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Abstract The aim of this paper is to introduce the concept of right and left semidualiz-
ing adjoint pair of functors and study its main properties. This concept generalizes the
concept of semidualizing module and allows one to consider semidualizing comodules,
graded modules, etc. We also study tilting adjoint pair of functors as a particular case.
We show generalized tilting theorem in this general setting and give some applications
to tilting theory in the category of comodules over a coalgebra.
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1 Introduction and Preliminaries

Semidualizing modules were introduced by Foxby [19], Golod [17], and Vasconcelos
[41] under different names (Foxby called them PG-modules of rank one, Vasconcelos
called them Spherical modules and Golod suitable modules). They generalize dualiz-
ing modules over Cohen–Macaulay rings and projective modules of rank one. More
recently Christensen [9] used the term “semidualizing” to describe this kind of modules
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198 J. R. G. Rozas et al.

(and complexes) for commutative noetherian rings. The theory has been developed
quickly by other authors in the last two decades (see for example papers by Enochs et
al. [16], Enochs and Yassemi [15], Holm and Jorgensen [21], etc.). Araya et al. extend
the theory to the non commutative noetherian setting and investigate semidualizing
bimodules in [2]. They are studied by Holm and White in [22] for arbitrary associative
rings. These modules extend dualizing modules over local noetherian commutative
ring and have a great importance in the theory of Cohen–Macaulay rings. Associated
to a (semi) dualizing module there exist two classes of modules, the Auslander class
and the Bass class [16] (also called Foxby classes for dualizing modules), that are
equivalent as full subcategories of modules.

In 1980, Brenner and Butler in [4] and Happel and Ringel in [20] generalized the
classical Morita theory of equivalences by introducing the notion of a tilting module
over a finite dimensional Artin algebra. In order to obtain equivalences between sub-
categories of the module category, tilting modules were assumed to be of projective
dimension at most one. Later, Miyashita [31] considered tilting modules of finite pro-
jective dimension and studied the equivalences induced by them. Colby and Fuller in
[6] extended the setting to arbitrary rings. Keller in [23] introduced the notion of tilting
adjoint pair of functors in module categories over associative rings and a description
of one-tilting in terms of adjoint functors was given in [35].

Takeuchi in [39] characterized equivalences of comodule categories over fields,
dualizing Morita Theorem on equivalences of module categories. As a generalization
of the Takeuchi result, cotilting comodules are studied in order to obtain equivalences
between certain subcategories of comodules. Mingyi [29] proved the tilting theorem
for classical cotilting comodules over semiperfect conoetherian coalgebras over fields.
More recently, Liu and Zhang extend the results of [29] and get a Brenner–Butler
Theorem for semiperfect coalgebras [26, Theorem 5.2]. Simson in [36] investigates
cotilting comodules and gets different interesting examples in coalgebras over quivers.

In this paper, we unify the concept of semidualizing object by extending this to
the framework of adjoint functors. The advantage of this new point of view is that
we get results valid for different abelian categories like those of comodules, graded
modules, etc. We also connect this concept with the concept of a tilting adjoint pair
given by Keller in [23]. In this way, we get Brenner–Butler Theorem for a large class
of examples.

The paper is structured as follows. We start by introducing semidualizing adjoint
pair in Sect. 2. We prove several results about the Auslander and Bass classes in this
general setting, generalizing several results of Enochs and Yassemi in [15] on the
classes U and W associated to a right and left semidualizing adjoint pair, respectively.
Under some conditions, it is also proved that Gorenstein projective objects are in the
Aulander class and Gorenstein injective in the Bass class.

Next, in Sect. 3, we investigate tilting adjoint pairs. We relate semidualizing and tilt-
ing adjoint pairs with a generalization of Brenner–Butler Theorem. Finally, in Sects. 4
and 5, we apply this general theory to the concrete case of categories of comodules. We
prove that if two coalgebras C and D have a semidualizing bicomodule of finite injec-
tive dimension, then the coalgebras have isomorphic Grothendieck groups and we also
show that C is finite dimensional if and only if D is so. We also give a relation among
the concepts of semidualizing comodule and n-cotilting comodule [36]. We show that
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over a quasi-co-Frobenius coalgebras C every n-cotilting comodules is trivial (that
is, the coendomorphism coalgebra of any n-cotilting comodule is Morita–Takeuchi
equivalent to C).

Now, we give the terminology used in this paper. For concepts about categories
and derived functors, we refer the reader to [37] or [42]. Concerning coalgebras and
comodules, we use the notation of [1,38] or [10].

Let C be a k coalgebra, k a field. For two right C-comodules M and N , the k-space
of all comodules maps from M to N will be written as ComC (M, N ) and MC will
denote the category of right C-comodules. In the same way, we can construct the
category CM of left C-comodules. The category MC is isomorphic to the category
of rational left C∗ modules, Rat (C∗-Mod). In fact, we have a left exact functor Rat:
C∗ − Mod → C∗ − Mod which is a preradical.

If C and D are two coalgebras, a (C, D)-bicomodule is a left C-comodule and a
right D-comodule M , such that the C-comodule structure map ρ−

M : M → C ⊗ M is a
D-comodule map, or equivalently the D-comodule structure map ρ+

M : M → M ⊗ D
is a C-comodule map.

It is well known that MC is an abelian category (see [1,10,38]). In fact, MC is a
Grothendieck category.

Let C be a k-coalgebras and M a right C-comodule. We denote by Cogen(M) the
full subcategory of right C-comodules cogenerated by M , that is subcomodules of
products of copies of M . By Prop(M) [resp. add(M)], we denote the full subcategory
of direct summands of an arbitrary products (resp. finite direct sums) of copies of M ,
and Add(M) denote the full subcategory of direct summands of an arbitrary direct sum
of copies of M .

We recall from [39] that a right comodule M over a coalgebra C is quasi-finite
if it contains only a finite number of copies of each simple right C-comodule S or
equivalently if ComC (S, M) is finite dimensional for every simple S.

