ(t)) = g(t, ϕ(t)) uniformly on T. So f (t, φ(t)) is an almost periodic
function. The proof is completed. ��
Lemma 2.7 If u : T → R

n is an almost periodic function, then ut is almost periodic.

Proof It is clear that ut is continuous for t ∈ T. For any sequence α
′ = (α

′
n). Since

u(t) is an almost periodic function, then there exists a subsequence α = (αn) of (α′
n),

such that

Tαu(t) = u(t) (2.1)

uniformly for t ∈ T. On the other hand, since u(t) is an almost periodic function, it
is uniformly continuous on T. For any ε > 0, there exists a positive number δ(ε),
such that |t1 − t2| < δ implies |u(t1)− u(t2)|0 < ε. From (2.1), there exists a positive
integer N , such that

|u(t + αn)− u(t)|0 < ε, t ∈ T,

when n > N , we have

|(ut )αn − ut |0 = |u(t + αn + θ)− u(t + θ)|0 < ε.

Hence u(t + αn) converges to ut uniformly on T. So ut is almost periodic. The proof
is completed. ��
Definition 2.1 (see [16]) Let x ∈ R

n and A(t) be an n × n rd-continuous matrix on
T, the linear system

x�(t) = A(t)x(t) (2.2)

is said to admit an exponential dichotomy on T, if there exist positive constants α >
0, k ≥ 1, projection P and the fundamental solution matrix X (t) of (2.2) satisfying

‖X (t)P X−1(σ (s))‖ ≤ ke�α(t, σ (s)) s, t ∈ T, t ≥ σ(s), (2.3)

‖X (t)(I − P)X−1(σ (s))‖ ≤ ke�α(σ (s), t) s, t ∈ T, t ≤ σ(s), (2.4)

where ‖ · ‖ is a matrix norm on T.
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Remark 2.1 It is clear that when A(t) = diag(1,−1), (2.2) admits exponential
dichotomy. More generally, in the case A(t) ≡ A, a constant matrix, (2.2) admits
exponential dichotomy if and only if the eigenvalues of A have a nonzero real part.

Lemma 2.8 Suppose (2.2) admits exponential dichotomy, that is, there exist constants
α > 0, k ≥ 1, such that (2.3) and (2.4) hold. If A(t + tk) converges to A(t) uniformly
on any compact subset of T, then {X (t + tk)P X−1(σ (s) + tk)} and {X (t + tk)(I −
P)X−1(σ (s)+ tk)} converges to {X(t)P X

−1
(σ (s))} and {X(t)(I − P)X

−1
(σ (s))}

uniformly on any compact subset T × T, respectively. Furthermore, the following
inequalities hold:

‖X(t)P X
−1
(σ (s))‖ ≤ ke�α(t, σ (s)) s, t ∈ T, t ≥ σ(s),

‖X(t)(I − P)X
−1
(σ (s))‖ ≤ ke�α(σ (s), t) s, t ∈ T, t ≤ σ(s),

where X is the fundamental matrix solution of the following equation

x�(t) = A(t)x . (2.5)

Proof we first prove that {X (tk)P X−1(tk)} is convergent. From (2.3), we see that

‖X (tk)P X−1(tk)‖ ≤ k.

Suppose {X (tk)P X−1(tk)} is not convergent. Then, we can find two subsequence:

{
X (tkm )P X−1(tkm )

}
,

{
X (tk′

m
)P X−1(tk′

m
)
}
,

such that

lim
m→∞X (tkm )P X−1(tkm ) = P, lim

m→∞X (tk′
m
)P X−1(tk′

m
) = P,

and P �= P .
Then, from (2.3) we have

‖X (t + tkm )P X−1(σ (s)+ tkm )‖ ≤ ke�α(t, σ (s)) s, t ∈ T, t ≥ σ(s), (2.6)

and

‖X (t + tk′
m
)P X−1(σ (s)+ tk′

m
)‖ ≤ ke�α(t, σ (s)) s, t ∈ T, t ≥ σ(s). (2.7)

Assume that Xkm (t)and Xk′
m
(t) are the fundamental matrix solutions of systems

x�(t) = A(t + tkm )x, x�(t) = A(t + tk′
m
)x
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respectively, then X (t + tkm ) = Xkm (t)X (tkm )and X (t + tk′
m
) = Xk′

m
(t)X (tk′

m
). Since

{A(t + tk} converges to A(t) uniformly on any compact subset of T, then {A(t + tk)x}
converges to A(t)x uniformly on any compact subset of T × R

n . It follows that
{A(t + tkm )x} and {A(t + tk′

m
)x} converge to A(t)x uniformly on any compact subset

of T × R
n . So Xkm (t)and Xk′

m
(t) converge to X(t) uniformly on any compact set of

T. Furthermore, it follows from (2.6), (2.7) that

‖Xkm (t)X (tkm )P X−1(tkm )X
−1
km
(σ (s))‖ ≤ ke�α(t, σ (s)) s, t ∈ T, t ≥ σ(s)

and

‖Xk′
m
(t)X (tk′

m
)P X−1(tk′

m
)X−1

k′
m
(σ (s))‖ ≤ ke�α(t, σ (s)) s, t ∈ T, t ≥ σ(s).

