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Abstract In this paper, we determine a surface M by means of homothetic motion
in R

4 and reparametrize this surface M with bicomplex numbers. Also, by using
curves and surfaces which are obtained by homothetic motion, we give some special
subgroups of the Lie group P .
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1 Introduction

A one-parameter homothetic motion of a rigid body in Euclidean n-space is given
analytically by

X ′ = h(t)A(t)X + C(t) (1)

in which X ′ and X are the position vectors of the same point with respect to the rectan-
gular coordinate frames of the fixed space R′ and the moving space R, respectively.
A is an orthonormal n × n matrix, C is a translation vector, and h is the homothetic
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scale of the motion. Also h, A, and C are continuously differentiable function of a real
parameter t. If we take an arbitrary position vector of a curve instead of the point X at
one-parameter homothetic motion equation which is given by (1), we obtain a surface.

In mathematics, a Lie group is a group which is also a differentiable manifold
with the property that the group operations are differentiable. A manifold M carrying
n linearly independent non-vanishing vector fields is called parallelisable and a Lie
group is parallelisable. The spheres that admit the structure of a Lie group are the
0-sphere S0 (real numbers with absolute value 1), the circle S1 (complex numbers
with absolute value 1), the 3-sphere S3 (the set of quaternions of unit form), and
S7. For even n > 1 Sn is not a Lie group because it can not be parallelisable as a
differentiable manifold. Thus, Sn is parallelisable if and only n = 0, 1, 3, 7.

Özkaldı and Yaylı [7] showed that a hyperquadric P in R
4 is a Lie group by using

bicomplex number product. They determined some special subgroups of this Lie group
P, by using the tensor product surfaces of Euclidean planar curves.

In this paper, we determine a homothetic motion by using a rotation matrix which
is given by Moore [5] and obtain a surface M by means of this homothetic motion in
R

4. If we take as the homothetic scale h(t) = 1 and the translation vector C(t) = 0,
we obtain a rotational surface [5,9]. Even if, in special cases, we get some tensor
product surfaces by means of this homothetic motion [3,7]. We reparametrize this
surface M with bicomplex number product and addition. To establish group structure
on the surface is quite difficult. How should we choose the position vector of the
curve at homothetic motion given by (2) that the surface M be a Lie subgroup of the
hyperquadric P . In this study, we answer this question and by using surface M which is
obtained by homothetic motion, we determine some special Lie subgroups of this Lie
group P . Furthermore, we mention C∞ -action of the Lie group P onto the manifold
R

4 and define an action of R on P by using orthonormal matrix at homothetic motion.
Also, we determine a Lie subgroup of P with this action and give some results.

2 Preliminaries

Bicomplex number is defined by the basis {1, i, j, i j} where i, j, i j satisfy i2 =
−1, j2 = −1, i j = j i. Thus, any bicomplex number x can be expressed as x =
x11 + x2i + x3 j + x4i j , ∀x1, x2, x3, x4 ∈ R.We denote the set of bicomplex numbers
by C2. For any x = x11 + x2i + x3 j + x4i j and y = y11 + y2i + y3 j + y4i j in C2
the bicomplex number addition is defined as

x + y = (x1 + y1)+ (x2 + y2) i + (x3 + y3) j + (x4 + y4) i j.

The multiplication of a bicomplex number x = x11+ x2i + x3 j + x4i j by a real scalar
λ is defined as

λx = λx11 + λx2i + λx3 j + λx4i j.

So the set of bicomplex numbers C2 is a vector space over the real numbers with above
the addition and scalar multiplication operations
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Let us denote the bicomplex number product over C2 by ×. The bicomplex number
product is given by

x × y = (x1 y1 − x2 y2 − x3 y3 + x4 y4)+ (x1 y2 + x2 y1 − x3 y4 − x4 y3) i

+ (x1 y3 + x3 y1 − x2 y4 − x4 y2) j + (x1 y4 + x4 y1 + x2 y3 + x3 y2) i j.

the set of bicomplex numbers C2 is a real algebra with above the bicomplex number
product operation ×.