Now let M be a quasi-finite right C-comodule and consider the covariant right
additive functor hC (M,−) form MC to Mk . If C is right semiperfect [24], then for
every N ∈ MC we may consider a projective resolution

PN : · · · → Pn → Pn−1 → · · · → P1 → P0 → N → 0.

Therefore, we can obtain the left derived functors of hC (M,−) denoted by
extiC (M,−). Their main properties are listed in [30, Proposition 4.1].

On the other hand, M ∈ MC is quasi-finite if and only if its injective envelope
E(M) is quasi-finite. Now, let us suppose that C is right semiperfect and let S be
a simple right C-comodule. Then, there exists a finite dimensional projective right
C-comodule P such that P → S → 0 is exact. From the exact sequences

0 → ComC (S, E(M)/M) → ComC (P, E(M)/M)

and

ComC (P, M) → ComC (P, (E(M)/M) → 0
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it follows that E(M)/M is quasi-finite, since ComC (P, M) is finite dimensional.
Therefore, if C is right semiperfect and M ∈ MC , then there exists an injective
resolution

EM : 0 → M → E0 → E1 → · · · → En−1 → En → · · ·

where every Ei i ≥ 0 is quasi-finite.
Now let N ∈ MC and consider the right additive contravariant functor hC (−, N )

from the full subcategory of quasi-finite right C-comodules to Mk . hC (−, N ) is right
exact and, by the above, if C is right semiperfect, we can consider left derived functors
of hC (−, N ) using injective resolutions on the first variable. These functors will be
denoted by exti

C (−, N ), i ≥ 0.
Now, by [13, Remark 8.2.15] or simply, from the fact that

hC (M, N )∗ ∼= ComC (N , M)

we get the following result.

Corollary 1.1 Let C be right semiperfect and M, N ∈ MC . If M is quasi-finite, then

exti
C (M, N ) ∼= exti

C (M, N ), exti
C (M, N )∗ = Exti

C (N , M) ∀i ≥ 0.

The following Lemma will be useful.

Lemma 1.2 [10, Proposition 2.3.7] There exists an isomorphism of left D-comodules

M�C N∗ ∼= ComC (N , M)

for every finite dimensional right C-comodule N and any (D–C)-bicomodule M.
Analogously, there exists an isomorphism of right D-comodules

K ∗�C P ∼= ComC (P, K )

for every finite dimensional left C-comodule K and any (C–D)-bicomodule P.

2 Semidualizing Adjoint Pairs

Let C and D be two abelian categories with arbitrary coproducts and products. Suppose
that C has a projective generator, and D has an injective cogenerator.

Let (F, G) be an adjoint situation with F : C → D, G : D → C. Then, F is
right exact and preserves arbitrary colimits, and G is left exact and preserves arbitrary
limits. Their left and right derived functors will be denoted by Li F and Ri G ∀i ≥ 0,
respectively.

We define the Auslander class of C relative to F , denoted by A(C), consisting of
the objects X satisfying:
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(i) Li F(X) = 0 ∀i ≥ 1
(ii) Ri G(F(X)) = 0 ∀i ≥ 1

(iii) the unit u X : X → G F(X) is an isomorphism.

Analogously, the Bass class of D relative to G denoted by B(D), consisting of the
objects Y satisfying:

(i) Ri G(Y ) = 0; ∀i ≥ 1
(ii) Li F(G(Y )) = 0; ∀i ≥ 1

(iii) the counit cY : FG(Y ) → Y is an isomorphism.

Proposition 2.1 The functors F and G define an equivalence between A(C) and
B(D).

Proof We only need to show that if X ∈ A(C) then F(X) is in B(D). Now, the first
condition for F(X) to be in the Bass class becomes the second condition for X to be in
the Auslander class. Moreover, Li F(G(F(X))) = Li F(X) = 0 by the third condition.
The equality F(u X ) ◦ cF(X) = idFG F(X) shows that cF(X) is an isomorphism. 
�

We now introduce the following definition.

Definition 2.1 (1) We say that the adjoint pair (F, G) is right semidualizing if the
class of injective objects is contained in B(D).

(2) We say that the adjoint pair (F, G) is left semidualizing if the class of projective
objects is contained in A(C).

Example 2.2 Let R and S be two rings and M be a semidualizing (R–S)-bimodule ([2]
or [22]), then the adjoint pairs (M ⊗S −, HomR(M,−)) and (−⊗R M, HomS(M,−))

are left semidualizing. Under some finiteness conditions both notions coincide.
In particular, if R and S are right and left noetherian rings, and V is a semidualiz-

ing (R–S)-bimodule, then V [[x]] is a semidualizing (R[[x]]–S[[x]])-bimodule (see
[14, Example 3.5] for V a dualizing bimodule).

Example 2.3 Let F be a Gabriel topology on the ring R, Mod − (R,F) the quotient
category of Mod−R with respect to F , i.e., the full subcategory of Mod−R consisting
of F-closed modules, and a : Mod − R → Mod − (R,F) the localization functor. It
is well known [37, Proposition IX.1.11] that a is a left adjoint of the inclusion functor
i : Mod − (R,F) → Mod − R and a is exact. Hence condition ii) of the Bass class is
trivially satisfied. On the other hand, ai(X) → X is an isomorphisms for any object
X in the quotient category and trivially Ri i(E) = 0 for any injective object in the
quotient category. Hence (a, i) is right semidualizing.

The Auslander class will consist of all right R-modules such that M → ai(M) is an
isomorphism, i.e., M is F-closed and Ri i(a(M)) = 0 and the Bass class is F-closed
and such that Ri i(Y ) = 0.

Example 2.4 Let T be the torsion class associated to an hereditary torsion theory
(T, F). There is an adjoint pair of functors (i, t), where i is the inclusion functor and t
is the torsion radical. In this case, this adjoint is left semidualizing and the Auslander
and Bass class coincide. They consist of all torsion modules X with Ri t (X) = 0,
i ≥ 1. An interesting case is T = MC = Rat(C∗ − Mod).
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202 J. R. G. Rozas et al.

