
Bull. Malays. Math. Sci. Soc. (2015) 38(1):143–154
DOI 10.1007/s40840-014-0009-9

Best Proximity Points for Weak Proximal Contractions

Moosa Gabeleh

Received: 23 August 2012 / Revised: 15 November 2012 / Published online: 15 October 2014
© Malaysian Mathematical Sciences Society and Universiti Sains Malaysia 2014

Abstract In this article, we introduce a new class of non-self mappings, called weak
proximal contractions, which contains the proximal contractions as a subclass. Exis-
tence and uniqueness results of a best proximity point for weak proximal contractions
are obtained. Also, we provide sufficient conditions for the existence of common
best proximity points for two non-self mappings in metric spaces having appropriate
geometric property. Examples are given to support our main results.
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1 Introduction and Preliminaries

Let A and B be two nonempty subsets of a metric space (X, d). A mapping T : A → B
is said to be a contraction mapping if there exists a constant α ∈ [0, 1) such that
d(T x, T y) ≤ αd(x, y), for all x, y ∈ A. If A is a complete subset of X and T is a
contraction self map, then by the Banach contraction principle, the fixed point equation
T x = x has exactly one solution.

In general, for the non-self mapping T : A → B, the fixed point equation T x = x
may not have a solution. Thus, it is contemplated to find an approximate solution
x ∈ A such that the error d(x, T x) is minimum. Indeed, best approximation theory
has been derived from this idea.
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144 M. Gabeleh

Definition 1.1 Let A and B be nonempty subsets of a metric space (X, d) and T :
A → B be a non-self mapping. A point p ∈ A is called best proximity point of T if
d(p, T p) = dist(A, B), where

dist(A, B) := inf{d(x, y) : (x, y) ∈ A × B}.

In fact, best proximity point theorems have been studied to find necessary conditions
such that the minimization problem

min
x∈A

d(x, T x) (1)

has at least one solution.
One can refer to [1,3–10,12,15,17,19]) for best proximity point theorems for var-

ious classes of non-self mappings.
Let us consider the mappings T : A → B and S : A → B, where (A, B) is pair of

nonempty subsets of a metric space (X, d). The natural question is whether one can
find a solution for the minimization problem

min
x∈A

d(x, T x) & min
x∈A

d(x, Sx). (2)

Since d(x, T x), d(x, Sx) ≥ dist(A, B), the optimal solution to the problem of mini-
mizing the real valued functions x �→ d(x, T x) and x �→ d(x, Sx) over the domain
A of the mappings S, T will be the one for which the value dist(A, B) is attained.

Definition 1.2 Let (A, B) be nonempty pair of a metric space (X, d) and S : A →
B, T : A → B be two non-self mappings. A point x∗ ∈ A is called a common best
proximity point of the mappings S, T if

d(x∗, T x∗) = d(x∗, Sx∗) = dist(A, B).

Let A and B be two nonempty subsets of a metric space (X, d). In this work, we
adopt the following notations and definitions.

A0 : = {x ∈ A : d(x, y) = dist(A, B), for some y ∈ B},
B0 : = {y ∈ B : d(x, y) = dist(A, B), for some x ∈ A},

D(x, B) : = inf{d(x, y) : y ∈ B}, for all x ∈ X.

In [13], Sadiq Basha introduced the notion of proximal contractions as follows.

Definition 1.3 ([13]) Let (A, B) be a pair of nonempty subsets of a metric space
(X, d). A mapping T : A → B is said to be a proximal contraction if there exists a
non-negative real number α < 1 such that, for all u1, u2, x1, x2 ∈ A,

{
d(u1, T x1) = dist(A, B)

d(u2, T x2) = dist(A, B)
⇒ d(u1, u2) ≤ αd(x1, x2).
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Definition 1.4 ([13]) Let A, B be two nonempty subsets of a metric space (X, d).A
is said to be approximatively compact with respect to B if every sequence {xn} of A
satisfying the condition that d(y, xn) → D(y, A) for some y ∈ B has a convergent
subsequence.