Let m → ∞, we have

‖X(t)P X
−1
(σ (s))‖ ≤ ke�α(t, σ (s)) s, t ∈ T, t ≥ σ(s) (2.8)

and

‖X(t)P X
−1
(σ (s))‖ ≤ ke�α(t, σ (s)) s, t ∈ T, t ≥ σ(s). (2.9)

Similarly, we can obtain

‖X(t)(I − P) X
−1
(σ (s))‖ ≤ ke�α(σ (s), t) s, t ∈ T, t ≤ σ(s) (2.10)

and

‖X(t)(I − P) X
−1
(σ (s))‖ ≤ ke�α(σ (s), t) s, t ∈ T, t ≤ σ(s). (2.11)

From (2.8)–(2.11), we see that (2.5) admits exponential dichotomy; both P and P
are its projections. So P = P , which is a contradiction. Hence, {X (tk)P X−1(tk)} is
convergent.

Let {X (tk)P X−1(tk)} → P as k → ∞. Now assume that Xk(t) is the fundamental
matrix solution of the system x�(t) = A(t + tk)x, then Xk(t) converge to X(t)
uniformly on any compact set of T. It is easy to see that {X−1

k (σ (s))} converges to

X
−1
(σ (s)) uniformly on any compact subset of T. So X (t + tk)P X−1(σ (s)+ tk)

and {X (t + tk)(I − P)X−1(σ (s)+ tk)} converges to X(t)P X
−1
(σ (s)) and X(t)(I −

P)X
−1
(σ (s)) uniformly on any compact subset T × T, respectively. Furthermore,

from (2.6) and (2.7) we have

‖X (t + tk)P X−1(σ (s)+ tk)‖ ≤ ke�α(t, σ (s)) s, t ∈ T, t ≥ σ(s)

and

‖X (t + tk)(I − P)X−1(σ (s)+ tk)‖ ≤ ke�α(σ (s), t) s, t ∈ T, t ≤ σ(s).
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That is,

‖Xk(t)X (tk)P X−1(tk)X
−1
k (σ (s))‖ ≤ ke�α(t, σ (s)) s, t ∈ T, t ≥ σ(s)

and

‖Xk(t)X (tk)(I − P)X−1(tk)X
−1
k (σ (s))‖ ≤ ke�α(σ (s), t) s, t ∈ T, t ≤ σ(s).

Let k → ∞, we obtain

‖X(t)P X
−1
(σ (s))‖ ≤ ke�α(t, σ (s)) s, t ∈ T, t ≥ σ(s)

and

‖X(t)(I − P) X
−1
(σ (s))‖ ≤ ke�α(σ (s), t) s, t ∈ T, t ≤ σ(s).

The proof is completed. ��
Lemma 2.9 (see [20]) Let M be a closed convex nonempty subset of a Banach space
(B, ‖ · ‖). Suppose that B and C map M into B, such that

(1) x, y ∈ M, implies Bx + Cy ∈ M,
(2) C is continuous and C(M) is contained in a compact set,
(3) B is a contraction mapping. Then, there exists z ∈ M with z = Bz + Cz.

3 Main Results

Let AP(T) be the set of all almost periodic functions on almost times scales T, then
(AP(T), ‖·‖) is a Banach space with the supremum norm given by ‖ψ‖ = sup

t∈T

|ψ(t)|0,

where |ψ(t)|0 =
n∑

i=1
|ψi (t)|.

Hereafter, we make the following assumptions:

(H1) There exist positive numbers L Q, LG such that

|Q(t, φt )− Q(t, ϕt )|0 ≤ L Q |φt − ϕt |0 (3.1)

for all t ∈ T, φt , ϕt ∈ AP(T), and

|G(t, u, φt )− G(t, v, ϕt )|0 ≤ LG(|u − v|0 + |φt − ϕt |0) (3.2)

for all t ∈ T, (u, φt ), (v, ϕt ) ∈ R
n × AP(T). (H2) A(t) is an almost periodic function,

Q(t, ut ) is an almost periodic function in t uniformly for ut ∈ AP(T), and G(t, u, ut )

is also an almost periodic function in t uniformly for u, ut ∈ R
n×AP(T). (H3)System

(2.2) admits exponential dichotomy, that is, there exist constants α > 0, k ≥ 1, such
that (2.3) and (2.4) hold.