Example 2.5 Let R and S be two G-graded rings, with G a group. If M is a graded
R–S-bimodule then we have the adjoint pairs

(
M ⊗S −, HOM R(M,−)

)
and

(
− ⊗R M, HOM S(M,−)

)

between the corresponding categories of graded modules (see [34, Proposition I.2.14]).
The bimodule M is called a graded semidualizing bimodule if the mentioned adjoint
pairs are left semidualizing. The results of this paper could be applied to this setting.

Example 2.6 Let A be a Grothendieck category and D an object in A. By [8, Propo-
sition 1.1], if we consider R = EndA(D), then there is an adjoint situation

(
TD, HomA(D,−)

)
, TD : Mod − R → A, HomA(D,−) : A → Mod − R

and TD(R) = D. It can be seen that this adjoint pair is left semidualizing if and only if D
is a semidualizing object

[
in the sense that Exti

A
(
D, D(I )

) = 0 and HomA
(
D, D(I )

)
∼= HomA(D, D)(I ) for any index set I

]
. Analogously, we get conditions on D that

guaranteeing that the adjoint pair is right semidualizing.

Let L ⊂ C be a full subcategory of C. As usual, we denote by add(L) (resp. Add(L))
the full subcategory consisting of direct summands of finite direct sums (resp. arbitrary
direct sums) of objects in L. Analogously, we will define prod(L) and Prod(L) for
products.

Lemma 2.7 Let (F, G) be a right semidualizing adjoint pair. Then,

add(G(Y )) ⊆ A(C)

for every object Y ∈ B(D).
If, in addition, G commutes with arbitrary coproducts, then

Add(G(Y )) ⊆ A(C)

for every object Y ∈ B(D).
The dual result with F and products also holds.

Proof Easy. 
�
The following result is easy to prove by the adjoint property and the condition (iii)

of the definitions of the classes A(C) and B(D).

Lemma 2.8 If X, Y ∈ B(D), then HomC(G(X), G(Y )) ∼= HomD(X, Y ). If X ′, Y ′ ∈
A(C), then HomD(F(X ′), F(Y ′)) ∼= HomC(X ′, Y ′).

We can also have the following lemma.

Lemma 2.9 (1) Let W be an injective cogenerator in D. Then, (F, G) is right semi-
dualizing if and only if W ∈ B(D).
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(2) Let Q be a projective generator Q in C. Then, (F, G) is left semidualizing if and
only if Q ∈ A(C).

Our aim now is to characterize the classes A(C) and B(D). We will do so in terms
of two other natural classes of objects. Now let (F, G) be a right semidualizing adjoint
pair and let U ⊆ C be the class of objects U such that U ∼= G(E) for E injective
object in D.

Lemma 2.10 Let (F.G) be a right semidualizing adjoint pair. Then, every X ∈ C
has an U-preenvelope. If D is a Grothendieck category then every X ∈ C has an
U-envelope.

Proof Let X ∈ C and consider i : F(X) → E a monomorphism with E injective

(which exists since D has enough injectives). Then, the composition X
u X→ G F(X)

G(i)→
G(E) is the desired preenvelope: let U ′ ∈ U and morphism X → U ′. Then, we have
F(X) → F(U ′) ∼= FG(E ′) ∼= E ′ for some injective E ′, and so there is a morphism
E → E ′ such that the preceeding morphism F(X) → E ′ factors F(X) → E → E ′.
But then, we get G(E) → G(E ′) such that X → G(E) → G(E ′) is the morphism
X → G(E ′) ∼= U ′.

Now, if D is Grothendieck, then we can take i : F(X) → E an injective envelope.
Let f : G(E) → G(E) such that f ◦ φ = φ, where φ = G(i) ◦ u X . Then F( f ) ◦
F(φ) = F( f ) ◦ FG(i) ◦ F(u X ) = F(φ). But since F(φ) = FG(i)F(u X ) = i is an
injective envelope, it follows that F( f ) is an automorphism, so f ∼= G F( f ) [because
G(E) ∈ A(C)] is an automorphism. 
�
Theorem 2.11 Let (F,G) be a right semidualizing adjoint pair and X ∈ C. The
following assertions are equivalent:

(i) X ∈ A(C).
(ii) There is an exact sequence

· · · P1 → P0 → U 0 → U 1 → · · ·

in C, where every Pi is projective and every Ui ∈ U , such that X =
Ker

(
U 0 → U 1

)
and which remains exact when F is applied.

(iii) There is an exact sequence

0 → X → U 0 → U 1 → · · ·

in C, where every Ui ∈ U such that remains exact when HomC(−, U ) is applied
for every U ∈ U and F leaves exact every projective resolution of X.

Proof (i)⇒ (ii) Let

· · · → P1 → P0 → X → 0

be a projective resolution of X in C. Then, Li F(X) = 0 ∀i ≥ 1 gives that

· · · → F(P1) → F(P0) → F(X) → 0
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is exact. Now let

0 → F(X) → E0 → E1 → · · ·

be an injective resolution of F(X). If we denote Ui = G(Ei ) then we get that the
complex

0 → X ∼= G F(X) → U 0 → U 1 → · · ·

is exact since Ri G F(X) = 0 ∀i ≥ 1. Finally, the sequence also remains exact when
F is applied by its construction.

(ii)⇔ (iii)

0 → X → U 0 → U 1 → · · ·

remains exact when HomC(−, U ) for every U ∈ U is applied if and only if it remains
exact when HomC(−, G(E)) is applied for every injective E ∈ D, and this assertion is
equivalent to HomD(F(−), E) leaves the sequence exact for every injective E ∈ D,
and so, this is equivalent to that F leaves the sequence exact (since D has an injective
cogenerator by hypothesis). Finally, F leaves

· · · → P1 → P0 → X → 0

exact if and only if F leaves exact any projective resolution of X . Here, we use the
fact that Li F(X) = 0 ∀i ≥ 1.

