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Abstract 
In recent times, the increasing demand for pure tungsten and its compounds in defense, medicine, high technology, and 
emerging innovations due to its excellent properties such as its tensile strength, corrosion resistance, and high modulus of 
elasticity cannot be overemphasized. In this study, an acid leaching route was adopted for the extraction of pure tungsten 
from a Nigerian scheelite ore consisting primarily of scheelite  (Ca4.00W4.00O16.00: 96-900-9627) and quartz  (Si6.00O6.00: 
96-900-5019). At optimal leaching conditions (2.5 mol/L HCl, 70 °C, < 75 µm), 88.5% of the initial 10 g/L ore reacted within 
120 min. The low apparent activation energy (Ea) estimated as 22.94 kJ/mol with the reaction order of 0.96 affirmed the 
dissolution reaction to occur through the diffusion control mechanism of the first-order relation. The low Ea obtained further 
supports the feasibility and eco-friendly dissolution process as ⁓11.5% of the undissolved materials analyzed to contain silica 
 (SiO2: 96-900-5302) could be used as raw materials for some defined industrial applications.
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Introduction

Due to the global rise in population and economic growth, 
the need for the continuously increasing demand for many 
strategic and industrial metals that were previously not uti-
lized in large quantities requires urgent attention, specifi-
cally, for such versatile raw materials including high-grade 
scheelite of industrial values whose supplies are important 
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to the human, defense, medicine, high-tech, and emerging 
innovations. This among others has prompted global atten-
tion by governments, industries, academics, and research 
agencies if the supplies of those versatile raw materials 
would satisfy the industrial demands or be tedious to obtain 
in the nearest future [1, 2].

In recent years, the continuous decline of high-grade 
tungsten ore deposits especially the low-grade tungsten 
ores such as wolframite, scheelite, and stolzite ores with an 
appreciable amount of tin has attracted the modern research-
ers [3, 4]. Tungsten, discovered by a Swedish chemist, Karl 
Wilhelm Scheele in 1781 [5], also referred to as wolfram, 
along with other transition metals such as chromium and 
molybdenum has five isotopes (W-180, W-182, W-183, 
W-184, and W-186) with the relative abundance of 30.64% 
W-184, 28.43% W-186, and 26.49% W-182, respectively [6].

However, tungsten as a strategic and industrial metal 
due to its excellent properties such as corrosion resistance, 
hardness, high modulus of elasticity, highest melting point, 
armaments, and tensile strength as well as vapor pressure 
makes its wide uses possible as a catalyst, cemented carbide, 
alloys and steels, lighting technology, electronics, X-ray 
tubes, and photo/electro-chromic usages [7–10]. According 
to the United States Geological Survey (USGS) statistical 
data in 2018, the world tungsten reserves including scheelite, 
wolframite, and its varieties are estimated to be around 3.3 
million tons [11]. In Nigeria, for example, the wolframite ore 
deposits contain admixtures of scheelite and stolzite, which 
could be easily treated and beneficiated to obtain high-grade 
tungsten compounds of industrial utilities [7]. Nowadays, 
scheelite is the most common tungsten compounds with var-
ied colors ranging from pale white to brown-orange, though 
dominated with blue coloration under UV, and often changes 
with increasing molybdenum content [7, 12].

For obtaining pure and high-grade scheelite products for 
industrial and manufacturing purposes, leaching techniques 
involving the ore in alkaline media such as sodium carbonate 
or sodium hydroxide by autoclaving [13–16] or acidic media 
such as hydrochloric acid [17, 18] or sulfuric acid [19, 20] to 
give tungstic acid  (H2WO4) are mostly employed. Depend-
ing on the source of tungsten ores (wolframite, scheelite, or 
stolzite), various extraction routes are often used for purify-
ing the leach liquor that arose from the leaching operations. 
For instance, the traditional processes of scheelite in acidic 
media include three underlisted ‘win–win’ routes, Eqs. (1–3) 
[6]:

 (i) Dissolution and leaching by hydrochloric acid or 
sulfuric acid to separate calcium as summarized in 
Eqs. (1) and (2):

(1)CaWO4(s) + 2HCl(aq) → H2WO4(s) + CaCl2(aq)