We can consider any bicomplex number as 4 × 4 real matrix as follows:

Q =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

x1 −x2 −x3 x4
x2 x1 −x4 −x3
x3 −x4 x1 −x2
x4 x3 x2 x1

⎞

⎟
⎟
⎠ ; xi ∈ R, 1 ≤ i ≤ 4

⎫
⎪⎪⎬

⎪⎪⎭

.

The set Q together with matrix addition and scalar matrix multiplication is a real
vector space. Furthermore, the vector space together with matrix product is an algebra
[7].

The transformation
g : C2 → Q

given by

g (x = x11 + x2i + x3 j + x4i j) =

⎛

⎜
⎜
⎝

x1 −x2 −x3 x4
x2 x1 −x4 −x3
x3 −x4 x1 −x2
x4 x3 x2 x1

⎞

⎟
⎟
⎠

is one to one and onto. Morever ∀x, y ∈ C2 and λ ∈ R, we have

g (x + y) = g (x)+ g (y)

g (λx) = λg (x)

g (xy) = g (x) g (y) .

Thus the algebras C2 and Q are isomorphic.
Let x ∈ C2. Then x can be expressed as x = (x1 + x2i) + (x3 + x4i) j. In that

case, there is three different conjugations for bicomplex numbers as follows:

xt1 = [(x1 + x2.i)+ (x3 + x4.i) j]t1 = (x1 − x2.i)+ (x3 − x4.i) j

x t2 = [(x1 + x2.i)+ (x3 + x4.i) j]t2 = (x1 + x2.i)− (x3 + x4.i) j

x t3 = [(x1 + x2.i)+ (x3 + x4.i) j]t3 = (x1 − x2.i)− (x3 − x4.i) j.
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And we can write

xxt1 =
(

x2
1 + x2

2 − x2
3 − x2

4

)
+ 2 (x1x3 + x2x4) j

xxt2 =
(

x2
1 − x2

2 + x2
3 − x2

4

)
+ 2 (x1x2 + x3x4) i

xxt3 =
(

x2
1 + x2

2 + x2
3 + x2

4

)
+ 2 (x1x4 − x2x3) i j.

3 Homothetic Motions and Surfaces in E4

In this section, we define a surface by using the homothetic motion as follows:

ϕ (t, s) = h(t)

⎛

⎜
⎜
⎝

cos t − sin t 0 0
sin t cos t 0 0

0 0 cos t − sin t
0 0 sin t cos t

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

α1(s)
α2(s)
α3(s)
α4(s)

⎞

⎟
⎟
⎠ +

⎛

⎜
⎜
⎝

C1 (t)
C2 (t)
C3 (t)
C4 (t)

⎞

⎟
⎟
⎠ , (2)

where h(t) is the homothetic scale of the motion, C (t) = (C1 (t) ,C2 (t) ,C3 (t) ,
C4 (t)) is the translation vector and α (s) = (α1 (s) , α2 (s) , α3 (s) , α4 (s)) is a profile
curve.

Now, we can reparametrize this surface by using bicomplex number product and
addition.

Proposition 1 Let ϕ : M → E4 be an immersion of a surface M in the Euclid-
ean 4-space. If M is a surface in E4 given by the parametrization (2), then M
can be reparametrized by ϕ (t, s) = β (t) × α (s) + C (t) , where “×” bicom-
plex product, “+” bicomplex addition, β (t) = (h(t) cos t, h(t) sin t, 0, 0), α (s) =
(α1(s), α2(s), α3(s), α4(s))are the curves and C (t) = (C1 (t) ,C2 (t) ,C3 (t) ,C4 (t))
is the translation vector.

Proof We can consider the curves β, α and the translation vector C as bicomplex
numbers. Then we can rewrite them as follows:

β (t) = h(t) cos t + (h(t) sin t) i

α (s) = α1(s)+ α2(s)i + α3(s) j + α4(s)i j

C (t) = C1 (t)+ C2 (t) i + C3 (t) j + C4 (t) i j.

