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Abstract In this paper, the solutions of the recursive sequences

xn+1 = xn xn−2xn−4

xn−1xn−3(±1 ± xn xn−2xn−4)
, n = 0, 1, ...,

where the initial conditions x−4, x−3, x−2, x−1 and x0 are arbitrary nonzero real
numbers are obtained. The stability and periodicity of the solutions are studied as
well.
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96 E. M. Elsayed, T. F. Ibrahim

1 Introduction

In this paper, we obtain the solutions of the following difference equations of order
five.

xn+1 = xn xn−2xn−4

xn−1xn−3(±1 ± xn xn−2xn−4)
, n = 0, 1, ..., (1)

where the initial conditions x−4, x−3, x−2, x−1 and x0 are arbitrary real numbers.
Recently, there has been a great interest in studying the qualitative properties of

rational difference equations. For the systematical studies of rational and nonrational
difference equations, one can refer to the papers [1–40] and references therein.

The study of rational difference equations of order greater than one is quite chal-
lenging and rewarding because some prototypes for the development of the basic
theory of the global behavior of nonlinear difference equations of order greater than
one come from the results for rational difference equations. However, there have not
been any effective general methods to deal with the global behavior of rational dif-
ference equations of order greater than one so far. Therefore, the study of rational
difference equations of order greater than one is worth further consideration.

Agarwal and Elsayed [2] investigated the global stability and periodicity character
and gave the solution of some special cases of the difference equation

xn+1 = a + dxn−l xn−k

b − cxn−s
.

Aloqeili [4] has obtained the solutions of the difference equation

xn+1 = xn−1

a − xn xn−1
.

Cinar [7–9] investigated the solutions of the following difference equations:

xn+1 = xn−1

1 + axn xn−1
, xn+1 = xn−1

−1 + axn xn−1
, xn+1 = axn−1

1 + bxn xn−1
.

Elabbasy et al. [10,12] investigated the global stability and periodicity character and
gave the solution of special case of the following recursive sequences:

xn+1 = axn − bxn

cxn − dxn−1
, xn+1 = αxn−k

β + γ
∏k

i=0 xn−i
.

Elsayed in [18] studied the behavior of the solutions of the third-order rational differ-
ence equation

xn+1 = axn−1 + bxn xn−1

cxn + dxn−2
.

Also, he obtained the expressions of the solutions of four special cases of this equation.
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Rational Recursive Sequences of Order Five 97

Ibrahim [24] got the solutions of the rational difference equation

xn+1 = xn xn−2

xn−1(a + bxn xn−2)
.

Karatas et al. [25] got the form of the solution of the difference equation

xn+1 = xn−5

1 + xn−2xn−5
.

Simsek et al. [31,32] obtained the solutions of the following difference equations:

xn+1 = xn−3

1 + xn−1
, xn+1 = xn−5

1 + xn−1xn−3
.

In [39,40] Zayed and El-Moneam dealt with the dynamics of the following rational
recursive sequences:

xn+1 = axn − bxn

cxn − dxn−k
,

xn+1 = αxn + βxn−1 + γ xn−2 + δxn−3

Axn + Bxn−1 + Cxn−2 + Dxn−3
.

Here, we recall some notations and results which will be useful in our investigation.
Let I be some interval of real numbers and let

f : I k+1 → I

be a continuously differentiable function. Then for every set of initial conditions
x−k, x−k+1, ..., x0 ∈ I, the difference equation

xn+1 = f (xn, xn−1, ..., xn−k), n = 0, 1, ..., (2)

has a unique solution {xn}∞n=−k [27].

Definition 1 (Equilibrium Point)
A point x ∈ I is called an equilibrium point of Eq. (2), if

x = f (x, x, ..., x).

That is, xn = x for n ≥ 0 is a solution of Eq. (2), or equivalently, x is a fixed point of
f .

Definition 2 (Stability)

(i) The equilibrium point x of Eq. (2) is locally stable if for every ε > 0, there
exists δ > 0 such that for all x−k, x−k+1, ..., x−1, x0 ∈ I with

|x−k − x | + |x−k+1 − x | + · · · + |x0 − x | < δ,
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98 E. M. Elsayed, T. F. Ibrahim

we have

|xn − x | < ε for all n ≥ −k.