(iii)⇒ (i) The fact that F leaves exact any projective resolution of X implies that
Li F(X) = 0 ∀i ≥ 1. On the other hand, Ui ∼= G(Ei ) for some Ei ∈ D injective,
and so F(Ui ) ∼= FG(Ei ) ∼= Ei . Therefore, the natural morphism Ui → G F(Ui ) is
an isomorphism and

0 → F(X) → F(U 0) → F(U 1) → · · ·

is an injective resolution of F(X), since D has an injective cogenerator by hypothesis.
But then, the complex

0 → G F(X) → G F(U 0) → G F(U 1) → · · ·

is isomorphic to the exact sequence

0 → X → U 0 → U 1 → · · · ,

which shows that X ∼= G F(X) and Ri G F(X) = 0 ∀i ≥ 1. 
�
Proposition 2.12 Let (F, G) be a right semidualizing adjoint pair and let 0 → X ′ →
X → X ′′ → 0 be exact in C. If any two of X ′, X and X ′′ are in A(C), then so is the
third.
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Proof If X ′′ ∈ A(C), then L1 F(X ′′) = 0 and so

0 → F(X ′) → F(X) → F(X ′′) → 0

is exact. If X ∈ A(C), then we have an exact sequence

0 → L1 F(X ′′) → F(X ′) → F(X) → F(X ′′) → 0

and so

0 → GL1 F(X ′′) → G F(X ′) → G F(X)

is exact. Now, if X, X ′ ∈ A(C), we get that

0 → GL1 F(X ′′) → X ′ → X

is exact and therefore, since G is left exact, L1 F(X ′′) = 0. In this way, if two of X ′, X
and X ′′ are in A(C), then

0 → F(X ′) → F(X) → F(X ′′) → 0

is exact, which is equivalent to

0 → HomD(F(X ′′), E) → HomD(F(X), E) → HomD(F(X ′), E) → 0

is exact for every E ∈ D injective and so

0 → HomC(X ′′, G(E)) → HomC(X, G(E)) → HomC(X ′, G(E)) → 0

is exact for every E ∈ D injective. Therefore

0 → HomC(X ′′, U ) → HomC(X, U ) → HomC(X ′, U ) → 0

is exact for every U ∈ U . Now, by [13, Lemma 8.2.1], we can get an U-resolution
0 → X → U 0 → U 1 → · · · such that it becomes exact when HomC(−, U ) is
applied for every U ∈ U from such U-resolutions for X ′ and X ′′, as well as a projective
resolution. If we paste the two resolutions over 0 → X ′ → X → X ′′ → 0 we get an
exact sequence of complexes such that remains exact when we apply F . Now if two
of these complexes are exact, then so is the third and so the result follows using the
preceeding theorem. 
�

To get a dual characterization for B(D), and following what was done for A(C),
we consider now the natural class W of objects W in D such that W ∼= F(P), where
P is a projective object in C. Also, let W be the class of objects W in D such that
W ∼= F(limi Pi ), where limi Pi is a direct colimit of projective objects in C.
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Lemma 2.13 Let (F, G) be a left semidualizing adjoint pair. Then, every Y ∈ D has
a W-precover.

If C is a Grothendieck category and Ri G preserves arbritrary direct colimits for
all i ≥ 0, then every Y ∈ D has a W-cover.

Proof The proof of the first assertion is dual to that of Lemma 2.10 where we consider
P → G(Y ) → 0 exact with P ∈ C projective.

The second assertion is also dual to Lemma 2.10 by considering P → G(Y ) → 0
a flat cover, which exists by [12, Theorem 3.2] and taking into account that the class
of flat objects (i.e., direct colimits of projectives objects) in C is contained in A(C) (by
the hypothesis). 
�

A dual proof to that of Theorem 2.11 gives the following.

Theorem 2.14 Let (F,G) be a left semidualizing adjoint pair. The following asser-
tions are equivalent for Y ∈ D:

(i) Y ∈ B(D).

(ii) There is an exact sequence

· · · → W1 → W0 → E0 → E1 → · · ·

in D, where every Ei is injective and W ∈ W , such that G leaves it exact and
Y = Ker(E0 → E1).

(iii) There is an exact W-resolution

· · · → W1 → W0 → Y → 0

such that remains exact when HomD(W,−) is applied for every W ∈ W and G
leaves exact every injective resolution of Y .

Proposition 2.15 In the conditions of the preceeding theorem, let 0 → Y ′ → Y →
Y ′′ → 0 be exact in D. If any of two Y ′, Y and Y ′′ are in B(D), then so is the third.

Remark 1 As an immediate consequence of the fact that projective objects are in
A(C) when (F, G) is left semidualizing and the last result we get that objects of finite
projective dimension in C belong to A(C). A dual result holds for objects of finite
injective dimension in D.

We also can give information about Gorenstein projective and injective objects. We
denote byGP (resp.GI) the class of Gorenstein projective object inC ( resp. Gorenstein
injective objects in D). For these definitions see [13]. The proof of the following
proposition is similar to [16, Proposition 1.3], but we give it for completeness.

Proposition 2.16 Let (F,G) be an adjoint pair.

(i) If (F,G) is left semidualizing and D has an injective cogenerator W such that
G(W ) has finite projective dimension, then GP ⊆ A(C).
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(ii) If (F,G) is right semidualizing and C has a projective generator Q such that
F(Q) has finite injective dimension, then GI ⊆ B(D).