By using the bicomplex product and addition, we obtain ϕ (t, s) = β (t) × α (s) +
C (t). �	
Corollary 1 Let Mβ(t) be the matrix representation of bicomplex β (t) = h(t) cos t +
(h(t) sin t) i. Then we get the surface M given by the parametrization (2) as ϕ (t, s) =
Mβ(t)α (s)+ C (t).

The surface M given by the parametrization (2) is reparametrized as bicomplex
product of two curves in four dimensional Euclidean space. Now, we can reparametrize
this surface M as bicomplex product of a curve and a surface
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Homothetic Motions and Surfaces in E4 263

Corollary 2 Let ϕ : M → E4 be an immersion of a surface M in the Euclidean 4-
space and M be a surface given by the parametrization (2). Then, the surface M can be
reparametrized byϕ (t, s) = γ (t)×r (t, s)+C (t) ,whereγ (t) = (cos t, sin t, 0, 0) is
a circle, r (t, s) = h(t)α(s) is a surface and C (t) = (C1 (t) ,C2 (t) ,C3 (t) ,C4 (t))
is the translation vector.

Corollary 3 Let Mγ (t) be the matrix representation of bicomplex γ (t) = cos t +
(sin t) i. Then the surface M given by the parametrization (2) can be written as
ϕ (t, s) = Mγ (t)r (t, s)+ C (t) .

Remark 1 Let M be a surface in E4 given by the parametrization (2). In particular, if
we take as the homothetic function h(t) = 1 and the translation vector C (t) = 0, we
obtain a rotation surface given by Moore [5].

Remark 2 Let M be a surface in E4 given by the parametrization (2). In particular,
if we take as the homothetic function h(t) = 1 and the translation vector C (t) = 0
and the profile curve α (s) = (r(s) cos s, 0, r(s) sin s, 0) ,we obtain a rotation surface
which is called Vranceanu surface [9].

4 Lie Groups, C∞ Action of the Lie Groups and Some Special Lie Subgroups

4.1 Lie Groups

In this subsection, by Theorem 1, we mention that the hyperquadric P is a Lie group
with bicomplex number product.

P = {x = (x1, x2, x3, x4) 
= 0; x1x4 = x2x3} .

We can consider P as the set of bicomplex numbers as follows:

P = {x = x11 + x2i + x3 j + x4i j x1x4 = x2x3, x 
= 0} .

Also, let the matrix representation of P be given by

P̃ =

⎧
⎪⎪⎨

⎪⎪⎩

Mx =

⎛

⎜
⎜
⎝

x1 −x2 −x3 x4
x2 x1 −x4 −x3
x3 −x4 x1 −x2
x4 x3 x2 x1

⎞

⎟
⎟
⎠ ; x1x4 = x2x3, x 
= 0

⎫
⎪⎪⎬

⎪⎪⎭

.

Theorem 1 ([7]) The set of P together with the bicomplex number product is a Lie
group

Proof P̃ is a differentiable manifold and at the same time a group with group operation
given by matrix multiplication. The group function

. : P̃ × P̃ → P̃
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defined by (x, y) → x .y is differentiable. So (P, .) can be made a Lie group so that g
is a isomorphism. �	

Let us denote the set of all unit bicomplex numbers on P by P1. We can consider
P1 as follow:

P1 = {
x ∈ P ; ‖x‖t3 = 1

}
.

And we denote P̃1 the matrix form of the group P1

P̃1 =
{

x ∈ P̃ ; ‖x‖t3 = 1
}
.

P1 is a subgroup of P with the group operation of bicomplex multiplication

Lemma 1 ([7]) P1 is 2-dimensional Lie subgroup of P.

Remark 3 S3 is a Lie group with the quaternion multiplication. We can write the set
P1 as P1 = P ∩ S3 and P1 is a Lie group with bicomplex multiplication. Even though
P1 is a subset of the sphere S3 and P1 is a Lie group, P1 is not a Lie subgroup of S3.

4.2 C∞ Action of the Lie Groups

In this subsection, we mention C∞−actions of the Lie groups P̃ and P̃1 onto the
manifold R

4 and we define an action of R on P̃ and P̃1 Lie groups. We give some
special Lie subgroups of P and P1 by means of the action of R on P̃ and P̃1.