(ii) The equilibrium point x of Eq. (2) is locally asymptotically stable if x is
locally stable solution of Eq. (2) and there exists γ > 0, such that for all
x−k, x−k+1, ..., x−1, x0 ∈ I with

|x−k − x | + |x−k+1 − x | + · · · + |x0 − x | < γ,

we have

lim
n→∞ xn = x .

(iii) The equilibrium point x of Eq. (2) is global attractor if for all x−k, x−k+1,

..., x−1, x0 ∈ I, we have

lim
n→∞ xn = x .

(iv) The equilibrium point x of Eq. (2) is globally asymptotically stable if x is locally
stable, and x is also a global attractor of Eq. (2).

(v) The equilibrium point x of Eq. (2) is unstable if x is not locally stable.

Definition 3 (Periodicity)
A solution {xn}∞n=−k of Eq. (2) is called periodic with period p, if there exists an

integer p ≥ 1 such that

xn+p = xn, for all n ≥ −k.

A solution is called periodic with prime period p, if p is the smallest positive integer
for which the previous equation holds.

The linearized equation of Eq. (2) about the equilibrium point x is the linear dif-
ference equation

yn+1 =
k∑

i=0

∂ f (x, x, ..., x)

∂xn−i
yn−i , (3)

and the equation

λk+1 − q0λ
k − q1λ

k−1 − · · · − qk−1λ − qk = 0, (4)

where qi = ∂ f (x,x,...,x)
∂xn−i

, for i = 0, 1, ..., k, is called the characteristic equation of Eq.
(3) about x .

The following result, known as the Linearized Stability Theorem, is very useful in
determining the local stability character of the equilibrium point x of Eq. (2).
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Rational Recursive Sequences of Order Five 99

Theorem A [6] (The Linearized Stability Theorem)
Assume that the function f is a continuously differentiable function defined on

some open neighborhood of an equilibrium point x . Then the following statements
are true:

(1) When all the roots of Eq. (4) have absolute value less than one, then the equilibrium
point x of Eq. (2) is locally asymptotically stable.

(2) If at least one root of Eq. (4) has absolute value greater than one, then the equi-
librium point x of Eq. (2) is unstable.

Definition 4 (Hyperbolic) The equilibrium point x of Eq. (2) is called hyperbolic if
no root of Eq. (4) has absolute value equal to one. If there exists a root of Eq. (4) with
absolute value equal to one, then the equilibrium x is called nonhyperbolic.

2 The First Equation xn+1 = xn xn−2 xn−4
xn−1xn−3(1+xn xn−2 xn−4)

In this section, we give a specific form of the solution of the first equation in the form

xn+1 = xn xn−2xn−4

xn−1xn−3(1 + xn xn−2xn−4)
, n = 0, 1, ..., (5)

where the initial values are arbitrary nonzero real numbers.

Theorem 1 Let {xn}∞n=−4 be a solution of Eq. (5). Then for n = 0, 1, ...

x6n−4 = e
n−1∏

i=0

(
1 + 6iace

1 + (6i + 2) ace

)

, x6n−3 = d
n−1∏

i=0

(
1 + (6i + 1)ace

1 + (6i + 3) ace

)

,

x6n−2 = c
n−1∏

i=0

(
1 + (6i + 2)ace

1 + (6i + 4) ace

)

, x6n−1 = b
n−1∏

i=0

(
1 + (6i + 3)ace

1 + (6i + 5) ace

)

,

x6n = a
n−1∏

i=0

(
1+(6i +4)ace

1+(6i +6) ace

)

, x6n+1 = ace

bd(1+ace)

n−1∏

i=0

(
1+(6i +5)ace

1+(6i +7) ace

)

,

where x−4 = e, x−3 = d, x−2 = c, x−1 = b, x0 = a.

Proof For n = 0, the result holds. Now suppose that n > 0 and that our assumption
holds for n − 1. That is,

x6n−10 = e
n−2∏

i=0

(
1 + 6iace

1 + (6i + 2) ace

)

, x6n−9 = d
n−2∏

i=0

(
1 + (6i + 1)ace

1 + (6i + 3) ace

)

,

x6n−8 = c
n−2∏

i=0

(
1 + (6i + 2)ace

1 + (6i + 4) ace

)

, x6n−7 = b
n−2∏

i=0

(
1 + (6i + 3)ace

1 + (6i + 5) ace

)

,

x6n−6 = a
n−2∏

i=0

(
1+(6i +4)ace

1+(6i +6) ace

)