The next theorem is a main result of [13].

Theorem 1.1 Let (A, B) be a pair of nonempty closed subsets of a complete metric
space (X, d) such that A0 is nonempty and B is approximatively compact with respect
to A. Assume that T : A → B is a proximal contraction such that T (A0) ⊆ B0. Then
T has a unique best proximity point.

The following notion of a geometric property in metric spaces was introduced by
Sankar Raj in [16].

Definition 1.5 ([16]) Let (A, B) be a pair of nonempty subsets of a metric space
(X, d) with A0 
= ∅. The pair (A, B) is said to have the P-property if and only if

{
d(x1, y1) = dist(A, B)

d(x2, y2) = dist(A, B)
⇒ d(x1, x2) = d(y1, y2),

where x1, x2 ∈ A0 and y1, y2 ∈ B0.

Example 1.1 ([16]) Let A, B be two nonempty closed convex subsets of a Hilbert
space H. Then (A, B) has the P-property.

Example 1.2 Let A, B be two nonempty subsets of a metric space (X, d) such that
A0 
= ∅ and dist(A, B) = 0. Then (A, B) has the P-property.

Example 1.3 ([2]) Let A, B be two nonempty bounded, closed and convex subsets of
a uniformly convex Banach space X . Then (A, B) has the P-property.

In the current paper, we introduce a new class of non-self mappings, called weak
proximal contractions, which contains the proximal contractions as a subclass. For
such mappings, we obtain existence and uniqueness results of best proximity points.
Moreover, we prove the existence of a common best proximity point for two non-self
mappings in a metric spaces with the P-property.

2 Weak Proximal Contractions

To establish our results of this section, we introduce the following new class of non-self
mappings.

Definition 2.1 Define a strictly decreasing function η from [0, 1) onto ( 1
2 , 1] by

η(r) = 1

1 + r
.
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Let (A, B) be a pair of nonempty subsets of a metric space (X, d). A non-self mapping
T : A → B is said to be a weak proximal contraction if there exists r ∈ [0, 1) such
that, for all u, v, x, y ∈ A with

d(u, T x) = dist(A, B) & d(v, T y) = dist(A, B),

we have

η(r)d∗(x, T x) ≤ d(x, y) implies d(u, v) ≤ rd(x, y), (3)

where d∗(a, b) := d(a, b)− dist(A, B), for all (a, b) ∈ A × B.

Let us state our main result of this section.

Theorem 2.1 Let (A, B) be a pair of nonempty subsets of a complete metric space
(X, d) such that A0 is nonempty and closed. Assume that T : A → B is a weak
proximal contraction non-self mapping such that T (A0) ⊆ B0. Then T has a unique
best proximity point.

Proof Let x0 ∈ A0. Since T x0 ∈ B0, there exists x1 ∈ A0 such that d(x1, T x0) =
dist(A, B). Again, since T x1 ∈ B0, there exists x2 ∈ A0 such that d(x2, T x1) =
dist(A, B). Thus, we have a sequence {xn} in A0 such that

d(xn+1, T xn) = dist(A, B), for all n ∈ N ∪ {0}. (4)

We now have

d(x0, T x0) ≤ d(x0, x1)+ d(x1, T x0) = d(x0, x1)+ dist(A, B),

which implies that

η(r)d∗(x0, T x0) ≤ d∗(x0, T x0) ≤ d(x0, x1).

Since T is weak proximal contraction,

d(x1, x2) ≤ rd(x0, x1).

Similarly, we can see that η(r)d∗(x1, T x1) ≤ d(x1, x2) and by the fact that T is weak
proximal contraction, we must have

d(x2, x3) ≤ rd(x1, x2) ≤ r2d(x0, x1).