123



Almost Periodic Solutions of Neutral Delay Functional Differential Equations 325

Define a mapping � by

(�u)(t) = Q(t, ut )+
∫ t

−∞
X (t)P X−1(σ (s))G(s, u(s), us)�s

−
∫ +∞

t
X (t)(I − P)X−1(σ (s))G(s, u(s), us)�s. (3.3)

Lemma 3.1 If u is an almost periodic function, then�u is an almost periodic function.

Proof For u(t) is an almost periodic function, from (H2), Lemma 2.4 to 2.7, then
Q(t, ut )andG(t, u(t), ut ) are all almost periodic functions, so they are uniformly
bounded on T. Let M1and M2 be positive numbers such that

‖Q(·, u·)‖ ≤ M1, ‖G(·, u(·), u·)‖ ≤ M2.

Now, we prove that (�u)(t) is an almost periodic function. First, it is clear that
(�u)(t) is continuous on T. For any sequence α = (αn), since Q(t, ut )andG(t, u(t),
ut ) are almost periodic functions, combining with Lemma 2.3 and 2.8, we can find a
common subsequence of (αn), we still denote it as (αn), such that

TαQ(t, ut ) = Q1(t), TαG(t, u(t), ut ) = G1(t) (3.4)

uniformly for t ∈ T and

lim
k→∞X (t + αk)P X−1(σ (s)+ αk) = X(t)P X

−1
(σ (s)), t ≥ σ(s) (3.5)

lim
k→∞X (t + αk)(I − P)X−1(σ (s)+ αk) = X(t)(I − P)X

−1
(σ (s)), t ≤ σ(s).

(3.6)

Then,

(�u)(t + αk) = Q(t + αk, ut+αk )+
∫ t+αk

−∞
X (t + αk)P X−1(σ (s))G(s, u(s), us)�s

−
∫ +∞

t+αk

X (t + αk)(I − P)X−1(σ (s))G(s, u(s), us)�s

= Q(t + αk, ut+αk )+
∫ t

−∞
X (t + αk)P X−1(σ (s)+ αk)

×G(s + αk, u(s + αk), us+αk )�s

−
∫ +∞

t
X (t + αk)(I − P)X−1(σ (s)+ αk)

×G(s + αk, u(s + αk), us+αk )�s.
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From (3.4)–(3.6) and Lebesgue’s control convergence theorem, we see that (�u)(t +
αk) converges to

Q1(t)+
∫ t

−∞
X(t)P X

−1
(σ (s))G1(s)�s −

∫ +∞

t
X(t)(I − P)X

−1
(σ (s))G1(s)�s

uniformly for t ∈ T. So, (�u)(t) is an almost periodic function. The proof is com-
pleted. ��

In order to apply Krasnoselskii’s theorm, we need to construct two mappings, one
is a contraction and the other is compact. Let

(�u)(t) = (Bu)(t)+ (Cu)(t);

where B,C : AP(T) → AP(T) are given by

(Bu)(t) = Q(t, ut ), (3.7)

(Cu)(t) =
∫ t

−∞
X (t)P X−1(σ (s))G(s, u(s), us)�s

−
∫ +∞

t
X (t)(I − P)X−1(σ (s))G(s, u(s), us)�s. (3.8)

Lemma 3.2 (see [7]) The operator B is a contraction provided L Q < 1.

Lemma 3.3 The operator C is continuous and the image C(M) is contained in a
compact set, where M = {u ∈ AP(T) : ‖u‖ ≤ R}, R is a fixed constant.

Proof First, by (3.7), we have

‖(Cu)(·)‖ ≤
∫ t

−∞
‖X (t)P X−1(σ (s))‖‖G(·, u(·), u·)‖�s

+
∫ +∞

t
‖X (t)(I − P)X−1(σ (s))‖‖G(·, u(·), u·)‖�s

≤ ‖G(·, u(·), u·)‖
( ∫ t

−∞
‖X (t)P X−1(σ (s))‖�s

+
∫ +∞

t
‖X (t)(I − P)X−1(σ (s))‖�s

)

≤ ‖G(·, u(·), u·)‖
( ∫ t

−∞
ke�α(t, σ (s))�s +

∫ +∞

t
ke�α(σ (s), t)�s

)

.