Let us consider the mapping

θ : P̃ × R
4 → R

4

for any A ∈ P̃ and X ∈ R
4 given by

(A, X) → θ(A, X) = AX.

Theorem 2 ([7]) The mapping θ, defined above, is a C∞−action of the Lie group P̃
onto the manifold R

4. This action is transitive and effective.

Theorem 3 Let f : R →P̃ be the mapping which sends every t ∈ R to

t → f (t) = ebt

⎛

⎜
⎜
⎝

cos t − sin t 0 0
sin t cos t 0 0

0 0 cos t − sin t
0 0 sin t cos t

⎞

⎟
⎟
⎠ ,

and the mapping ψ be given by

ψ : R×P̃ → P̃

(t, A) → ψ (t, A) = A f (t).

Then the mapping ψ is an action of R on P̃ .
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Proof Let the mapping ψ : R×P̃ → P̃ be given by

ψ (t, A) = A f (t)

Since f is a homomorphism, it can be easily seen that ψ satisfies

(i) ψ (0, A) = A
(ii) ψ (t1 + t2, A) = ψ (t1, ψ (t2, A))

Hence, the mapping ψ is an action of R on P̃ . �	
Corollary 4 The image of the mapping f determines a one-parameter Lie-subgroup
of P.

Proof Since the mapping f : R →P̃ is a homomorphism, homomorphic image H =
f (R) is a subgroup of P̃ and since g is a isomorphism, H is a spiral curve as α(t) =
ebt (cos t, sin t, 0, 0) in P. So, it is a one-parameter Lie-subgroup of P . �	
Corollary 5 Let ψ : R×P̃ → P̃ be an action of R on P̃. The infinitesimal generator
associated with the mapping ψ is Xx = (bx1 − x2, bx2 + x1, bx3 − x4, bx4 + x3)

and α(t) = ebt (cos t, sin t, 0, 0) is an integral curve of Xx .

Proof Let ψ : R×P̃ → P̃ be an action of R on P̃. The infinitesimal generator at
x ∈ P̃ is given by

Xx = ψ̇ (0, x) = (bx1 − x2, bx2 + x1, bx3 − x4, bx4 + x3) ,

where ψ̇ (0, x) =
(
∂ψ
∂t (t, x)

)

t=0
. It can be easily seen thatα(t) = ebt (cos t, sin t, 0,

0) is an integral curve of Xx . �	
Corollary 6 θP̃1

: P̃1 × R
4 → R

4 defines a C∞ action of P̃1 on R
4.

Proof Since P̃1 is a Lie-subgroup of P̃ and the inclusion map i : P̃1 → P̃ is C∞. The
restriction θP̃1

= θ ◦ i : P̃1 × R
4 → R

4 defines a C∞ action of P̃1 on R
4. �	

Theorem 4 Let f1 : R →P̃1 be the mapping which sends every t ∈ R to

t → f1(t) =

⎛

⎜
⎜
⎝

cos t − sin t 0 0
sin t cos t 0 0

0 0 cos t − sin t
0 0 sin t cos t

⎞

⎟
⎟
⎠ ,

and the mapping ψ1 be given by

ψ1 : R×P̃1 → P̃1

(t, A) → ψ1 (t, A) = A f1(t).

Then, the mapping ψ1 is an action of R on P̃1.
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Proof Since f1 is a homomorphism, it can be easily seen that ψ1 satisfies

(i) ψ1 (0, A) = A
(ii) ψ1 (t1 + t2, A) = ψ1 (t1, ψ1 (t2, A))

Hence, the mapping ψ1 is an action of R on P̃1. �	
Corollary 7 The image of the mapping f1 determines a one-parameter Lie-subgroup
of P1.

Proof Since the mapping f1 : R →P̃1 is a homomorphism, homomorphic image
H1 = f1(R) is a subgroup of P̃1 and since g is a isomorphism, H1 is a circle as
α(t) = (cos t, sin t, 0, 0) in P1. So, it is a one-parameter Lie-subgroup of P1. �	
Corollary 8 Let ψ1 : R×P̃1 → P̃1 be an action of R on P̃1. The infinitesimal
generator associated with the mapping ψ1 is Xx = (−x2, x1,−x4, x3) and α(t) =
(cos t, sin t, 0, 0) is an integral curve of Xx .