, x6n−5 = ace

bd(1+ace)

n−2∏

i=0

(
1+(6i +5)ace

1+(6i +7) ace

)

.
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100 E. M. Elsayed, T. F. Ibrahim

Now, it follows from Eq. (5) that

x6n−4 = x6n−5x6n−7x6n−9

x6n−6x6n−8(1 + x6n−5x6n−7x6n−9)

=
ace

bd(1+ace)

∏n−2

i=0

(
1+(6i +5)ace

1+(6i +7) ace

)

b
∏n−2

i=0

(
1+(6i +3)ace

1+(6i +5) ace

)

d
∏n−2

i=0

(
1+(6i +1)ace

1+(6i +3) ace

)

(

a
∏n−2

i=0

(
1+(6i +4)ace

1+(6i +6) ace

)

c
∏n−2

i=0

(
1+(6i +2)ace

1+(6i +4) ace

))

(

1+ ace

bd(1 + ace)

∏n−2

i=0

(
1 + (6i + 5)ace

1 + (6i + 7) ace

)

b
∏n−2

i=0

(
1 + (6i + 3)ace

1 + (6i + 5) ace

)

d
∏n−2

i=0

(
1 + (6i + 1)ace

1 + (6i + 3) ace

))

=
ace

(1 + ace)

∏n−2

i=0

(
1 + (6i + 1)ace

1 + (6i + 7) ace

)

(

ac
∏n−2

i=0

(
1 + (6i + 2)ace

1 + (6i + 6) ace

))(

1 + ace

(1 + ace)

∏n−2

i=0

(
1 + (6i + 1)ace

1 + (6i + 7) ace

))

=

(
e

1 + (6n − 5)ace

)

(∏n−2

i=0

(
1 + (6i + 2)ace

1 + (6i + 6) ace

))(

1 + ace

1 + (6n − 5)ace

)

= e
(∏n−2

i=0

(
1 + (6i + 2)ace

1 + (6i + 6) ace

))

(1 + (6n − 5)ace + ace)

= e
n−2∏

i=0

(
1 + (6i + 6) ace

1 + (6i + 2)ace

)(
1

1 + (6n − 4)ace

)

.

Hence, we have

x6n−4 = e
n−1∏

i=0

(
1 + 6iace

1 + (6i + 2)ace

)

.

Similarly,

x6n−3 = x6n−4x6n−6x6n−8

x6n−5x6n−7(1 + x6n−4x6n−6x6n−8)

=
e
∏n−1

i=0

(
1+6iace

1+(6i +2) ace

)

a
∏n−2

i=0

(
1+(6i + 4)ace

1 + (6i + 6) ace

)

c
∏n−2

i=0

(
1 + (6i + 2)ace

1 + (6i + 4) ace

)

(
ace

bd(1 + ace)

∏n−2

i=0

(
1 + (6i + 5)ace

1 + (6i + 7) ace

)

b
∏n−2

i=0

(
1 + (6i + 3)ace

1 + (6i + 5) ace

))

(

1 + e
∏n−1

i=0

(
1 + 6iace

1 + (6i + 2) ace

)

a
∏n−2

i=0

(
1 + (6i + 4)ace

1 + (6i + 6) ace

)

c
∏n−2

i=0

(
1 + (6i + 2)ace

1 + (6i + 4) ace

))

=
ace

(
1

1 + (6n − 4) ace

)

(
ace

d(1 + ace)

∏n−2

i=0

(
1 + (6i + 3)ace

1 + (6i + 7) ace

))(

1 + ace

(
1

1 + (6n − 4) ace

))

= d
n−2∏

i=0

(
1 + (6i + 7) ace

1 + (6i + 3)ace

)
(1 + ace)

(1 + (6n − 3) ace)
.
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Rational Recursive Sequences of Order Five 101

Hence, we have

x6n−3 = d
n−1∏

i=0

(
1 + (6i + 1) ace

1 + (6i + 3)ace

)

.

Similarly, one can easily obtain the other relations. Thus, the proof is completed.

Theorem 2 Eq. (5) has a unique equilibrium point which is the number zero, and this
equilibrium point is nonhyperbolic.

Proof For the equilibrium points of Eq. (5), we can write

x = x3

x2 (
1 + x3) .

Then we have

x3
(

1 + x3
)

= x3,

x3
(

1 + x3 − 1
)

= 0,

or,

x6 = 0.