 (ii) Extraction and purification of tungsten compound by 
ammonia solution as shown by the relation (3):

 (iii) Evaporation and crystallization

The reaction mechanism of scheelite in alkaline media such 
as sodium hydroxide is represented by the following rela-
tion (4):

However, the scheelite ores treated with an alkaline solu-
tion appeared to be uneconomical due to the large volume 
of leachant and waste resources and often give rise to envi-
ronmental pollution as a result of the release of toxic gases 
coupled with high intensive energy requirement during oper-
ation [21]. Moreover, the liquid waste emanated by these 
routes requires sophisticated equipment for processing the 
waste to meet the World Health Organization (WHO) Waste-
water Discharge Standard [22].

Hence, to overcome the aforementioned setbacks, hydro-
chloric acid, owing to its cheapness, simple equipment 
design operation, and eco-friendly considerations, the treat-
ment of indigenous scheelite mineral was examined in this 
study.

Materials and Method

Materials

The scheelite mineral used for this study was obtained from 
the Owa-Kajola axis, Ifelodun Local Government Area of 
Kwara State, Nigeria. The raw sample was crushed, ground, 
and sieved into three particle sizes: < 75 µm, 75 µm, and 
90 µm, respectively. The smallest particle size (< 75 µm) 
assumed to have a larger surface area unless otherwise stated 
was used throughout the experiment. The hydrochloric acid 
(HCl) leachant used was of analytical grade and doubly 
distilled water was used in the preparation of all aqueous 
solutions.

Leaching Procedure

The leaching tests were performed in a 600 mL Pyrex leach-
ing reactor equipped with a magnetic stirrer and a thermostat 
to control the reaction temperature. The hydrochloric acid 
solution at predetermined concentrations (0.1–2.5 mol/L) 
was added into the beaker and then heated to a preset 

(2)
CaWO4(s) + H2SO4(aq) → H2WO4(s) + CaSO4(aq)

(3)
H2WO4(s) + 2NH4OH(aq) → (NH4)2WO4(aq) + 2H2O(aq), and

(4)CaWO4(s) + 2NaOH(aq) → Na2WO4(s) + Ca(OH)2(aq).
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temperature at different leaching times (5–120 min). This 
was followed by adding 10 g/L of the < 75 µm scheelite 
smallest particle size to the reactor and the contents were 
thoroughly stirred. After a specific duration, the resultant 
solution was filtered, water-washed, and oven-dried at 40 °C 
for 24 h. The fraction of ore reacted in the leachant was cal-
culated from the difference between the mass of the reacted 
and unreacted at various contact times after respective dry-
ing [7, 23, 24]. For a better understanding of the nature of 
the unreacted species, the residual product at optimal leach-
ing conditions (2.5 mol/L HCl, 70 °C, < 75 µm, 120 min) 
was accordingly analyzed by X-ray diffraction (XRD) using 
PHILIP PW 1800 X-ray diffraction with Cu Kα1 (0.154 nm) 
radiation graduated at 40 kV and 55 mA, Scanning electron 

microscopy (SEM) with NanoSEM 230, and Energy disper-
sive spectroscopy (EDS) with an oxford X-max EDS detec-
tor using INCA software, respectively. Also, the dissolution 
kinetics mechanism for the scheelite ore dissolution was 
determined by appropriate shrinking core models (SCM) 
[7, 23, 25].

The elemental composition of the major components of a 
Nigerian sourced scheelite ore examined by Skyray EDXRF 
3600B Energy Dispersive X-ray fluorescence is summarized 
in Table 1.

The mineralogical purity by XRD analysis affirmed 
that the raw ore was made up of admixtures scheelite 
 (Ca4.00W4.00O16.00: 96-900-9627) and quartz  (Si6.00O6.00: 
96-900-5019) as the major attributed peaks as shown in 
Fig. 1.

However, the surface morphological of the scheelite ore 
under investigation by FEI Nova NanoSEM 230 equipment 
(Fig. 2) affirmed that tungsten-bearing scheelite is majorly 
associated with quartz impurities coupled with a polishing 
surface of the metallic phase.