Continuing this process, we obtain

d(xn, xn+1) ≤ rnd(x0, x1).
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Best Proximity Points for Weak Proximal Contractions 147

Thus
∑∞

n=1 d(xn, xn+1) < ∞. So, {xn} is a Cauchy sequence and by the completeness
of X and since A0 is closed, there exists p ∈ A0 such that xn → p. We claim that

d∗(p, T x) ≤ rd(p, x) for all x ∈ A0 with x 
= p. (5)

Let x ∈ A0 and x 
= p. Since T (A0) ⊆ B0, there exists y ∈ A0 such that
d(y, T x) = dist(A, B). As regards xn → p, there exists N1 ∈ N such that

d(xn, p) ≤ 1

3
d(x, p) for all n ≥ N1.

We now have

η(r)d∗(xn, T xn) ≤ d∗(xn, T xn) = d(xn, T xn)− dist(A, B)

≤ d(xn, p)+ d(p, xn+1)+ d(xn+1, T xn)− dist(A, B)

= d(xn, p)+ d(p, xn+1)

≤ 2

3
d(x, p) = d(x, p)− 1

3
d(x, p)

≤ d(x, p)− d(xn, p) ≤ d(xn, x).

Thus, {
d(xn+1, T xn) = dist(A, B)

d(y, T x) = dist(A, B)
& η(r)d∗(xn, T xn) ≤ d(xn, x).

Since T is weal proximal contraction,

d(xn+1, , y) ≤ rd(xn, x). (6)

Therefore, by (6) we conclude that

d(p, T x) = lim
n→∞ d(xn, T x)

≤ lim
n→∞[d(xn, xn+1)+ d(xn+1, y)+ d(y, T x)]
× lim

n→∞[d(xn, xn+1)+ rd(xn, x)+ d(y, T x)]
= rd(p, x)+ dist(A, B),

and hence d∗(p, T x) ≤ rd(p, x). Then

d(xn, T xn) ≤ d(xn, p)+ d(p, T xn)

≤ d(xn, p)+ rd(p, xn)+ dist(A, B),

which implies that d∗(xn, T xn) ≤ (1 + r)d(xn, p), and hence

1

1 + r
d∗(xn, T xn) = η(r)d∗(xn, T xn) ≤ d(xn, p).
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On the other hand, since p ∈ A0 and T (A0) ⊆ B0, there exists q ∈ A0 such that
d(q, T p) = dist(A, B). We have

{
d(xn+1, T xn) = dist(A, B)

d(q, T p) = dist(A, B)
& η(r)d∗(xn, T xn) ≤ d(xn, p).

As T is a weak proximal contraction, we obtain

d(xn+1, q) ≤ rd(xn, p) → 0.

This implies that xn → q. Thus p = q, that is, d(p, T p) = dist(A, B). We conclude
the proof by showing that the best proximity point of T is unique. Suppose that ṕ ∈ A0
is another best proximity point of the mapping T . We have

{
d(p, T p) = dist(A, B)

d( ṕ, T ṕ) = dist(A, B)
& η(r)d∗(p, T p) = 0 ≤ d(p, ṕ).

Then we must have d(p, ṕ) ≤ rd(p, ṕ) which implies that p = ṕ. ��
Example 2.1 Consider X = R

2 and define the metric d on X by

d((x1, x2), (y1, y2)) = |x1 − y1| + |x2 − y2|, ∀ (x1, x2), (y1, y2) ∈ R
2.

We know, (X, d) is a complete metric space. Suppose

A := {(0, 0), (4, 5), (5, 4)} and B = {(0, 0), (0, 4), (4, 0)}.

Define a non-self mapping T : A → B as follows:

T (x1, x2) =
{
(x1, 0) if x1 ≤ x2,

(0, x2) if x2 < x1.

We claim that T satisfies the condition (3). If (x, y) 
= ((4, 5), (5, 4)) and (x, y) 
=
((5, 4), (4, 5)), it is easy to see that d(T x, T y) ≤ 4

9 d(x, y). If (x, y) = ((4, 5), (5, 4)),
we have

d(T x, T y) = d((4, 0), (0, 5)) = 9 > 2 = d(x, y),

which implies that T is not a contraction. Besides,

η(r)d(x, T x) = 1

1 + r
d((4, 5), T (4, 5)) = 5

1 + r
> 2 = d(x, y)

for every r ∈ [0, 1). That is, (3) holds. It now follows from Theorem 2.1 that T has a
unique best proximity point.