Thus, the equilibrium point of Eq. (5) is x = 0.

Let f : (0,∞)5 −→ (0,∞) be a function defined by

f (u, v, w, t, p) = uwp

vt (1 + uwp)
.

Therefore, it follows that

fu(u, v, w, t, p) = wp

vt (1 + uwp)2 , fv(u, v, w, t, p) = − uwp

v2t (1 + uwp)
,

fw(u, v, w, t, p) = up

vt (1 + uwp)2 , ft (u, v, w, t, p) = − uwp

vt2 (1 + uwp)
,

f p(u, v, w, t, p) = uw

vt (1 + uwp)2 .

We see that

fu(x, x, x, x, x) = 1, fv(x, x, x, x, x) = −1, fw(x, x, x, x, x) = 1,

ft (x, x, x, x, x) = −1, f p(x, x, x, x, x) = 1,
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Fig. 1 This figure shows the stability behavior of the solution of the difference equation xn+1 =
xn xn−2xn−4

xn−1xn−3(1 + xn xn−2xn−4)
, with the initial conditions x−4 = 5, x−3 =13, x−2 = 7, x−1 =3, x0 = 9

and the characteristic equation about the equilibrium point x = 0 is given by

λ5 − λ4 + λ3 − λ2 + λ − 1 = 0,

then we obtain that λ = 1, is one of the roots of the previous equation, then the
equilibrium point x = 0 is nonhyperbolic.

Numerical examples
For confirming the results of this section, we consider numerical examples which

represent different types of solutions to Eq. (5).

Example 1 We assume the initial condition as follows: x−4 = 5, x−3 = 13, x−2 =
7, x−1 = 3, x0 = 9. See Fig. 1.

Example 2 See Fig. 2, since x−4 = 11, x−3 = 3, x−2 = 9, x−1 = 3, x0 = 2.

3 The Second Equation xn+1 = xn xn−2 xn−4
xn−1xn−3(−1+xn xn−2 xn−4)

In this section, we obtain the solution of the second equation in the form

xn+1 = xn xn−2xn−4

xn−1xn−3(−1 + xn xn−2xn−4)
, n = 0, 1, ..., (6)

where the initial values are arbitrary nonzero real numbers with x0x−2x−4 �= 1.
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plot of x(n+1)=x(n)x(n−2)x(n−4)/x(n−1)x(n−3)(1+x(n)x(n−2)x(n−4))

Fig. 2 This figure shows the solutions of Eq. (5) when we put the initial conditions as follows: x−4 =
11, x−3 = 3, x−2 = 9, x−1 = 3, x0 = 2

Theorem 3 Let {xn}∞n=−4 be a solution of Eq. (6). Then every solution of Eq. (6) is
periodic with period 6 and for n = 0, 1, ...

x6n−4 = e, x6n−3 = d, x6n−2 = c,

x6n−1 = b, x6n = a, x6n+1 = ace

bd(−1 + ace)
,

where x−4 = e, x−3 = d, x−2 = c, x−1 = b, x0 = a.

Proof For n = 0 the result holds. Now suppose that n > 0 and that our assumption
holds for n − 1. That is,

x6n−10 = e, x6n−9 = d, x6n−8 = c,

x6n−7 = b, x6n−6 = a, x6n−5 = ace

bd(−1 + ace)
.

Now, it follows from Eq. (6) that

x6n−4 = x6n−5x6n−7x6n−9

x6n−6x6n−8(−1 + x6n−5x6n−7x6n−9)

= acebd

bd(−1 + ace)ac

(

−1 + acebd

bd(−1 + ace)

)
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= e

(−1 + ace)

(

−1 + ace

(−1 + ace)

) = e

(1 − ace + ace)
= e,

x6n−3 = x6n−4x6n−6x6n−8

x6n−5x6n−7(−1 + x6n−4x6n−6x6n−8)
= eac

(
ace

bd(−1 + ace)

)

b(−1 + ace)
= d,

x6n−2 = x6n−3x6n−5x6n−7

x6n−4x6n−6(−1 + x6n−3x6n−5x6n−7)
=

d

(
ace

bd(−1 + ace)

)

b

ea

(

−1 + d

(
ace

bd(−1 + ace)

)

b

) = c,

x6n−1 = x6n−2x6n−4x6n−6

x6n−3x6n−5(−1 + x6n−2x6n−4x6n−6)
= cea

d

(
ace

bd(−1 + ace)

)

(−1 + cea)

= b,

x6n = x6n−1x6n−3x6n−5

x6n−2x6n−4(−1 + x6n−1x6n−3x6n−5)
=

bd

(
ace

bd(−1 + ace)

)

ce

(

−1 + bd

(
ace

bd(−1 + ace)

)) = a.

