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Abstract A design methodology for fabricating and pre-

dicting the load–displacement behavior of shape memory

alloy (SMA) spring actuators has been previously created

and validated (Nicholson et al., Smart Mater Struct

23(12):13–23, 2014). However, it was found in this work

that for springs with a spring index (ratio of spring diam-

eter to wire diameter) below five, the load–displacement

response of shape memory spring actuators no longer fits

the previously established model. This paper explores the

use of a correction factor in the governing equations to

account for the plastic deformation that occurs when fab-

ricating springs with very small spring indices. The plastic

deformation induces an effective reduction in the volume

of the transforming material, thus reducing the load-bear-

ing and actuation capabilities of the spring. A semi-ana-

lytical solution to this problem is found which can be used

to predict the load–displacement behavior. This is accom-

plished through a reduction in the effective wire diameter

based on the approximate shear strain during loading. This

approach is consistent with observations during thermo-

mechanical cycling in SMAs, where the phase transfor-

mation remained mostly unhindered despite large residual

inelastic and/or plastic strains, and has direct application in

the design of actuators with small spring indices by

quantifying the drop in actuation force and stroke.

Keywords Shape memory spring � Transformation strain �
Load–displacement

Introduction

Shape memory alloys (SMAs) have been widely used as

actuators due to their ability to recover high strains (up to

8%) elastically. Their high work density of 10 J/cm3 is

nearly double that of hydraulic-based actuation systems

and makes them ideal for several applications, particularly

in the aerospace, automotive, and medical industries where

space and weight are of critical concern [2]. Most appli-

cations of SMA actuators are linear; however, current

efforts in SMA development are moving toward multi-

axial applications. Boeing’s reconfigurable rotor blade

technology uses SMA torque tubes to twist propeller blades

and improve efficiency [3], while NASA is using similar

technology to change the geometry of aircraft wings [4, 5].

SMA-based bimetallic strip smart actuators have been

designed which can achieve the necessary forces for

adaptive structures in space applications [6]. NASA Glenn

Research Center has shown that shape memory springs

show potential in CubeSats where space is at a premium

[7].

SMA springs have also been widely used as actuators

that experience multi-axial loading. Springs are a popular

choice as energy-storing mechanisms due to their engi-

neering versatility coupled with their ease of manufacture.

They can be implemented in a wide variety of configura-

tions and can achieve large strokes or forces, as required.

More importantly, the behavior of linear springs is well
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understood and can be correctly predicted, making them

ideal for applications where reliability is a key parameter.

Some of the key limitations of springs (such as their ten-

dency for unwanted buckling and instability) can be fixed

by designing the ends of the springs with certain charac-

teristics. While plain ended springs are the easiest to make,

they have disadvantages compared to ground or squared

springs, which offer improved stability and ensure proper

contact with the integrating structure [8, 9]. The principal

challenge in working with SMA springs is accurately

modeling their behavior. While SMAs are anisotropic and

do not exhibit a linear stress/strain relationship, under

certain configurations, SMA springs can be modeled with

an apparent isotropic modulus to accurately predict their

behavior [1] based on known spring mechanics [10]. As

devices get smaller and the force requirements for these

actuators increase, studying and predicting the behavior of

SMA springs with non-traditional (e.g., small) spring

indices (ratio of spring diameter to wire diameter) become

ever more important as their behavior can no longer be

easily predicted. This oftentimes results in these smaller

springs not producing the requisite actuation force and

associated stroke. Without an accurate model to predict this

force, the designer has to rely upon empirical iterative

fabrication and testing steps that lead to unnecessary costs.

This paper acquires data from springs with a range of

spring indices and examines the applicability of the pre-

viously accepted methodology in modeling the data. It

identifies a range of spring indices for which the previous

established methodology [1] is applicable. For the range in

which it is not, it justifies and introduces a correction factor

that considers the plastic deformation resulting from the

fabrication process typically employed to make small

springs. This modification is accomplished by considering

both the mechanics of helical springs and aspects of SMA

behavior. The end result is an accurate way of predicting

the actuation force and stroke for a shape memory helical

spring actuator over the range of useful spring indices that

can be incorporated in engineering applications.