Results and Discussion

Leaching Investigation

Effect of Hydrochloric Acid Concentration

The influence of hydrochloric acid concentration varying 
from 0.1 to 2.5 mol/L at a reaction temperature of 50 °C and 

Table 1  Chemical composition 
of raw scheelite by EDXRF

Compound Composi-
tion (wt%)

WO3 82.03
SiO2 4.98
CaO 2.22
AuO 2.33
Fe2O3 0.25
Al2O3 0.45
P2O5 0.20
SO3 0.31
ZnO 1.50
K2O 0.02
Loss on ignition 3.2

Fig. 1  X-ray diffraction of raw scheelite mineral
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a particle fraction of < 75 µm on the dissolution efficiency 
of scheelite ore was examined. The results in Fig. 3 showed 
an increase in scheelite dissolution reaction with increasing 
hydrochloric acid concentration at various leaching times 
(Fig. 3).

For example, at 2 h of contact time, the dissolution reac-
tion yielded 38.4% using 2.5 mol/L HCl solution, whereas 
the dissolution rate was 16.1% with 0.1 mol/L HCl solutions. 
This affirms that the concentration of hydrochloric acid has a 
considerable effect on the dissolution of scheelite ore which 
can be attributed to the presence of hydrogen  [H+] ion from 
hydrochloric acid solution [7].

Effect of Reaction Temperature

The influence of reaction temperature on the leaching reac-
tion was investigated at 27–70 °C for the < 75 µm particle 
size by 2.5 mol/L HCl solution as depicted in Fig. 4.

The result in Fig. 4 shows that the reaction temperature 
had a spontaneous effect on the scheelite ore dissolution rate. 
At 70 °C, 88.5% of scheelite ore reacted within 120 min. 

However, at 27 °C, the dissolution efficiency decreased to 
27.1% for 120 min and thereby confirmed that the reaction 
temperature significantly influences the possible complexa-
tion ability of hydrochloric acid [26]. Thus, the higher the 
reaction temperature, the faster the dissolution reaction.

Effect of Particle Size

The result on the influence of the particle fractions on the 
dissolution efficiency was investigated using the three parti-
cle fractions: < 75 µm, 75 µm, and 90 µm by 2.5 mol/L HCl 
solution and 70 °C reaction temperature as summarized in 
Fig. 5.

From Fig. 5, it is evident that the smaller ore particle 
diameter gave a faster dissolution rate. For instance, almost 
89% of the scheelite reacted using the < 75 µm smallest par-
ticle diameter within 120 min, while the largest ore particle 
diameter gave 59.3% dissolution efficiency at optimal con-
ditions. Thus, the finer the particle of the scheelite ore, the 
higher the dissolution rate, as the finer particle exhibited 
possible high surface properties.

Fig. 2  SEM images of raw scheelite ore associated with quartz impurities (sch scheelite, qtz quartz)
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Discussion

Dissolution Kinetic Model

For a better understanding of the reaction mechanism 
exhibited by using scheelite ore with hydrochloric acid 
leachant in this study, it is mandatory to investigate its dis-
solution kinetic models using appropriate shrinking core 
models. However, two models vis-à-vis chemical reaction 
control and internal diffusion control equation models 
according to Eqs. (5) and (6) were employed [27, 28]:

where k is the specific rate constant  (min−1); t is the leaching 
time (min.); and α is the amount of fraction of the scheelite 
ore reacted at different leachant times, t (min). Consequently, 
the experimental data obtained from Figs. 3 and 4 were 
appropriately subjected to Eqs. (5) and (6) to determine the 
reaction order and activation energy for kinetic assessment 
through relevant Arrhenius plots. During the preliminary 
trials with the two appropriate models, it was found that only 
shrinking core model Eq. (6) fitted perfectly the dissolution 
data with the average correlation of R2 = 0.978 > R2 = 0.585 
using Eq. (5) model. Hence, the diffusion equation model (6) 
was used in the treatment of dissolution results in this study. 
For example, the dissolution data in Fig. 3 was treated with 
Eq. (6) to obtain the graph shown in Fig. 6.

The experimental rate constant, k, was estimated from 
Fig. 7 and the plot of ln k versus ln [HCl] gave the reaction 
order of 0.96, assumed to be the first-order relation.

(5)1 − (1 − �)1∕3 = kt chemical control

(6)1 −
2

3
� − (1 − �)2∕3 = kt diffusion control,

However, the experimental data obtained from Fig. 6 
were also substituted into Eq. (6) to obtain the plot affirmed 
in Fig. 8.