Proof (i) Let X be a Gorenstein projective object in C. Then, there exists an exact
sequence

· · · P1
δ1→ P0

δ0→ P−1 → · · ·

where X = K er(δ0) and the sequence is HomC(−, P)-exact for every projective
object P ∈ C. Then, HomC(−, G(W )) leaves exact the above exact sequence (G(W )

has finite projective dimension), so HomD(F(−), W ) also verifies it. Hence F(−)

leaves the sequence exact and Li F(X) = 0. Then,

0 → F(X) → F(P0) → F(P−1)

and thus

0 → G F(X) → G F(P0) → G F(P−1)

is also exact. But Pi ∈ A(C), then X ∼= G F(X) canonically. Now let 0 → X →
P0 → Y → 0 be exact. Then, Y is also Gorenstein projective, so Y ∼= G F(Y )

canonically. Thus

0 → F(X) → F(P0) → F(Y ) → 0

is exact, and applying G, we get

0 → X → P0 → Y → R1G(F(X)) → R1G(F(P0)) = 0.

This implies that R1G F(X) = 0. But then since we also have R1G F(Y ) = 0 and
R2G(F(P0)) = 0, we get R2G F(X) = 0. Now by induction, we get Ri G F(X) = 0
for all i ≥ 1.

Similar argument gives (ii). 
�
In the following results, we will study the orthogonal classes with respect to the

Ext1 of the classes U and W . Our aim is to characterize when the pairs (⊥U ,U) and

(W,W⊥
) are cotorsion theories (see [13] for the definitions). The proofs are similar

to [15, Section 2], so they will be omitted.

Theorem 2.17 Let (F,G) be a right semidualizing adjoint pair. The following asser-
tions are equivalents:

(i)
(⊥U ,U)

is a cotorsion theory.
(ii) Every injective object is in U .

(iii) Every U-envelope X → U is a monomorphism.
(iv) u X : X → G F(X) is a monomorphism for all X ∈ C.
(v) uE : E → G F(E) is a monomorphism for all E ∈ C injective.

If
(⊥U ,U)

is a cotorsion theory, then it is a perfect cotorsion theory.
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Theorem 2.18 If (F,G) is a left semidualizing adjoint pair, C is a Grothendieck
category and Ri G preserves arbritrary direct colimits for all i ≥ 0, then the following
assertions are equivalents:

(i)
(W,W⊥)

is a cotorsion theory.
(ii) Every projective object is in W .

(iii) Every W-cover P → Y is an epimorphism.
(iv) cY : FG(Y ) → Y is an epimorphism for all Y ∈ D.
(v) cP : FG(P) → P is an epimorphism for all P ∈ D projective.

If
(W,W⊥)

is a cotorsion theory, then it is a perfect cotorsion theory.

3 Tilting Adjoint Pairs

The aim of this section is to define a tilting adjoint pair and connect this definition
with the definition of a semidualizing adjoint pair.

Let (F, G) be an adjoint pair as in Sect. 2. For m ≥ 0 we will denote

KerFm = {X ∈ C | Li F(X) = 0 ∀i �= m, i ≥ 0},
KerGm = {X ∈ D | Ri G(X) = 0 ∀i �= m, i ≥ 0}.

The following definition is due to Keller [23].

Definition 3.1 Suppose that F and G have finite cohomological dimension ≤ k and
let m be an integer such that 0 ≤ m ≤ k.

We will say that the adjoint pair (F, G) is a tilting adjoint pair if the categories
K er Fm and K erGm are equivalent under the functors Lm F and Rm G, ∀0 ≤ m ≤ k.

Lemma 3.1 Let (F, G) be a right semidualizing adjoint pair. Suppose that F has
finite cohomological dimension ≤ k. If X ∈ K erG0, then G(X) ∈ K er F0 and
cX : FG(X) → X is an isomorphism.

Proof Let 0 → X
d0→ E0 d1→ E1 d2→ · · · dk−1→ Ek−1 dk→ Ek → · · · be an injective

resolution and let Li = Coker
(
di−1

)
i ≥ 1. Then, we have an exact sequence

0 → G(X) → G
(

E0
)

→ · · · → G
(

Ek
)

→ G
(

Ek+1
)

If we denote Y i = G
(
Li

)
, since by the hypothesis it follows that G

(
Ei

) ∈ K er F0,
we get that G(X), Y 1 and Y 2 are in K er F0 (F having finite cohomological dimen-
sion). Since, by hypothesis, Ei ∈ B(D), it follows that cEi : FG(Ei ) → Ei are
isomorphisms ∀i ≥ 0. So, from the commutative diagram with exact rows

we get that cX : FG(X) → X is an isomorphism. 
�
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Dually we get:

Lemma 3.2 Let (F,G) be a left semidualizing adjoint pair. Suppose that G has finite
cohomological dimension ≤ k. If Y ∈ K er F0 then F(Y ) ∈ K erG0 and uY : Y →
G F(Y ) is an isomorphism.

Theorem 3.3 Let (F,G) be a right semidualizing adjoint pair. Suppose that F has
finite cohomological dimension ≤ k. Let m ≥ 0 be an integer and let X ∈ K erGm.
Then Rm G(X) ∈ K er Fm and there is an isomorphism Lm F(Rm G(X)) ∼= X.

Proof By Lemma 3.1 we may suppose that m ≥ 1. Now let

0 → X
d0→ E0 d1→ E1 d2→ · · · dk−1→ Em−1 dm→ Em → · · ·

be an injective resolution and let Li = Coker
(
di−1

)
. By general properties of right

derived functors Ri G(Lm) ∼= Ri+m G(X) = 0 ∀i ≥ 1 and so, Lm ∈ K erG0. Then,
by Lemma 3.1 G(Lm) ∈ K er F0 and cLm : FG(Lm) → Lm is an isomorphism. If we
apply G to the injective resolution, we get

0 → G(X) → G
(

E0
)

→ · · · → G
(

Em−1
)

→ G
(
Em) → Y → 0,

where R1G
(
Ln−1

) ∼= · · · ∼= RnG(X) = Y . Now G(Ei ) ∈ K er F0 by hypothesis and
so, from general properties of derived functors, it follows that Li F(Y ) = 0 ∀i ≥ m+1
and therefore