Experimental Procedures

The springs tested in this work were fabricated from as-

drawn, commercially available, NiTi wire (nominal com-

position 54.5 wt% Ni and 45.5 at.% Ti) with a nominal

wire diameter, d; of 1.5 mm. The starting martensite start,

Ms, martensite finish, Mf, austenite start, As, and austenite

finish, Af, temperatures were 9, -13, 51, and 61 �C,

respectively. The springs were formed in multiple steps

using up to seven steel mandrels with progressively

decreasing mean spring diameters, D; to produce the final

shape. At each step, the wire was wound onto a steel

mandrel and constrained with a sleeve and shape set at

525 �C for 30 min in air and subsequently furnace-cooled

to room temperature prior to removing the sleeve. This

process was repeated until the desired geometry was

achieved. The final geometries for the springs used in these

experiments are listed in Table 1 with the corresponding

geometrical parameters shown in Fig. 1. The design of all

springs employed in these experiments was plain-ground

ends as shown in Fig. 1. Plain-ground ends facilitated ease

of removal from the mandrel and good electrical contact

during Joule heating. Spring outer and wire diameters were

measured and averaged across several points to report the

mean spring diameters and spring indices, C or D
d ; reported

in Table 1. The spring pitch, P; was determined from the

mandrel geometry.

The spring load–deflection data following heating above

the austenite finish temperature were obtained by modify-

ing the test setup developed in [1] and are shown in Fig. 2a.

The setup was originally capable of testing springs in

tension with a maximum load of 22 N and was modified in

this work to facilitate testing in compression with a max-

imum load of 444 N. To accommodate the greater loads

and facilitate data acquisition while redirecting the load,

additional pieces were designed and implemented. The

applied load is transferred into a linear thrust bearing

maintaining rotational independence and operating under

safe load limits of the torque cell and angular position

sensor. As shown in Fig. 2a, two 9.525 mm diameter pre-

cision guide rods were added with the 8 mm spline rod.

This increased the rotational stability of the fixture per-

pendicular to the testbed and maintained linear concen-

tricity and independence. As shown in Fig. 2b, guide pin

pairs were used for buckling compensation to combat the

effects of the plain ends and small spring indices. The pins

act as a restoring force on the springs under compressive

Table 1 Parameters of the experimental springs

d(mm) D(mm) C a(�) Na

Spring 1 1.5 8.1 5.41 9.50 3

Spring 2 1.5 7.5 4.98 12.00 4

Spring 3 1.5 6.7 4.47 11.44 5

Spring 4 1.5 6.1 4.04 10.83 4

Spring 5 1.5 5.5 3.73 11.91 5

Spring 6 1.5 5.1 3.38 12.66 4

Spring 7 1.5 4.1 2.73 12.00 4

The columns represent the data from left to right; the wire diameter,

d; the spring mean diameter, D; the spring index, C or D
d ; the helical

angle, a; and the number of active coils, Na. Figure 1 illustrates the

relevant parameters
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test loads. An OMEGA LC202-100 load cell was added in

line with the springs, as shown in Fig. 2c.

Actuation of the springs was accomplished through

forced convection (for spring indices below 4.1) and Joule

heating (for spring indices above 4.1). Heat transfer from

the spring ends caused unacceptable temperature gradients

in the springs with low spring indices during Joule heating.

Forced convection heating proved an effective mode of

heat transfer for actuation for these indices. The wire

temperature was monitored with a K-type thermocouple.

The targeted wire temperature was 150 �C, well above the

61 �C austenite finish temperature to compensate for any

changes arising from evolutionary behavior. This allowed

for repeatable actuation and a �15 �C tolerance during the

tests as well as ensuring there were no residual effects from

retained martensite [11].