The following results follow from Theorem 2.1, immediately.
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Best Proximity Points for Weak Proximal Contractions 149

Corollary 2.1 Let (A, B) be a pair of nonempty closed subsets of a complete metric
space (X, d) such that A0 is closed. Assume that T : A → B is a proximal contraction
such that T (A0) ⊆ B0. Then T has a unique best proximity point.

Example 2.2 Suppose that X = R with the usual metric. Suppose that

A := [−2,−1] ∪ {4}, B := [1, 2].

Note that dist(A, B) = 2. Let T : A → B be a mapping defined as

T (x) =
{

x + 3 if x 
= 4,

2 if x = 4.

We claim that T is a weak proximal contraction non-self mapping.

Case 1. If (u, x) = (−1,−2) and (v, y) = (4,−1) then

d(u, T x) = d(v, T y) = dist(A, B).

Also, for each r ∈ [0, 1), we have

η(r)d∗(x, T x) = 1

1 + r
× 2 > 1 = d(x, y).

That is, T satisfies the condition (3) in this case.

Case 2. If either (u, x) = (−1,−2), (v, y) = (4, 4), or (u, x) = (4,−1), (v, y) =
(4, 4), then it is easy to see that T is proximal contraction in this case with the constant
contraction r ≥ 1

6 . It now follows from Theorem 2.1 that T has a unique best proximity
point and this point is p = 4.

Note that the existence of best proximity point in the above example cannot be
obtained from Theorem 1.1. Indeed, the non-self mapping T in Example 2.2 is not
proximal contraction. Because, in Case 1, we have

d(T x, T y) = 1 > r × 1 = rd(x, y)

for each r ∈ [0, 1).

Remark 2.1 Note that Corollary 2.1 improves Theorem 1.1. Indeed, if (A, B) is a
nonempty closed pair of subsets of a metric space (X, d) such that B is approximatively
compact with respect to A, then A0 is closed (see Proposition 3.1 of [11]).

Let us illustrate Remark 2.1 with the following example.

Example 2.3 Consider the complete metric space X := R
2 with the metric d∞ defined

with

d∞((x1, y1), (x2, y2)) = max{|x1 − x2|, |y1 − y2|},
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150 M. Gabeleh

for all (x1, y1), (x2, y2) ∈ R
2. Let A := {(0, x) : x ∈ [0, 1]} and B := {(x, 0) :

x ∈ [0, 1]⋂ Q}. We note that A0 := {(0, 0)}, that is, A0 is closed. Define a non-self
mapping T : A → B by

T (0, x) =
⎧⎨
⎩
(1, 0), if x ∈ Q

c ⋂[0, 1]
(0, 0), if x ∈ Q

⋂[0, 1].

Clearly, T is not continuous. Besides, if u := (0, u), x := (0, x) ∈ A be such that
d∞(u, T x) = 0, then we must have x ∈ Q and so, u = 0. Thus, T is a proximal
contraction. Therefore, by Theorem 2.1, T has a unique best proximity point which is
a fixed point in this case. On the other hand, B is not approximatively compact with
respect to A. Indeed, if x = (0, 1) ∈ A and we consider the sequence yn = (yn, 0) in
B such that {yn} is an iteration sequence defined by

⎧⎨
⎩

y1 = 1,

yn+1 = 1
4 (yn + 2

yn
), ∀n ∈ N,

then, we have limn→∞ d∞(x, yn) = 1 = D(x, B) but the sequence {yn} has no
convergence subsequence in B. So, existence of the best proximity point for T cannot
be obtained from Theorem 1.1.

The next result is an extension of Banach contraction principle.

Corollary 2.2 Let A be a nonempty closed subset of a complete metric space (X, d).
Suppose that T : A → A is a mapping such that

η(r)d(x, T x) ≤ d(x, y) implies d(T x, T y) ≤ rd(x, y), (7)

for all x, y ∈ A. Then T has a unique fixed point.