0 → FG(E0) → · · · → FG(Em) → FG(Y ) → 0 (∗)

is exact.
Now, for i = 0, . . . , m − 2, let

G
(

Ei
)

→ Y i+1 → G
(

Ei+1
)

be a factorization and consider Y = Y m−1. From the exact sequence

0 → Y i → G
(

Ei
)

→ Y i+1 → 0,

we get an exact sequence

0 = L1 F
(

G
(

Ei
))

→ L1 F
(

Y i+1
)

→ F
(

Y i
)

→ FG
(

Ei
)

→ F
(

Y i+1
)

→ 0

for i = 0, . . . , m − 2. But the fact that (∗) is exact is equivalent to F(Y0) = 0 and
L1 F(Yi ) = 0 for i = 0, · · · , m − 2. Now, since G

(
Ei

) ∈ K er F0 i = 0, . . . , m − 2,
we get

Li F
(

Y m−1
) ∼= Li−1 F

(
Y m−2

) ∼= · · · ∼= L1 F
(

Y m−i+1
)

= 0

and so Li F(Y ) = 0, i ≥ 0, i �= m, i.e., Y = Rm G(X) ∈ K er Fm .
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Moreover,

Lm F
(
Rm G(X)

) ∼= K er
(

FG
(

E0
)

→ FG
(

E1
)) ∼= K er

(
E0 → E1

)
= X.


�
Now, a dual proof using Lemma 3.2 gives the following result.

Theorem 3.4 Let (F,G) be a left semidualizing adjoint pair. Suppose that G has finite
cohomological dimension ≤ k. Let m ≥ 0 be an integer and let X ∈ K er Fm. Then,
Lm F(X) ∈ K erGm and there is an isomorphism Rm G(Lm F(X)) ∼= X.

Then, using Theorems 3.3 and 3.4, we get the following result which may be viewed
as a generalization of Tilting Theorem.

Theorem 3.5 Let (F,G) be an adjoint pair. Suppose that F and G have finite coho-
mological dimension ≤ k.

The following assertions are equivalent:

(1) (F, G) is a right and left semidualizing adjoint pair.
(2) (F, G) is a tilting adjoint pair.

Proof We only have to prove (2) ⇒ (1). If E ∈ D is injective, then E ∈ K erG0 and
so G(E) ∈ K er F0, therefore Li F(G(E)) = 0 ∀i ≥ 1. Also, by the equivalence for
m = 0, we get that FG(E) ∼= E . Therefore E ∈ B(D).

The proof for projectives is dual. 
�
Remark 2 If k = 0, then K erG0 = D, K er F0 = C and (F, G) are mutually inverse
equivalences of categories.

If k = 1, then F and G give an equivalence between the categories of F-acyclic
objects in C and G-acyclic objects in D. Also K er F and K erG are equivalent via
L1 F and R1G.

Another consequence of Theorems 3.3 and 3.4 is the following.

Corollary 3.6 In the conditions of Theorem 3.5:

(i) If X ∈ D is such that Ri G(X) = 0 for i = 0, . . . , k, then X = 0.
(ii) Let Y ∈ C. If Li F(Y ) = 0 for i = 0, . . . , k, then Y = 0.

If C is an abelian category, we recall that the Grothendieck group of C, denoted,
K0(C), is defined as follows: for each object X ∈ C there is a generator [X ]; for each
exact sequence

0 → X ′ → X → X ′′ → 0

in C there is a relation

[X ] = [
X ′] + [

X ′′] .

The following result generalizes [31, Theorem 1.19]. Its proof follows by the same
arguments.

123



Semidualizing and Tilting Adjoint Pairs, Applications to Comodules 211

Theorem 3.7 Let (F, G) be an adjoint pair as above. Suppose that F and G have
finite cohomological dimension ≤ k. If (F, G) is a tilting adjoint pair, then the map

LF : K0(C) → K0(D), [X ] �→
∑
i≥0

[Li F(X)],

is an isomorphism. The inverse is given by

RG : K0(D) → K0(C), [X ] �→
∑
i≥0

[
Ri G(X)

]
.

4 Semidualizing Comodules

We start this section with an useful result that gives a characterization of semidualizing
comodules.

Proposition 4.1 Let C be a coalgebra, T a quasi-finite right C-comodule and D =
eC (T ).

(i) Suppose that D = eC (T ) is a left semiperfect coalgebra and DT is a quasi-finite
left D-comodule. Then, exti

C (T, T ) = 0 ∀i ≥ 1 if and only if the adjoint pair(
hD(T,−), T �C −

)
is left semidualizing.

(ii) Suppose that DT is a quasi-finite left D-comodule and C ∼= eD(T ) canonically.
Then,

exti
D(T, T ) = 0 ∀i ≥ 1 if and only if the adjoint pair

(
hD(T,−), T �C −

)
is

right semidualizing.

(iii) exti
C (T, T ) = 0 ∀i ≥ 1 if and only if the adjoint pair

(
hC (T,−),−�DT

)
is

right semidualizing.
(iv) If C is a right semiperfect coalgebra, then exti

C (T, T ) = 0 ∀i ≥ 1 if and only

if the adjoint pair
(

hC (T,−),−�DT
)

is left semidualizing.

Proof (i) By hypothesis DM has a projective generator and any projective left
D-comodule is a direct sum of finite dimensional left D-comodules of the form
E∗, where E is a finite dimensional injective right D-comodule. In particular, E∗
is a direct summand of a finite direct sum of copies of D∗. Let P be a projective
left D-comodule. In order to show that P ∈ A (

DM)
it is enough to take P = E∗

a finite dimensional projective left D-comodule.
We have, by Lemma 1.2, that

T �C hD(T, E∗) ∼= T �C Com D(E∗, T )∗ ∼= ComC (Com D(E∗, T ), T ).

