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Abstract We present a new subclass SLk of starlike functions which is related to
a shell-like curve. The coefficients of such functions are connected with k-Fibonacci
numbers Fk,n defined recurrently by Fk,0 = 0, Fk,1 = 1 and Fk,n = k Fk,n+Fk,n−1 for
n ≥ 1, where k is a given positive real number. We investigate some basic properties
for the class SLk .
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1 Introduction

Let D = {z : |z| < 1} denote the unit disc. Let A be the class of all analytic functions
f in the open unit disc D with normalization f (0) = 0, f ′(0) = 1 and let S denote the
subset of A which is composed of univalent functions. We say that f is subordinate to
F in D, written as f ≺ F , if and only if f (z) = F(ω(z)) for some analytic function
ω, ω(0) = 0, |ω(z)| < 1, z ∈ D. The idea of subordination was used for defining
many classes of functions studied in geometric function theory. Let us recall
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250 N. Y. Özgür, J. Sokół

S∗[ϕ] :=
{

f ∈ A : z f ′(z)
f (z)

≺ ϕ(z), z ∈ D

}
, (1.1)

K[ϕ] :=
{

f ∈ A :
[

1 + z f ′′(z)
f ′(z)

]
≺ ϕ(z), z ∈ D

}
, (1.2)

where ϕ is analytic in D with ϕ(0) = 1. For ϕ(z) = (1 + z)/(1 − z) we obtain
the well-known classes S∗, K of starlike and convex functions, respectively. A lot of
classes of functions have been defined by exchanging the function ϕ in (1.1) or in
(1.2) by other functions giving very often an interesting image of the unit circle. If
ϕ(z) = (1 + (1 − 2α)z)/(1 − z), α < 1, then ϕ(D) is the half plane Re(w) > α,
and the sets (1.1), (1.2) become the classes S∗(α) of starlike or K(α) of convex
functions of order α, respectively, introduced in [14]. If ϕ(z) = (1 + Az)(1 + Bz),
−1 < B < A ≤ 1, then ϕ(D) is a disc, and the classes (1.1), (1.2) become the classes
considered in [6,7]. The class of strongly starlike functions of order β, 0 < β ≤ 1, see
[20] is obtained from (1.1) with ϕ(z) = ((1 + z)/(1 − z))β . Then ϕ(D) is an angle. If

ϕ(z) = 1 + 2

π2

(
log

1 + √
z

1 − √
z

)2

,

then ϕ(D) is a parabolic region, and the set (1.2) is a class of the so-called uniformly
convex function introduced in [5,11,15]. Close related classes, connected with a hyper-
bola or with an ellipse were considered in [8–10]. If ϕ(z) = √

1 + z, where the branch
of the square root is chosen in order that

√
1 = 1, then ϕ(D) is interior of the right

loop of the Lemniscate of Bernoulli and the class (1.1) becomes a class considered in
[17,19]. The function

ϕ(z) =
(

1 + z

1 + (1 − b)/bz

)1/α

in (1.1) forms a class considered in [13]. In the above and in other not cited here
cases the function ϕ is a convex univalent function. In [12] Ma and Minda proved
some general results for classes (1.1) and (1.2), where ϕ is assumed to be univalent,
ϕ(D) is assumed to be symmetric with respect to real axis and starlike with respect
to ϕ(0) = 1. The problems in the classes defined by (1.1) and by (1.2) become much
more difficult if the function ϕ is not univalent. In [18] the second author defined the
class SL of shell-like functions as the set of functions f ∈ A satisfying the condition
that

z f ′(z)
f (z)

≺ p̃(z), z ∈ D,

where

p̃(z) = 1 + τ 2z2

1 − τ z − τ 2z2 , τ = 1 − √
5

2
≈ −0.618, z ∈ D.

123



Starlike Functions Connected with k-Fibonacci Numbers 251

The class SL is a subclass of the class of starlike functions S�. The name attributed
to the class SL is motivated by the shape of the curve

C =
{

p̃(eit ) : t ∈ [0, 2π) \ {π}
}

,

which is a shell-like curve. Furthermore, the coefficients of shell-like functions are
connected with well-known Fibonacci numbers Fn defined as

F0 = 0, F1 = 1 and Fn+1 = Fn + Fn−1 for n ≥ 1. (1.3)

More recently, a lot of new studies have been done about several classes of functions
related to shell-like curves connected with Fibonacci numbers (see [1,2] and [16]).