Results and Discussion

Figure 3a–g shows the acquired data as symbols in the

applied load vs displacement or contraction graphs. The

lines through the data follow the methodology adopted in

[1] to model the acquired data. A summary of the

methodology from [1] is given in the following. An itera-

tive process that accounted for the evolving geometry of

the spring was developed to accurately predict SMA spring

displacement using the following equations. The shear

modulus, G; used for calculation was 25GPa; and the

Poisson ratio was 0:413:

d ¼ 8FD3Na

Gd4
1 � 3

16C2
þ 3 þ m

2 1 þ mð Þ tan2 að Þ
� �

; ð1Þ

a ¼ tan�1 P

pD

� �
; ð2Þ

L ¼ NapD0

cos a0ð Þ ; ð3Þ

D ¼ L cos að Þ
Nap

; ð4Þ

x ¼ NaP0 � d; ð5Þ

P ¼ x

Na

; ð6Þ

x0 ¼ NaP0; ð7Þ

C ¼ D

d
; ð8Þ

where the displacement or contraction, d; in Eq. 1, is

related to the load, F, as a function of SMA properties,

namely, the shear modulus, G; and the Poisson’s ratio, m; as

well as the spring and wire geometry, namely, the wire

diameter, d; the mean spring diameter, D, the helix angle,

a; the spring index, C; and the total number of turns in the

spring, Na: Combining Eq. 1 with an iterative process that

recalculates the spring geometry as it is loaded using

Eqs. 2–8 further improves the accuracy of the displacement

prediction, especially for large strokes. These equations

account for the varying geometry as the spring changes

Fig. 1 Geometric parameters of helical springs tested and are listed in

Table 1 for the various springs tested

Fig. 2 Modified setup from [1] for characterizing shape memory

alloy spring actuators in compression: a fully instrumented testing set

up with a LabVIEW interface for data acquisition. Two 9.525 mm

precision guide rods (1) and pins (3) used for buckling compensation,

b close up view of guide pin pairs (5) used to mitigate buckling and

c close up of test spring fixture. The applied force from the pulley is

recorded with the load cell (2) and transferred to the thrust bearing

(4). The stroke is recorded through a magnetostrictive position sensor

(6)
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length. The pitch, P, is a function of the spring free length,

x: The new diameter is determined at each iteration from

the constant wire length, L; where D0; P0; x0; and a0 are

the initial spring diameter, pitch, spring length, and helix

angle, respectively. The aforementioned methodology

matches the data for compression springs reasonably well

as seen in Fig. 3a–c. However, the model began to deviate

at spring indices below 5, which can be seen in Fig. 3c–g.

The deviation is more marked at lower spring indices

(close to 4 and below). To effectively implement these

springs as actuators in various designs, a model for pre-

dicting the behavior at the first cycle and thereafter in

subsequent cycles is needed. Of particular importance is to

predict the first cycle behavior of the springs that often

exhibit the highest loadings and extensions [12].

To account for this deviation, the method of fabricating

the spring is considered. As outlined in the experimental

procedures section, the springs were manufactured using

shape setting in multiple steps, with each subsequent shape

set resulting in a smaller mean diameter, to achieve the

Fig. 3 Acquired load–

displacement data of shape

memory alloy spring actuators

with decreasing spring indices,

C (ratios of spring diameter to

wire diameter). Symbols are the

experimental load–displacement

data and the lines are generated

from Eqs. 1 to 8 following [1]
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desired geometry. This process introduces permanent

plastic strain along the innermost and outermost radius of

the spring similar to an overloaded torsion spring. The

strain is not fully removed between shape sets as the

springs are shape set at 525 �C and not annealed, leaving a

residual plastic strain at the inner and outer diameters of

the spring. For large spring indices, this would have a small

effect on the total strain in the wire under load. As the

permanent strain increases from further mean spring

diametral reduction, the effects become apparent at all

loadings. This manifests as a deviation from model

behavior in Fig. 3c–g.

To account for this phenomenon of increasing plastic

strain, a continuously decreasing effective wire diameter,

deff ; with increasing load was implemented. The wire

diameter is decreased every iteration using a loss factor, j:
This factor follows the compounded loss of material due to

the shear strain, �rh; and is incorporated in the previously

established methodology [1] in Eqs. 1–8. The shear strain

in the spring results from axial loading of the spring and the

normal strain from the bending moment during the manu-

facture of the springs. As the loading increases, an area

starting from the outside diameter of the wire is initially

strained. This process is analogous to a rod subject to

torsional loading, where linearly increasing strain starts at

zero at the center of the wire diameter and increases to a

maximum at the outer wire radius. This affects the previ-

ously strained region from the bending of the wire along

the spring axis. As this region is additionally stressed, it

plastically deforms and no longer provides the same stress

from the phase transformation leading to an effective

reduction in the contributing area. The area of interaction is

not expected to be circular, but for practical reasons, this is

represented as a continuously decreasing diameter. This

approach is also consistent with previously observed

behavior in SMAs where plastic deformation due to, e.g.,

cycling does not affect the phase transformation charac-

teristics (in strain space) and merely reduced the volume of

the effective transforming material [12–15].