Remark 2.2 In [18], Suzuki proved that if in Corollary 2.2, the function η : [0, 1) →
( 1

2 , 1] is defined by

η(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if 0 ≤ r ≤ 1
2 (

√
5 − 1),

1−r
r2 if 1

2 (
√

5 − 1) ≤ r ≤ 1√
2
,

1
1+r if 1√

2
≤ r < 1,

(8)

then Corollary 2.2 is valid. But it is interesting to note that the function η defined in (8)
is the best constant (see [18]). Motivated by Suzuki, we arise the following question.

Question 2.1 It is interesting to ask whether the function η defined in Theorem 2.1 is
the best constant.
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3 Common Best Proximity Points

To establish our results of this section, we recall the following definitions which were
introduced in [14], and were used to prove a common best proximity point theorem.

Definition 3.1 ([14]) The mappings S : A → B and T : A → B are said to commute
proximally if they satisfy the following condition

[d(u, Sx) = d(v, T x) = dist(A, B)] ⇒ Sv = T u,

for all x, u, and v in A.

It is clear that the proximal commutativity of self mappings is just commutativity
of the mappings.

Definition 3.2 ([14]) It is said that the mappings S : A → B and T : A → B can be
swapped proximally if

[d(y, u) = d(y, v) = dist(A, B) & Su = T v] ⇒ Sv = T u,

for all u, v ∈ A and y ∈ B.

Remark 3.1 Let A, B be two nonempty subsets of a metric space (X, d) such that A0 is
nonempty. If (A, B) has the P-property, then every two non-self mappings S : A → B
and T : A → B can be swapped proximally.

Here, we state the main result of [14].

Theorem 3.1 Let (A, B) be a pair of nonempty closed subsets of a complete metric
space (X, d) such that A is approximatively compact with respect to B. Assume that
A0 and B0 are nonempty. Let the non-self mappings S : A → B and T : A → B
satisfy the following conditions:

(a) There is a non-negative real number α < 1 such that

d(Sx1, Sx2) ≤ αd(T x1, T x2),

for all x1, x2 ∈ A.
(b) S, T are continuous.
(c) S and T commute proximally.
(d) S and T can be swapped proximally.
(e) S(A0) ⊆ B0 and S(A0) ⊆ T (A0).

Then, S and T have a common best proximity point.

Motivated by the main result of [14], we prove the following common best proximity
point theorem.

Theorem 3.2 Let (A, B) be a pair of nonempty closed subsets of a complete metric
space (X, d) such that A0 is nonempty and (A, B) has the P-property. Assume that
the non-self mappings S : A → B and T : A → B satisfy the following conditions:
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(a) There is a non-negative real number α < 1 such that

d(Sx1, Sx2) ≤ αd(T x1, T x2),

for all x1, x2 ∈ A.
(b) S, T are continuous.
(c) S and T commute proximally.
(d) S(A0) ⊆ B0 and S(A0) ⊆ T (A0).

Then, S and T have a common best proximity point.

Proof Choose x0 ∈ A0. Since S(A0) ⊆ T (A0), there exists x1 ∈ A0 such that
Sx0 = T x1. Again, since S(A0) ⊆ T (A0) and x1 ∈ A0, there exists x2 ∈ A0 such
that Sx1 = T x2. Continuing this process, we can find a sequence {xn} in A0 such that

Sxn−1 = T xn, for all n ∈ N. (9)

We have

d(Sxn, Sxn+1) ≤ αd(T xn, T xn+1) = αd(Sxn−1, Sxn),

which implies that {Sxn} is a Cauchy sequence in B and hence converges to some
y ∈ B. By (9), we must have T xn → y. On the other hand, since S(A0) ⊆ B0, there
exists an ∈ A0 such that d(Sxn, an) = dist(A, B), for all n ∈ N. From (9), we obtain

d(T xn, an−1) = d(Sxn−1, an−1) = dist(A, B). (10)