Proof Let ψ1 : R×P̃1 → P̃1 be an action of R on P̃1. The infinitesimal generator at
x ∈ P̃1 is given by

Xx = ψ̇1 (0, x) = (−x2, x1,−x4, x3) ,

where ψ̇1 (0, x) =
(
∂ψ1
∂t (t, x)

)

t=0
. It can be easily seen thatα(t) = (cos t, sin t, 0, 0)

is an integral curve of Xx . �	
Corollary 9 f1 induces an action on S3 = {

(x1, x2, x3, x4) ∈ R
4; x2

1 + x2
2 + x2

3+
x2

4 = 1
}
.

Proof

ψ̄ (t, x1, x2, x3, x4) =
(

x1 cos t − x2 sin t, x1 sin t + x2 cos t,
x3 cos t − x4 sin t, x3 sin t + x4 cos t

)

.

It is obvious that ψ̄ is an action on S3. �	

4.3 Some Special Lie Subgroups

Özkaldı and Yaylı showed that a hyperquadric P in R
4 is a Lie group using bicomplex

number product. Also, they determined some special subgroups of Lie group P, using
the tensor product surfaces of Euclidean planar curves [7].

Our aim in this subsection is to determine some special subgroups of this Lie
group P using the surface M which is obtained with homothetic motion. In this case,
how should we choose the position vector of the curve at homothetic motion given
by (2) that the surface M be a Lie subgroup of the hyperquadric P . We answer this
question. If we take the profile curve α(s) = (α1(s), α2(s), α3(s), α4(s)) such that
α1(s)α4(s) = α2(s)α3(s) and the translation vector C(t) = 0, then the surface M is
given by the parametrization (2) is subset of P .
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Homothetic Motions and Surfaces in E4 267

Theorem 5 Let γ be a curve which is obtained using the homothetic motion with the
homothetic function h(t) = eat and the profile curve α (t) = ebt (cos t, sin t, 0, 0)
where a, b are real constants. Then curve γ is a one-parameter subgroup in a Lie
group P.

Proof We can write the curve γ as follows:

γ (t) = eat

⎛

⎜
⎜
⎝

cos t − sin t 0 0
sin t cos t 0 0

0 0 cos t − sin t
0 0 sin t cos t

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

ebt cos t
ebt sin t

0
0

⎞

⎟
⎟
⎠

= e(a+b)t (cos 2t, sin 2t, 0, 0) .

It can be easily seen that

γ (t1)× γ (t2) = γ (t1 + t2)

for all t1, t2 ∈ R. Hence, (γ (t) ,×) is one-parameter Lie subgroup of (P,×) . �	
Remark 4 From Corollary (4), we know that α (t) = ebt (cos t, sin t, 0, 0) is a one-
parameter Lie subgroup of P. In Theorem (5), we show that the trajector of the curve
α under the homothetic motion is a one-parameter Lie subgroup of P too.

Theorem 6 Let γ be a curve which is obtained using the homothetic motion with the
homothetic function h(t) = eat and the profile curve α (t) = ebt (cos t, 0, sin t, 0)
where a, b are real constants. Then, the curve γ is a one-parameter Lie-subgroup in
Lie group P.

Proof We can write the curve γ as follows:

γ (t) = eat

⎛

⎜
⎜
⎝

cos t − sin t 0 0
sin t cos t 0 0

0 0 cos t − sin t
0 0 sin t cos t

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

ebt cos t
0

ebt sin t
0

⎞

⎟
⎟
⎠

= e(a+b)t
(

cos2 t, sin t cos t, sin t cos t, sin2 t
)
.