Thus, the effective wire diameter, deff ; takes the form of

Eq. 9, resulting in a revised effective spring index, Ceff : In

Eq. 9, an interval, n; is arbitrarily chosen to ensure that the

interval or loading steps in which deff is determined is

adequate and meets a convergent minimum in the dis-

cretized implementation. This also allows for more gran-

ularity of the loss factor than if the model adopted a non-

iterative approach.

deff ¼ d0 1 � j
n

� �n�rh

; ð9Þ

Ceff ¼
D

deff

: ð10Þ

An argument can be made to use a composite effective

modulus that includes the modulus of the transformed

martensite, detwinning of the retained martensite and the

residual plastic deformation from deformation during fab-

rication of the spring. Such an approach could be used to

account for the drop in actuation force. However, given the

behavior observed in [13–15] where the mismatch between

dislocations associated with plasticity and the transforming

material is mostly accommodated, an approach that com-

putes an effective modulus requires an additional unnec-

essary step. The effective modulus would require a

volumetric determination of the retained martensite and

plastic deformation which would again require an assess-

ment of the shear strain. Thus there is merit in an approach

that incorporates an effective diameter associated with

material in the wire that can undergo a phase transforma-

tion based on an assessment of the shear strain.

The shear strain in this analysis approximates the true

strain caused by the load aligned with the spring axis. Even

though the outer radius of the wire is expected to be

plastically deformed, the equations use a linear relationship

to accomplish this approximation. This choice was made

based on the linear relationships observed and justified in

[1] and the transformation occurring in the presence of

plastic deformation [13–15]. Ideally, the most accurate

method of defining the shear strain would be based on the

three-dimensional geometric evolution of the springs as

they deform from the loading. This poses practical diffi-

culties and the objective here was to leverage the previ-

ously proven approach and characterize the shear strain in a

tractable manner while updating the evolving geometry. In

the following, we consider a few ways that this can be done

and examine the validity of the approach with the acquired

data.

The strain in the system can be expected to be linear

from the center of the wire, despite the plastic deformation,

as it arises from the change in geometry. Furthermore, the

polar moment of inertia of the wire can be considered to be

constant during loading. The outer radius of the wire is

where maximum strain is expected and will not necessarily

correspond to maximum stress due to the plastic defor-

mation in this region of the wire. To compensate for this

offset, the strain is modeled at where the shear stress is

largest but still expected to behave linearly elastic, again

based on the linear relationships observed and justified in

[1]. This is accomplished using the effective wire diameter

instead of the nominal wire diameter. This results in the

following approximation of the shear strain in the system in

Eq. 11.

�rh �
8FDdeff

Gpd4
0

: ð11Þ
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Another approach applies the effective wire diameter in

the same manner as Eq. 1. The analytical approach in [1] is

based on the strain energy of the system, accounting for the

geometric effects of pitch and curvature. Since the model

updates the geometry considering the contribution of dis-

placement to strain energy, the approximation for the shear

strain can adopt a similar approach. This results in Eq. 12,

which attributes the strain entirely to the new geometry of

the system.

�rh �
8FD

Gpd3
eff

: ð12Þ

The simplest solution for the approximate strain is to

assume that the expected linear behavior of the strain from

the center of the wire is completely independent from the

change in effective diameter. The approximate strain

would then depend only on the load and the changing

spring diameter. This results in Eq. 13 which is a conve-

niently simple function that is nearly linear with the

applied loading. This approach assumes that plastic

deformation does not change the shear modulus (again

consistent with [13–15]). A more rigorous approach would

be correct for the plastic modulus, perhaps using an

approach outlined in [1] to determine the apparent plastic

modulus. However, this improvement is beyond the scope

of this paper and is not used here.