By Lemma 2.2, we can get

∫ t

−∞
ke�α(t, σ (s))�s +

∫ +∞

t
ke�α(σ (s), t)�s ≤ k(

1

α
− 1

�α ).
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Therefore,

‖(Cu)(·)‖ ≤ k(
1

α
− 1

�α )‖G(·, u(·), u·)‖. (3.9)

Now, we show that C is continuous. In fact, let u, v ∈ AP(T), for any ε > 0, take
δ = ε/[2kLG(

1
α

− 1
�α )], whenever ‖u − v‖ < δ, we have

‖(Cu)(·)− (Cv)(·)‖
≤

∫ t

−∞
‖X (t)P X−1(σ (s))‖‖G(·, u(·), u·)− G(·, v(·), v·)‖�s

+
∫ +∞

t
‖X (t)(I − P)X−1(σ (s))‖‖G(·, u(·), u·))− G(·, v(·), v·)‖�s

≤
∫ t

−∞
ke�α(t, σ (s))LG(‖u(·)− v(·)‖ + ‖u· − v·‖)�s

+
∫ +∞

t
ke�α(σ (s), t)LG(‖u(·)− v(·)‖ + ‖u· − v·‖)

≤ 2LG‖u − v‖(
∫ t

−∞
ke�α(t, σ (s))�s +

∫ +∞

t
ke�α(σ (s), t)�s)

≤ 2kLG(
1

α
− 1

�α )‖u − v‖
< ε.

This proves that C is continuous.
For M = {u ∈ AP(T) : ‖u‖ ≤ R}. Now, we show that the image of C(M) is

contained in a compact set. In fact, let un be a sequence in M . In view of (3.2), we
have

‖G(·, u(·), u·)‖ ≤ ‖G(·, u(·), u·)− G(·, 0, 0)‖ + ‖G(·, 0, 0)‖
≤ LG(‖u‖ + ‖u·‖)+ a

≤ 2LG R + a, (3.10)

where a = ‖G(·, 0, 0)‖. From (3.9) and (3.10), we have

‖Cun(·)‖ ≤ k(
1

α
− 1

�α )(2LG R + a) := L . (3.11)

Next, we calculate (Cun)
�(t) and show that it is uniformly bounded. By a direct

calculate, we have

(Cun)
�(t) = A(t)(Cun)(t)+ X (t)P X−1(σ (s))G(t, un(t), (un)t )

−X (t)(I − P)X−1(σ (s))G(t, un(t), (un)t ). (3.12)
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For A(t) is an almost periodic function, then A(t) is bounded. So, there exists a positive
constant A0, such that ‖A‖ ≤ A0. Together with (3.10), (3.11), and (3.12) implies

‖(Cun)
�(·)‖ ≤ A0 L + (ke�α(t, σ (s))+ ke�α(σ (s), t))‖G(·, un(·), (un)·)‖

≤ A0 L + (k + k)(2RLG + a)

≤ A0 L + 2k(2RLG + a).

Thus, the sequence (Cun) is uniformly bounded and equi-continuous. Hence, by the
Arzela-Ascoli theorem, C(M) is compact. The proof is completed. ��
Theorem 3.1 Assume that (H1) − (H3) hold. Let a = ‖G(·, 0, 0)‖, b = ‖Q(·, 0)‖.
Let R0 be a positive constant satisfies

L Q R0 + b + k(
1

α
− 1

�α )(2LG R0 + a) ≤ R0. (3.13)

Then, (1.1) has an almost periodic solution in M = {u ∈ AP(T) : ‖u‖ ≤ R0}.
Proof Define M = {u ∈ AP(T) : ‖u‖ ≤ R0}. By Lemma 3.3, the mapping C defined
by (3.7) is continuous and C M is contained in a compact set. By lemma 3.2, the
mapping B defined by (3.7) is a contraction and it is clear that B : AP(T) → AP(T).

Next, we show that if u, v ∈ M , we have ‖Bu + Cv‖ ≤ R0. In fact, let u, v ∈ M
with ‖u‖, ‖v‖ ≤ R0. Then

‖(Bu)(·)+ (Cv)(·)‖ ≤ ‖Q(·, u·)− Q(·, 0)‖ + ‖Q(·, 0)‖
+

∫ t

−∞
‖X (t)P X−1(σ (s))‖ · ‖G(·, v(·), v·)‖�s

+
∫ +∞

t
‖X (t)(I − P)X−1(σ (s))‖ · ‖G(·, v(·), v·)‖�s

≤ L Q‖u‖ + b + k(
1

α
− 1

�α )(2LG R + a)

≤ L Q R0 + b + k(
1

α
− 1

�α )(2LG R0 + a)

≤ R0.