Motivated by the above studies, we define new subclasses SLk of the class S�,
where k is any positive real number. The coefficients of such functions are connected
with k-Fibonacci numbers. For k = 1, we obtain the class SL of shell-like functions.

For any positive real number k, the k-Fibonacci numbers Fk,n are defined recurrently
by

Fk,0 = 0, Fk,1 = 1 and Fk+1,n = k Fk,n + Fk,n−1 for n ≥ 1. (1.4)

The Fibonacci numbers defined in (1.3) are obtained from (1.4) for k = 1. It is known
that the nth k-Fibonacci number is given by

Fk,n = (k − τk)
n − τ n

k√
k2 + 4

, (1.5)

where τk = k−√
k2+4
2 (see [3] and [4] for more details about k-Fibonacci numbers).

2 The Class SLk

Definition 2.1 Let k be any positive real number. The function f ∈ S belongs to the
class SLk if satisfies the condition that

z f ′(z)
f (z)

≺ p̃k(z), z ∈ D,

where

p̃k(z) = 1 + τ 2
k z2

1 − kτk z − τ 2
k z2

= 1 + τ 2
k z2

1 − (τ 2
k − 1)z − τ 2

k z2
, τk = k − √

k2 + 4

2
, z ∈ D.

(2.1)
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Theorem 2.1 The image of the unit circle of the function p̃k(z) defined in (2.1) is the
curve Ck with equation

x = k
√

k2 + 4

2
[
k2 + 2 − 2 cos θ

] , y =
(
4 cos θ − k2

)
sin θ

2
[
k2 + 2 − 2 cos θ

]
[1 + cos θ ]

, θ ∈ [0, 2π)\ {π} .

(2.2)

Proof The proof follows by some straightforward calculations. 
�
Recall that the curve which is called conchoid of Sluze has the following equation

a(x − a)
(

x2 + y2
)

+ λ2x2 = 0, (2.3)

where a > 0 and λ > 0. For λ = 2a/k, the conchoid of Sluze (2.3) becomes the curve

x3 + (x − a)y2 +
(

4 − k2

k2

)
ax2 = 0. (2.4)

For k = 1, this curve is the trisectrix of Maclaurin.
We can find the corresponding Cartesian equation of the curve Ck with Eq. (2.2) as

[
(8 + 2k2)x − k

√
k2 + 4

]
y2 =

(√
k2 + 4

k
− 2x

) (√
k2 + 4x − k

)2
. (2.5)

If we rewrite (2.5) in the following form

(
k
√

k2 + 4

k2 + 4
− x

)3

+ 4 − k2

k2 .
k
√

k2 + 4

2(k2 + 4)

(
k
√

k2 + 4

k2 + 4
− x

)2

+
[(

k
√

k2 + 4

k2 + 4
− x

)
− k

√
k2 + 4

2(k2 + 4)

]
y2 = 0,

then the image of the unit circle under the function p̃k is translated into a curve with
Eq. (2.4), where

a = k
√

k2 + 4

2(k2 + 4)
=

1 − 2τk

(
1−k

√
k2+4

)
k−√

k2+4

2(k2 + 4)
.

Therefore, the curve Ck has a shell-like shape and symmetric with respect to the real
axis, see Fig. 1.

For k < 2, note that we have

p̃

(
e
±i arccos

(
k2
4

))
= k

√
k2 + 4

k2 + 4
,
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Fig. 1 The curve Ck for k = 1
2
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and so the curve Ck intersects itself on the real axis at the point k
√

k2+4
k2+4

. Thus, Ck has

a loop intersecting the real axis at the points e = k
√

k2+4
k2+4

and f =
√

k2+4
2k . For k ≥ 2,

the curve Ck has no loops and it is like a conchoid.

Corollary 2.1 For each k > 0, SLk ⊂ S∗(αk), where αk = k
√

k2+4
2(k2+4)

= k(k−2τk )

2(k2+4)
, that

is, f ∈ SLk is starlike of order αk .

The function p̃k defined in (2.1) is not univalent in D. For example, we have

p̃k(0) = p̃( −k
2τk

) = 1 and p̃(1) = p̃(τ 4
k ) =

√
k2+4
2k . We can give the following

theorem.