In this way, the unit of the adjunction uE∗ : E∗ → T �C hD(T, E∗) is nothing but
the evaluation map E∗ → ComC (Com D(E∗, T ), T ). Since this last map is an
isomorphism for D∗ (by the same argument as above), we conclude that the same
is true for E∗.
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On the other hand, let

0 → T → I 0 → I 1 → · · ·

be an injective resolution of T in MC . The homology of the complex

0 → I 0�C hD(T, E∗) → I 1�C hD(T, E∗) → · · ·

is precisely Tori
C (T, hD(T, E∗)). But by the above

I i�C hD(T, E∗) ∼= ComC (Com D(E∗, T ), I i )

naturally. Therefore Tori
C (T, hD(T, E∗)) ∼= Exti

C (Com D(E∗, T ), T ) which is a
direct summand of

Exti
C (HomD∗((D∗)n, T ), T ) ∼= Exti

C (T, T )n ∼= (exti
C (T, T )∗)n = 0.

(ii) Immediate from the facts that C ∈ B(DM), T �C− preserves arbitrary direct
sums, and any injective left C-comodule is a direct summand of a direct sum of
copies of C .
The proofs of (iii) and (iv) are similar to (i) and (ii). 
�

Let C and D be right and left semiperfect coalgebras, respectively, over the same
field k. Most of the results of this paper are valid for k a commutative ring such that C
and D are k-flat; however, we do not make such a generalization at this time. Let T be a
(D–C)-bicomodule such that TC ∈ MC and DT ∈ DM are quasi-finite. In that case,
we have two adjoint situations,

(
hD(T,−), T �C −)

, where hD(T,−) : DM → CM,
T �C− : CM → DM and similarly

(
hC (T,−),−D�T

)
on the right.

Definition 4.1 We will say that T is a semidualizing (D–C)-bicomodule if the adjoint
pairs

(
hD(T,−), T �C − )

and
(
hC (T,−),−D�T

)
are right semidualizing.

The following result is immediate from the definition.

Proposition 4.2 A (D–C)-bicomodule DTC is a semidualizing bicomodule if and only
if it satisfies the following two conditions:

(i) hD(T, T ) ∼= C and hC (T, T ) ∼= D. (T is balanced)
(ii) extiD(T, T ) = 0 and extiC (T, T ) = 0 ∀i ≥ 1. (T is self-orthogonal).

From a right C-comodule T , we can find conditions for DTC to be semidualizing
for D = eC (T ).

Proposition 4.3 Let T be a quasi-finite right C-comodule and let D = eC (T ) its
endomorphisms coalgebra. Suppose D T is quasi-finite left D-comodule, extiC (T, T ) =
0 ∀i ≥ 1 and let D = eC (T ) be left semiperfect. If there is an exact sequence

0 → Tn → · · · → T1 → T0 → C → 0

for some n ≥ 0 with Ti ∈ add(TC ) for i = 0, . . . , n, then DTC is semidualizing.
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Proof Since T ∼= hD(hC (T, T ), T ), we get that Ti ∼= hD(hC (Ti , T ), T ) for i =
0, . . . , n and so we get a commutative diagram

where the vertical arrows are isomorphisms. By hypothesis

0 → T ∼= hC (C, T ) → hC (T0, T ) → · · · → hC (Tn, T ) → 0

is exact and so is an injective resolution of DT . Therefore eD(T ) ∼= C and
extiD(T, T ) = 0, ∀i ≥ 1. 
�

5 N-Cotilting Comodules

In this section, we will consider a particular class of semidualizing comodules that
give equivalence of categories and which generalize other classical results.

Following the definitions of [36, Section 3], we give a general definition of
n-cotilting comodule and n- f -cotilting comodule.

Definition 5.1 Let T be a right C-comodule. We will say that T is a n-cotilting
comodule if the following four conditions are satisfied.

(i) T is quasi-finite.
(ii) in j.dimC T ≤ n.

(iii) Exti
C

(
T I , T

) = 0 for any index set I and all i ≥ 1.
(iv) There exists an exact sequence

0 → Tn → Tn−1 → · · · → T1 → T0 → C → 0

in MC with Ti ∈ Prod(T ) for all i ≥ 0.

We define T to be an n- f -cotilting comodule if T satisfies (i) and the following three
conditions:

(i’) T admits a finite injective resolution

0 → T → E0 → E1 → · · · → En → 0,

where the comodules Ei are quasi-finite injective and lie in add(C) for every
i ≥ 0.

(ii’) Exti
C (T, T ) = 0 ∀i ≥ 1.

(iii’) There exists an exact sequence

0 → Tn → Tn−1 → · · · → T1 → T0 → C → 0

in MC with Ti ∈ add(T ) for all i ≥ 0.
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We note that classical one-cotilting, [30], is different from one-cotilting in this new
sense.

Example 5.1 (1) Let C be a Gorenstein coalgebra [3, Definition 2.1]. Then, C is
right and left semiperfect and there is minimal projective resolution of quasi-finite
comodules in MC (see [28, Theorem 3.1])

0 → Pk → Pk−1 → · · · → P0 → C → 0.

By [3, Lemma 2.2], any projective right C-comodule has finite injective dimension.
We easily can see that T = ⊕k

i=0 Pi is a generalized f-cotilting right C-comodule.
(2) Examples of 1- f -cotilting comodules over quivers coalgebras can be found in

[36].

In the following result, we show that n-cotilting comodules T over a quasi-co-
Frobrenius coalgebra C are trivial in the sense that eC (T ) is Morita–Takeuchi equiv-
alent to C .

Theorem 5.2 If C is a quasi-co-Frobrenius coalgebra, every n-cotilting comodule is
an injective cogenerator.

Proof Let C be a quasi-co-Frobenius coalgebra, which is equivalent to that C is
projective in MC and let T be in MC such that T is a n-cotilting comodule. Then,
there is an exact sequence

0 → Tn → Tn−1 → · · · → T0 → C → 0

with Ti ∈ Prod(T ). This sequence splits at C , so C ⊕ M = T J , for some M ∈ MC

and some set J . Therefore T is a cogenerator. Also there is an exact sequence

0 → T → I0 → I1 → · · · → In → 0.