It can be easily seen that

γ (t1)× γ (t2) = γ (t1 + t2)

for all t1, t2 ∈ R. Hence (γ (t) ,×) is one-parameter Lie subgroup of (P,×). �	
Remark 5 The above curve γ can be expressed as tensor product of two spirals with
the same parameter, that is, let β : R → E2, β (t) = eat (cos t, sin t) and δ (t) =
ebt (cos t, sin t) be two spirals. Then the curve γ can be written as γ (t) = β (t)⊗δ (t).
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268 F. K. Aksoyak, Y. Yayli

Corollary 10 Let γ be a curve which is obtained using the homothetic motion with
the homothetic function h(t) = 1 and the profile curve α (t) = (cos t, sin t, 0, 0).
Then, the curve γ is a one-parameter Lie-subgroup in Lie group P1.

Proof For h(t) = 1 and the profile curve α (t) = (cos t, sin t, 0, 0) , we get

γ (t) = (cos 2t, sin 2t, 0, 0)

Since ‖γ (t)‖t3 = 1, it follows that γ (t) ⊂ P1. So it is a one-parameter Lie subgroup
in Lie group P1. �	
Corollary 11 Let γ be a curve which is obtained using the homothetic motion with
the homothetic function h(t) = 1 and the profile curve α (t) = (cos t, 0, sin t, 0). Then
the curve γ is a one-parameter Lie subgroup in Lie group P1.

Proof For h(t) = 1 and the profile curve α (t) = (cos t, 0, sin t, 0) , we get

γ (t) =
(

cos2 t, sin t cos t, sin t cos t, sin2 t
)

Since ‖γ (t)‖t3 = 1, it follows that γ (t) ⊂ P1. So, it is a one-parameter Lie-subgroup
in Lie group P1. �	
Remark 6 The above curve γ can be expressed as tensor product of two circles with the
same parameter, that is, letβ : R → E2, β (t) = (cos t, sin t) and δ (t) = (cos t, sin t)
be circles. Then, the curve γ can be written as γ (t) = β (t)⊗ δ (t).

Theorem 7 Let M be a surface which is obtained using the homothetic motion with
the homothetic function h(t) = eat and the profile curveα (s) = ebs (cos s, 0, sin s, 0).
Then, the surface M is a 2-dimensional Lie-subgroup of P.

Proof

ϕ (t, s) = eat

⎛

⎜
⎜
⎝

cos t − sin t 0 0
sin t cos t 0 0

0 0 cos t − sin t
0 0 sin t cos t

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

ebs cos s
0

ebs sin s
0

⎞

⎟
⎟
⎠

= eat+bs (cos s cos t, cos s sin t, sin s cos t, sin s sin t) .

Since ϕ (t, s) is both a subgroup and submanifold of Lie group P , we obtain that
ϕ (t, s) is a 2-dimensional Lie subgroup of P . �	
Remark 7 The above surface M can be expressed as tensor product surface of two
spirals, that is, let β : R → E2, β (s) = eas (cos s, sin s) and δ (t) = ebt (cos t, sin t)
be two spirals. Then the surface M can be written as ϕ (t, s) = β (s)⊗ δ (t).

Corollary 12 Let M be a Vranceanu surface with the profile curve α (s) =
ebs (cos s, 0, sin s, 0) . Then the surface M is a 2-dimensional Lie subgroup of P.
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Homothetic Motions and Surfaces in E4 269

Proof If we take as a = 0 in Theorem (7), we obtain a rotation surface which is called
Vranceanu surface in E4. Then, Vranceanu surface is a 2-dimensional Lie subgroup
of P . �	
Corollary 13 Clifford torus is a 2-dimensional Lie-subgroup of P1.

Proof By using the homothetic function h(t) = 1 and the profile curve α (s) =
(cos s, 0, sin s, 0), we obtain a rotation surface which is called Clifford Torus. This
surface is product of two plane circles with the same radius, that is,

ϕ (t, s) = (cos s cos t, cos s sin t, sin s cos t, sin s sin t) .

Since ‖ϕ (t, s)‖t3 = 1, ϕ (t, s) is subset of P1. Hence, Clifford Torus is a
2-dimensional Lie subgroup of P1. �	
Remark 8 The Clifford Torus is a subset of S3 and it is a Lie group with bicomplex
number product, but it is not a Lie subgroup of S3. Also, since the Clifford Torus is a
Lie group, it is parallelisable.
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