Finally,

x6n+1 = x6n x6n−2x6n−4

x6n−1x6n−3(−1 + x6n x6n−2x6n−4)
= ace

db (−1 + ace)
.

Thus, the proof is completed. ��
Theorem 4 Equation (6) has a periodic solution of period three iff e = b, d = a,

ace = 2 and it will be taken the following form {xn} = {b, a, c, b, a, ...} .

Proof First, suppose that there exists a prime period three solution {xn} = {b, a,

c, b, a, ...} of Eq. (6), we see from the form of the solution of Eq. (6) that

x6n−4 = e = b, x6n−3 = d = a, x6n−2 = c,

x6n−1 = b, x6n = a, x6n+1 = ace

bd(−1 + ace)
= c,

Then we get

e = b, d = a, ace = 2.

Second, assume that e = b, d = a, ace = 2. Then we see that

x6n−4 = b, x6n−3 = a, x6n−2 = c,

x6n−1 = b, x6n = a, x6n+1 = c.

Thus, we have a periodic solution of period three, and the proof is completed.
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Theorem 5 Equation (6) has two equilibrium points which are 0,
3
√

2 and the equi-
librium point x = 3

√
2 is nonhyperbolic.

Proof For the equilibrium points of Eq. (6), we can write

x = x3

x2 (−1 + x3) .

Then we have

x3
(
−1 + x3

)
= x3,

or

x3
(

x3 − 2
)

= 0.

Thus, the equilibrium points of Eq. (6) are 0,
3
√

2.

Let f : (0,∞)5 −→ (0,∞) be a function defined by

f (u, v, w, t, p) = uwp

vt (−1 + uwp)
.

Therefore, it follows that

fu(u, v, w, t, p) = − wp

vt (−1 + uwp)2 , fv(u, v, w, t, p) = − uwp

v2t (−1 + uwp)
,

fw(u, v, w, t, p) = − up

vt (−1 + uwp)2 , ft (u, v, w, t, p) = − uwp

vt2 (−1 + uwp)
,

f p(u, v, w, t, p) = − uw

vt (−1 + uwp)2 .

We see that ( at x = 3
√

2 )

fu(x, x, x, x, x) = −1, fv(x, x, x, x, x) = −1, fw(x, x, x, x, x) = −1,

ft (x, x, x, x, x) = −1, f p(x, x, x, x, x) = −1.

Thus, the characteristic equation about the equilibrium point x = 3
√

2 is given by

λ5 + λ4 + λ3 + λ2 + λ + 1 = 0.

Also, we see that λ = −1, one of the roots of this equation; then the equilibrium
point x = 3

√
2 is nonhyperbolic. ��

Numerical examples
Here, we will represent different types of solutions of Eq. (6).
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Fig. 3 This figure shows the periodicity of the solution of the equation xn+1 =
xn xn−2xn−4

xn−1xn−3(−1 + xn xn−2xn−4)
, when the initial conditions x−4 = 11, x−3 = 3, x−2 = 9, x−1 =

3, x0 = 2

Example 3 We consider Eq. (6) with x−4 = 11, x−3 = 3, x−2 = 9, x−1 = 3, x0 = 2
(see Fig. 3).

Example 4 Figure 4 shows the behavior of the solutions of Eq.(6) with the initial
conditions: x−4 = 5, x−3 = −3, x−2 = −2/15, x−1 = 5, x0 = −3.

The following cases can be proved similarly.