Since every injective is also projective, this sequence splits everywhere, so T ⊕ N =
C (I ) for some N ∈ MC and some set I . This implies that T is injective. 
�

Now, we show that duals of f -cotilting comodules are tilting modules in the sense
of Miyashita [31].

Proposition 5.3 Let C be a right semiperfect coalgebra and let T ∈ MC . If TC is a
k-f-cotilting comodule, then T ∗

C∗ ∈ MC∗ is a tilting module of projective dimension
less or equal than k.

Proof It is clear that T ∗
C∗ is finitely generated. Now if we consider

0 → T → E0 → · · · → Ek → 0

exact with Ei injective finitely cogenerated, we get that Ei is a direct summand of C (n)

for some n and so, Ei∗ is a direct summand of C (n)∗, which gives that pd(T ∗) ≤ k.
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On the other hand, from the exact sequence

0 → Tk → · · · → T1 → T0 → C → 0

with Ti ∈ add(TC ) for i = 0, . . . , k we get

0 → C∗ → T ∗
0 → · · · → T ∗

k → 0

with T ∗
i ∈ add(T ∗) i = 0, . . . , k.

Finally, from the exact sequence

0 → T → E0 → · · · → Ek → 0

with Ei injective finitely cogenerated, we get by [30, Lemma 5.1] that the complexes

0 → ComC (T, T ) → ComC (T, E0) → · · · → ComC (T, Ek) → 0

and

0 → HomC∗(T ∗, T ∗) → HomC∗(E0∗, T ∗) → · · · → HomC∗(Ek∗, T ∗) → 0

are isomorphic and so, give isomorphic homology groups. Now since extiC (T, T )

= 0, ∀i ≥ 1 we get that Exti
C (T, T ) = 0, ∀i ≥ 1 and so, Exti

C∗(T ∗, T ∗) = 0, ∀i ≥ 1.

�

Proposition 5.4 Let C be right semiperfect and let D = eC (T ) be left semiperfect. If
T is a k-f-cotilting comodule, then DT is k-f-cotilting and eD(T ) ∼= C.

Proof By Proposition 4.3, we get that DTC is semidualizing and eD(T ) ∼= C . On the
other hand, by the hypothesis, there is an exact sequence in MC

0 → T
d0→ E0 d1→ · · · dk→ Ek → 0

where every Ei is a direct summand of C (n). Now consider Li = Coker
(
di−1

)
,

i = 1, . . . , k − 1. Then for j = 1, . . . k − 2, extiC (L j , T ) ∼= exti−1
C (L j+1, T ). In

particular, for j = 1, . . . , k − 1, we get that

ext1
C (L j , T ) ∼= ext2

C

(
L j−1, T

) ∼= · · · ∼= extk+1
C

(
L j−k, T

) = 0

taking into account that Y−1 = T , and so we get an exact sequence in DM

0 → hC

(
Ek, T

)
→ hC

(
Ek−1, T

)
→ hC

(
E0, T

)
→ hC (T, T ) = D → 0.

Now, since hC (C, T ) ∼= DT and Ei are direct summands of C (n), we get that
hC (Ei , T ) ∈ add( DT ) for i = 0, · · · , k.
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Finally, let

0 → Tk
dk→ Tk−1

dk−1→ · · · d1→ T0
d0→ C → 0

be exact in MC and Ti ∈ add(TC ). Since extiC (T, T ) = 0, ∀i ≥ 1 it follows that
extiC

(
Tj , T

) = 0, ∀i ≥ 1 and j = 0, . . . , k. By the same reasoning as above, we get
an exact sequence in DM

0 → T ∼= hC (C, T ) → hC (T0, T ) → · · · → hC (Tk, T ) → 0

Now, the fact that for j = 0, . . . , k, hC
(
Tj , T

)
is a direct summand of hC

(
T (n), T

) ∼=
D(n) gives that id

(
DT

) ≤ k. 
�
For the next Theorem, we need to introduce some notation.
Let k be a non-negative fixed integer. For T ∈ MC and m ≥ 0, we will denote

Kerextm(TC ) = {M ∈ MC : exti
C (T, M) = 0 for i = 0, . . . , k + m and i �= m}

KerTorm(TC ) = {M ∈ CM : Tori
C (T, M) = 0 for i = 0, . . . , k + m and i �= m}

For C T ′ ∈ CM Kerextm
(

C T ′) and KerTorm
(

C T ′) are defined analogously.
Now, by Theorem 3.5 we have:

Theorem 5.5 Let C and D be right and left semiperfect coalgebras, respectively, and
T a (D–C)-bicomodule such that TC and DT are quasi-finite. Suppose:

(i) DTC is a semidualizing bicomodule.
(ii) id (TC ) ≤ k and id ( DT ) ≤ k.

Let m be an integer such that 0 ≤ m ≤ k.
Then, the categories KerTorm(TC ) and Kerextm

(
DT

)
are equivalent under the

functors Torm
C (T,−) and extm

D(T,−).

At the end of Sect. 3, we have defined the Grothendieck group of an abelian category.
For a coalgebra C , we denote by K0(C) the Grothendieck group of CM and by K0(C)

the Grothendieck group of CM f.d , the full subcategory of finitely dimensional left
C-comodules.

Theorem 5.6 Under conditions of Theorem 5.5, the Grothendieck groups of C and
D are isomorphic, that is, K0(C) ∼= K0(D) and K0(C) ∼= K0(D). In particular, the
number of isomorphism classes of simple left C-comodules is equal to the number of
isomorphic classes of simple left D-comodules.

Proof Follows from Theorem 3.7 noting that derived functors of hD(T,−) and T �C−
preserve finite dimensional comodules. 
�
Corollary 5.7 Under conditions of Theorem 5.5, C is finite dimensional if and only
if D is finite dimensional.

Proof Follows by Theorem 5.6 and [10, Exercise. 3.3.13]. 
�
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