Also, the temperature dependence of the specific rate 
constant can be estimated from the Arrhenius expression:

where A is the frequency factor; k is the specific rate con-
stant; Ea is the activation energy (J/mol); R is the universal 
gas constant (8.314 J/mol/K); and T is the absolute tem-
perature (K).

Hence, Eq. (7) was linearized to obtain Eq. (8):

The activation energy, Ea, for the leaching reaction 
estimated from the slope of Fig.  9 gave 22.94  kJ/mol 
(< 40 kJ/mol), supporting the diffusion-controlled reaction 

(7)k = A
e−Ea∕RT ,

(8)ln k = lnA −
E
a

RT
.
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mechanism as the rate-determining step for the dissolu-
tion reaction, consistent with the following stoichiometry 
[29–31]:

and found to be kinetically more feasible with less activa-
tion energy as compared to other tungsten-bearing minerals 
from other sources (Table 2). The differences in the activa-
tion energies could be due to variation in geographical and 
environmental factors of the sourced materials.

(9)
CaWO4(s) + 2HCl(aq)nH2O → CaCl2.nH2O(s) + H2WO4,

Residual Product Analysis

The EDS analysis adopted to examine the elemental compo-
sition of the residual product at optimal leaching conditions 
(2.5 mol/L HCl, 70 °C, < 75 µm, 120 min) is depicted in 
Fig. 10.

Also, the morphological structure of the residue by SEM 
at optimal conditions is as shown in Fig. 11.

From Fig. 11, it is clear that the W-dominated region 
is bright due to the possible high atomic number and the 
bombardment of the leaching residue starts at the outer 
surface and then proceeds to the inner layer progressively 
[34]. However, the undissolved product (18.5%) analyzed 
by XRD was affirmed to majorly dominated by scheelite 
 (CaWO4: 96-900-7271) with few traces of calcium chloride 
 (CaCl2: 96-900-6902), and could, respectively, serve as valu-
able materials for some defined indigenous steel and coating 
industries.

Conclusion

Scheelite mineral has tremendously received the attention of 
global scientists due to being the major primary source of 
tungsten. Therefore, the development of effective and effi-
cient routes for extraction and purification of tungsten from 
scheelite ores is pertinent for producing tungsten compounds 
of industrial value. Thus, in this study, the effects of leachant 
concentration, reaction temperature, and particle size on 
the optimization of scheelite ore dissolution were exam-
ined. The results affirmed that leachant concentration and 
reaction temperature strongly affect the ore dissolution. For 
instance, 88.5% of the ore reacted at optimal leaching condi-
tions (2.5 mol/L HCl, 70 °C, < 75 µm) within 120 min. The 
experimental data obtained were subjected to the shrinking 
core model (SCM), where the diffusion-controlled reaction 
is the rate-determining step. The apparent activation energy 
was estimated to be 22.94 kJ/mol and supported the pro-
posed reaction mechanism. Hence, the leaching kinetics via 
the established low activation energy prepared the indig-
enous scheelite ore used in this study for defined industrial 
applications.

Fig. 8  A plot of 1 − 2

3
� − (1 − �)

2∕3
 versus contact time at different 

reaction temperatures. Conditions: Same as in Fig. 4
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Fig. 9  A plot of ln k versus 1/T(K−1). Conditions: Same as in Fig. 8

Table 2  Activation energy feasibilities of tungsten-bearing minerals from different sources

Tungsten mineral Sources Conditions Activation energies 
(kJ/mol)

References

Wolframite Kazakhstan 95 °C, 0.5 h, S/L 15 243 Selivanov et al. [32]
Wolframite Nigeria 1.5 mol/L HCl + 2.0 mol/L  H3PO4, 75 °C 56.80 Baba et al. [7]
Scheelite concentrate China 1.69–6.78 mol/L NaOH, 110 °C, 300–600 r/min 49.56 Li et al. [16]
Scheelite concentrate China 50–400 g/L, 80 °C, − 74 + 58 µm 63.8 Li and Zhao [33]
Scheelite Nigeria 0.1–2.5 mol/L HCl, 70 °C, < 75 µm 22.94 This study
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