Theorem 2.2 For each k > 0, the function p̃k is univalent in the disc Drk =
{z : |z| < rk}, where

rk = 2 − √
k2 + 4

kτk
= k2 − 2k + 4 + (k − 2)

√
k2 + 4

2k
(2.6)

and it is not univalent in the disc Drk for each r ≥ rk .
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Proof Suppose that p̃k(z) = p̃k(w) for some z, w ∈ D . After some calculations we
have

τk (z − w)

(
w − 2τk z + k

kτ 2
k z − 2τk

)
= 0. (2.7)

We see that the function

gk(z) = 2τk z + k

kτ 2
k z − 2τk

maps a circle |z| = r < 2/(kτk) onto a circle centred at m = − 2k(1+τ 2
k r2)

τk
(
4−k2τ 2

k r2
) and of

radius ρ = r(k2+4)

4−k2τ 2
k r2 with the diameter from gk(−r) to gk(r). Therefore, gk maps the

circle |z| = rk onto a circle with the diameter from the point gk(rk) = rk to the point
gk(−rk). We have gk(−rk) > gk(rk) = rk for all k because the function gk(x), x ∈ R

has negative derivative for all real x . Therefore, if |w| ≤ rk and |z| ≤ rk , then the third
factor in (2.7) is equal to 0 for w = z − rk only. Consequently, we see that (2.7) is not
satisfied when |w| < rk and |z| < rk , which proves that in the disc (2.6) the function
p̃k(z) is univalent.

On the other hand, the derivative of the function p̃k(z) is

p̃′
k(z) =

(z − rk)
(

z − 2+√
k2+4

kτk

)
(
1 − kτk z − τ 2

k z2
)2 .

The function p̃′
k(z) vanishes at the point z = rk and hence we see that the function

p̃k(z) fails to be univalent for |z| ≥ rk . 
�

Theorem 2.3 Let
(
Fk,n

)
be the sequence of k-Fibonacci numbers defined in (1.4). If

p̃k(z) = 1 + τ 2
k z2

1 − kτk z − τ 2
k z2

= 1 +
∞∑

n=1

pnzn,

then we have

pn = (Fk,n−1 + Fk,n+1)τ
n
k , n = 1, 2, 3, . . . . (2.8)
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Proof Let us denote u = τk z, |u| < |τk |. Using the equations τk (k − τk) = −1 and
2τk − k = −√

k2 + 4, we have

p̃k(z) = 1 + τ 2
k z2

1 − kτk z − τ 2
k z2

= 1 + u2

1 − ku − u2 =
(

u + 1

u

)
u

1 − ku − u2

=
(

u + 1

u

)
1√

k2 + 4

(
1

1 + u
τk

− 1

1 + u
k−τk

)

=
(

u + 1

u

)
1√

k2 + 4

∞∑
n=1

(−1)n
[(

u

τk

)n

−
(

u

k − τk

)n]

=
(

u + 1

u

) ∞∑
n=1

(k − τk)
n − τ n

k√
k2 + 4

un .

Now by the Eq. (1.5), we find

p̃k(z) =
(

u + 1

u

) ∞∑
n=1

Fk,nun

= 1 +
∞∑

n=1

(
Fk,n−1 + Fk,n+1

)
un

= 1 +
∞∑

n=1

(
Fk,n−1 + Fk,n+1

)
τ n

k zn,

and hence we obtain (2.8). 
�
Theorem 2.4 A function f ∈ S belongs to the class SLk if and only if there exists a

function q, q ≺ p̃k(z) = 1+τ 2
k z2

1−kτk z−τ 2
k z2 such that

f (z) = z exp

z∫
0

q(ζ ) − 1

ζ
dζ , z ∈ D. (2.9)

Proof Let f ∈ SLk . Then by definition

z f ′(z)
f (z)

= p̃k(ω(z)), |ω(z)| < 1, z ∈ D. (2.10)

If we take q(z) = p̃(ω(z)), we see that the Eq. (2.10) is equivalent to (2.9). 
�

For p̃k(z) = 1+τ 2
k z2

1−kτk z−τ 2
k z2 , the formula (2.9) gives f0(z) = z

1−kτk z−τ 2
k z2 . Hence the

function f0 belongs to the class SLk and it is extremal function for several problems
in this class.
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Theorem 2.5 If f (z) = z +
∞∑

n=2
anzn belongs to the class SLk , then we have

|an| ≤ |τk |n−1 Fk,n, (2.11)

where
(
Fk,n

)
is the sequence of k-Fibonacci numbers and τk = k−√

k2+4
2 . Equality

holds in (2.11) for the function f0(z) = z
1−kτk z−τ 2

k z2 .