4 The Third Equation xn+1 = xn xn−2 xn−4
xn−1xn−3(1−xn xn−2 xn−4)

In this section, we get the expressions of the solution of the third equation in the
following form:

xn+1 = xn xn−2xn−4

xn−1xn−3(1 − xn xn−2xn−4)
, n = 0, 1, ..., (7)

where the initial values are arbitrary nonzero real numbers.
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plot of x(n+1)=x(n)x(n−2)x(n−4)/x(n−1)x(n−3)(−1+x(n)x(n−2)x(n−4))

Fig. 4 This figure shows the periodic behavior of the solution of Eq. (6) with the initial conditions x−4 =
5, x−3 = −3, x−2 = −2/15, x−1 = 5, x0 = −3

Theorem 6 Let {xn}∞n=−4 be a solution of Eq. (7). Then the solutions of Eq. (7) take
the following form for n = 0, 1, ...

x6n−4 = e
n−1∏

i=0

(
1 − 6iace

1 − (6i + 2) ace

)

, x6n−3 = d
n−1∏

i=0

(
1 − (6i + 1)ace

1 − (6i + 3) ace

)

,

x6n−2 = c
n−1∏

i=0

(
1 − (6i + 2)ace

1 − (6i + 4) ace

)

, x6n−1 = b
n−1∏

i=0

(
1 − (6i + 3)ace

1 − (6i + 5) ace

)

,

x6n = a
n−1∏

i=0

(
1−(6i +4)ace

1−(6i +6) ace

)

, x6n+1 = ace

bd(1−ace)

n−1∏

i=0

(
1−(6i +5)ace

1−(6i +7) ace

)

,

where x−4 = e, x−3 = d, x−2 = c, x−1 = b, x0 = a.

Theorem 7 Equation (7) has a unique equilibrium point which is the number zero,
and this equilibrium point is nonhyperbolic.

Example 5 Assume that the initial values for Eq. (7) x−4 = 10, x−3 = 4, x−2 =
9, x−1 = 6, x0 = 2 (see Fig. 5).

Example 6 See Fig. 6 since x−4 = 2, x−3 = 7, x−2 = 5, x−1 = 8, x0 = 12.
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plot of x(n+1)=x(n)x(n−2)x(n−4)/x(n−1)x(n−3)(1−x(n)x(n−2)x(n−4))

Fig. 5 This figure shows the solution of Eq. (7) when x−4 = 10, x−3 = 4, x−2 = 9, x−1 = 6, x0 = 2
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plot of x(n+1)=x(n)x(n−2)x(n−4)/x(n−1)x(n−3)(1−x(n)x(n−2)x(n−4))

Fig. 6 This figure shows the behavior of the solutions of the difference equation (7) with initial conditions
x−4 = 2, x−3 = 7, x−2 = 5, x−1 = 8, x0 = 12
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plot of x(n+1)=x(n)x(n−2)x(n−4)/x(n−1)x(n−3)(−1−x(n)x(n−2)x(n−4))

Fig. 7 This figure shows the periodicity of the solution of Eq. (8) where the initial conditions equals
x−4 = −2, x−3 = 7, x−2 = 1/7, x−1 = −2, x0 = 7

5 The Fourth Equation xn+1 = xn xn−2 xn−4
xn−1 xn−3(−1−xn xn−2 xn−4)

Here, we obtain a form of the solutions of the equation

xn+1 = xn xn−2xn−4

xn−1xn−3(−1 − xn xn−2xn−4)
, n = 0, 1, ..., (8)

where the initial values are arbitrary nonzero real numbers with x−4x−2x0 �= −1.

Theorem 8 Let {xn}∞n=−4 be a solution of Eq. (8). Then every solution of Eq. (8) is
periodic with period 6 and for n = 0, 1, ...

x6n−4 = e, x6n−3 = d, x6n−2 = c,

x6n−1 = b, x6n = a, x6n+1 = ace

bd(−1 − ace)
,

where x−4 = e, x−3 = d, x−2 = c, x−1 = b, x0 = a.

Theorem 9 Equation (8) has a periodic solution of period three iff e = b, d = a,

ace = −2 , and it will be taken the following form {xn} = {b, a, c, b, a, ...} .

Theorem 10 Equation (8) has two equilibrium points which are 0, 3
√−2, and the

equilibrium point x = 3
√−2 is nonhyperbolic.
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plot of x(n+1)=x(n)x(n−2)x(n−4)/x(n−1)x(n−3)(−1−x(n)x(n−2)x(n−4))

Fig. 8 This figure shows the periodic nature of the solution of Eq. (8) where the initial conditions x−4 =
11, x−3 = −7, x−2 = 13, x−1 = 8, x0 = −3

Example 7 Consider x−4 = −2, x−3 = 7, x−2 = 1/7, x−1 = −2, x0 = 7 (see
Fig. 7).

Example 8 Figure 8 shows the solution of Eq. (8) with the initial conditions x−4 =
11, x−3 = −7, x−2 = 13, x−1 = 8, x0 = −3.
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