Thus, Bu+Cv ∈ M . Hence all the conditions of Krasnoselskii’s theorem are satisfied.
Hence there exists a fixed point z ∈ M , such that z = Bz + Cz. By Lemma 2.9, (1.1)
has an almost periodic solution. The proof is completed. ��
Theorem 3.2 Assume that (H1)− (H3) hold. If

L Q + 2kLG

(
1

α
− 1

�α
)

< 1, (3.14)

then, (1.1) has a unique almost periodic solution.
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Proof Let the mapping � be given by (3.3). For u, v ∈ AP(T), in view of (3.3), we
have

‖(�u)(·)− (�v)(·)‖
≤ ‖Q(·, u·)− Q(·, v·)‖

+
∫ t

−∞
‖X (t)P X−1(σ (s))‖‖G(·, u(·), u·)− G(·, v(·), v·)‖�s

+
∫ −∞

t
‖X (t)(I − P)X−1(σ (s))‖‖G(·, u(·), u·)− G(·, v(·), v·)‖�s

≤ L Q‖u − v‖ + LG(‖u − v‖ + ‖u· − v·‖) · (
∫ t

−∞
ke�α(t, σ (s))�s

+
∫ +∞

t
ke�α(σ (s), t)�s)

≤ L Q‖u − v‖ + 2LG‖u − v‖k(
1

α
− 1

�α )

= (L Q + 2kLG(
1

α
− 1

�α ))‖u − v‖.

This completes the proof by invoking the contraction mapping principle. ��
Remark 3.1 If the conditions of the main result of [7] hold, then (2.2) admits expo-
nential dichotomy with projection P = I , hence system (1.1) has an almost periodic
solution. So our main result greatly improves the main result of [7].

4 An Example

For small positive ε1 and ε2, we consider the perturbed Van Der Pol equation

x�� + (ε2x2 − 1)x� + x − ε1(sin t x2
t )
� − ε2 cos t = 0, (4.1)

where xt is defined by xt (θ) = x(t + θ) for t, θ ∈ T is nonnegative, continuous and
almost periodic function. Using the transformation x�1 = x2, we can transform the
above equation to

(
x1
x2

)�
=

(
0 1

−1 1

) (
x1
x2

)

+
(

0
ε1 sin t x2

1t

)�
+

(
0

ε2 cos t − ε2x2x2
1

)

,

that is, A=
(

0 1
−1 1

)

, Q(t, xt )=
(

0
ε1 sin t x2

1t

)

, G(t, x(t), xt )=
(

0
ε2 cos t − ε2x2x2

1

)

.

Since the real part of the eigenvalues of A is nonzero, by Remark 2.1, we see that
x�(t) = A(t)x(t) admits exponential dichotomy. Let φ(t)=(φ1(t), φ2(t))and ϕ(t)=
(ϕ1(t), ϕ2(t)). Define M = {u ∈ AP(T) : ‖u‖ ≤ R0}, where R0 is a positive
constant.

123



330 M. Hu, P. Xie

Then for φ, ϕ ∈ M , we have

‖Q(·, φ)− Q(·, ϕ)‖ ≤ 2ε1 R0‖φ − ϕ‖,

and

‖G(·), φ(·), φ·)− G(·, ϕ(·), ϕ·)‖
≤ ε2sup

t∈T

∣
∣
∣
∣(φ2(t)(φ1(t)+ ϕ1(t)), ϕ2

1(t))

(
φ1(t)− ϕ1(t)
φ2(t)− ϕ2(t)

)∣
∣
∣
∣

≤ 2ε2 R2
0‖φ − ϕ‖.

Hence, let L Q = 2ε1 R0, LG = ε2 R2
0, a = ‖G(t, 0, 0)‖ = ε2 and b = ‖Q(t, 0)‖ = 0.

Thus, inequality (3.13) becomes

2ε1 R2
0 + kε2(

1

α
− 1

�α )(2R3
0 + 1) ≤ R0,

which is satisfied for small ε1 and ε2. By Theorem 3.1, (4.1) has an almost periodic
solution.

Moreover,

2ε1 R0 + 2kε2 R2
0(

1

α
− 1

�α ) < 1

is also satisfied for small ε1 and ε2. By Theorem 3.2, (4.1) has a unique almost periodic
solution.
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