Since S and T are commuting proximally,

San−1 = T an, for all n ∈ N. (11)

Also, because of the fact that (A, B) has the P-property, we conclude that
d(an, an−1) = d(T xn, Sxn). We now have

d(an, an−1) = d(T xn, Sxn) = d(Sxn−1, Sxn)

≤ αd(T xn−1, T xn) = αd(T xn−1, Sxn−1) = αd(an−1, an−2)

≤ α[d(T xn−1, Sxn−2)+ d(Sxn−2, Sxn−1)] = αd(Sxn−2, Sxn−1)

≤ α2d(T xn−2, T xn−1) = α2d(T xn−2, Sxn−2)

= α2d(an−2, an−3) ≤ ... ≤ αn−1d(a1, a0).

This implies that {an} is a Cauchy sequence in A. Let an → p ∈ A. By the continuity
of S and T we obtain San → Sp and T an → T p. From the (11), we must have
Sp = T p. Also, by using the relation (10), we obtain d(y, p) = dist(A, B) and hence
p ∈ A0. Since S(A0) ⊆ B0, there exists x∗ ∈ A0 such that d(x∗, Sp) = dist(A, B)

123



Best Proximity Points for Weak Proximal Contractions 153

and then d(x∗, T p) = dist(A, B). As S and T are commuting proximally, T x∗ = Sx∗.
Therefore,

d(Sx∗, Sp) ≤ αd(T x∗, T p) = αd(Sx∗, Sp),

which implies that Sx∗ = Sp = T x∗ = T p. Hence,

d(x∗, T x∗) = dist(A, B) = d(x∗, Sx∗),

where x∗ is a common best proximity point of S and T . ��
We now conclude the next corollaries from Theorem 3.2, directly.

Corollary 3.1 Let (A, B) be a nonempty closed pair of subsets of a metric space
(X, d) such that dist(A, B) = 0. Assume that the non-self mappings S : A → B and
T : A → B satisfy the conditions (a), (b), (c) and (d) of Theorem 3.4. Then, S and
T have a common best proximity point.

Corollary 3.2 Let (A, B) be a nonempty closed convex pair in a Hilbert space H.
Assume that the non-self mappings S : A → B and T : A → B satisfy the conditions
(a), (b), (c), and (d) of Theorem 3.4. Then, S and T have a common best proximity
point.

Corollary 3.3 If in Corollary 3.5, (A, B) is a nonempty bounded closed convex pair
in a uniformly convex Banach space X, then the result is valid.

Remark 3.2 In the general case, Corollaries 3.1 and 3.2 cannot be obtained from
Theorem 2.4. Because we have no information about the approximatively compactness
of one set with respect to another set. The following example illustrates this reality.

Example 3.1 Let l∞ be the Banach space consisting of all bounded real sequences
with supremum norm and let {en} be the canonical basis of l∞. Suppose that e0 is the
zero of l∞. Let

A := {xe2n : n ∈ N, 0 ≤ x ≤ 1} and B := {xe2n−1 : n ∈ N, 0 ≤ x ≤ 1}.

We have dist(A, B) = 0 and A0 = B0 = {e0}. Assume that S : A → B and
T : A → B are defined as follows.

S(xe2n) = x

6
e2n−1 & T (xe2n) = x

3
e2n−1.

Clearly,

‖S(xe2n)− S(ye2n)‖ ≤ 1

2
‖T (xe2n)− T (ye2n)‖.

Also, if u := ue2n, x := xe2n ∈ A are such that ‖u − T x‖ = dist(A, B), then
u = x = e0. This implies that S, T are commute proximally. Hence, all conditions of
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154 M. Gabeleh

Theorem 3.2 hold. Therefore, S and T have a common best proximity point. Obviously,
this point is e0. It is easy to see that B is not approximatively compact with respect to
A, that is, existence of a common best proximity point for non-self mappings S and
T cannot be obtained from Theorem 3.1 due to Sadiq Basha ([14]).
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