Proof Let f ∈ SLk , f (z) =
∞∑

m=0
am zm , a0 = 0, a1 = 1. By the definition of the class

SLk , there exists a function ω, |ω(z)| < 1 for z ∈ D such that

z f ′(z)
f (z)

= 1 + τ 2
k ω2(z)

1 − kτkω(z) − τ 2
k ω2(z)

.

We get

z f ′(z) − f (z) = kτkω(z)z f ′(z) + τ 2
k ω2(z)

[
z f ′(z) + f (z)

]
,

∞∑
m=1

(m − 1)am zm = kτkω(z)
∞∑

m=1

mam zm + τ 2
k ω2(z)

∞∑
m=1

(m + 1)am zm

and so

n∑
m=1

(m − 1)am zm +
∞∑

m=n+1

cm zm = kτkω(z)
n−1∑
m=1

mam zm + τ 2
k ω2(z)

n−2∑
m=1

(m + 1)am zm .

For n ≥ 2, we find

∣∣∣∣∣
n∑

m=1

(m − 1)am zm +
∞∑

m=n+1

cm zm

∣∣∣∣∣
2

=
∣∣∣∣∣kτkω(z)

n−1∑
m=1

mam zm + τ 2
k ω2(z)

n−2∑
m=1

(m + 1)am zm

∣∣∣∣∣
2

≤
∣∣∣∣∣kτk

n−1∑
m=1

mam zm + τ 2
k ω(z)

n−1∑
m=1

mam−1zm−1

∣∣∣∣∣
2

≤
n−1∑
m=1

∣∣∣kτkmam zm + τ 2
k ω(z)mam−1zm−1

∣∣∣2

≤
n−1∑
m=1

(∣∣kτkmam zm
∣∣2 +

∣∣∣τ 2
k mam−1zm−1

∣∣∣2 + 2
∣∣∣kτ 3

k m2amam−1z2m−1
∣∣∣
)

.
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Integrating the both sides of this inequality around z = reimϕ and taking limit r → 1−
we obtain

n∑
m=1

(m − 1)2 |am |2 +
∞∑

m=n+1

|cm |2 ≤ k2τ 2
k

n−1∑
m=1

m2 |am |2 + τ 4
k

n−1∑
m=1

m2 |am−1|2

+ 2k |τk |3
n−1∑
m=1

m2 |am | |am−1|

and hence we find

(n − 1)2 |an|2 ≤
n−1∑
m=1

{
k2τ 2

k m2 − (m − 1)2
}

|am |2 +
n−1∑
m=1

τ 4
k m2 |am−1|2

+
n−1∑
m=1

2k|τk |3m2 |am | |am−1|

(2.12)

The inequality (2.11) holds for n = 1. Assume that the estimation (2.11) holds for all
natural numbers less or equal to n. Then from (2.12) and from (2.11) we have

n2 |an+1|2

≤
n∑

m=1

{
k2τ 2

k m2−(m−1)2
}

|am |2+τ 4
k

n∑
m=1

m2 |am−1|2+2k |τk |3
n∑

m=1

m2 |am | |am−1|

≤
n∑

m=1

{
k2τ 2

k m2 − (m − 1)2
} {

|τk |m−1 Fk,m

}2 + τ 4
k

n∑
m=1

m2
{
|τk |m−2 Fk,m−1

}2

+2k |τk |3
n∑

m=1

m2
{
|τk |m−1 Fk,m

} {
|τk |m−2 Fk,m−1

}

=
n∑

m=1

[{
mτm

k

(
k Fk,m + Fk,m−1

)}2 − (m − 1)2
{
|τk |m−1 Fk,m

}2
]

=
n∑

m=1

[{
mτm

k Fk,m+1
}2 − (m − 1)2

{
|τk |m−1 Fk,m

}2
]

= n2|τk |2n {
Fk,n+1

}2
. (2.13)

In this way we have proved by induction the inequality (2.11) for all n ∈ N. 
�
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