�rh �
8FD

Gpd3
0

: ð13Þ

The final approach considered here uses the shear stress

equation developed in [10] which takes a more rigorous

approach in accounting for the geometric effects of the

helical geometry. The equations used by [1] expand on [10]

and use truncated equations ignoring higher-order terms.

Using the same reasoning that resulted in Eq. 12 for con-

tinuously updating the wire diameter, the shear strain in the

system can be represented by Eq. 14 which more accu-

rately represents strain in the system including the effects

of curvature from the mean spring diameter. This equation

and Eq. 12 behave similarly and may for practical purposes

nearly match in effects on the spring displacement. This

equation is more complex due to the additional updating

term, the spring index, Ceff ; and may not be necessary

considering the accuracy of the model.

�rh �
8FD

Gpd3
eff

1 þ 5

4Ceff

þ 7

8C2
eff

� �
: ð14Þ

The shear strain that best predicts the displacement

behavior of the spring and maintains mathematical stability

would provide a useful model for the springs and was

tested in Fig. 4. To better determine how strain affects the

behavior, Fig. 4a compares the various models for the

same loss factor ðj ¼ 5Þ: The similarity between Eqs. 11

and 13 in Fig. 4a is unexpected considering that Eq. 11 has

two iterating terms and Eq. 13 has only one iterating term.

This may result from the lack of sensitivity to the addi-

tional iterating term of the shear strain. The difference

between the fully updating geometry of Eq. 14 and the

other equations is noticeable indicative of the influence of

geometry on the shear strain.

Where Fig. 4a shows the differences between the shear

strain, Fig. 4b shows their similarities. The outputs can be

quite similar when applying different loss factors to each

equation to fit the real data. For practical purposes, this

means that any of these equations can be used to predict the

spring behavior if the loss factor is kept independent

between the different equations. The other practical limi-

tation of these models involved mathematical stability. All

Fig. 4 Model comparison for a spring index, C (ratio of spring diameter to wire diameter) of 3.73: a loss factor of j = 5 from Eq. 9and

predictions using Eqs. 11–14 and b predictions from Eqs. 11 to 14 with fits for the loss factor as indicated in the legend
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strain models remain stable within any reasonable deflec-

tion for the compression springs that were tested. However,

if the models are assumed to work with tension springs

instead, the deflections can be more than the usable com-

pressive stroke of the spring. Plotting these equations

assuming very large deflections show that Eq. 14 based on

the strain derived in [10], as well as Eq. 12 that ignores the

higher-order terms, begins to exhibit unstable behavior.

Equations 11 and 13 remain stable throughout the range

but begin to diverge from each other. An important

observation at these deflection scales shows that the

unstable equations exhibit cubic behavior well before the

instability of the stable models. This behavior may be

necessary to explore in future experiments in order to

validate one of these models for much larger deflections, or

if a model that doesn’t attempt to approximate the strain

with Hooke’s law is necessary to have an applicable model

for large spring deflections in tension. With the

Fig. 5 Acquired load–

displacement data of shape

memory alloy spring actuators

with decreasing spring indices,

C (ratios of spring diameter to

wire diameter). Symbols are the

experimental load–displacement

data and the lines are generated

from Eqs. 1 to 8 following

model refinement with the

effective spring index, Ceff in

Eq. 10
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comparisons made between the different strain models and

the practical limitations created in these experiments, any

of the models developed can adequately describe these

springs within the forces and strokes explored. Equation 11

was chosen as the approximate strain model. The model

effectively accounts for the plastic deformation as well as

maintains mathematical stability at any potential loading.

The method developed for the data in Fig. 4 was applied

to experimental data shown in Fig. 3c–g. Equations 9 and

10 were incorporated into Eq. 1, replacing their respective

terms, where Eq. 10 completely replaces Eq. 8 as the

updating spring index. A unique loss factor was applied to

each spring that best matched the actual spring response.

The new plots are shown in Fig. 5, with the model

refinement showing a much closer agreement to the data

when incorporating the effective wire diameter. The pre-

vious model fits only at low loadings and would subse-

quently deviate from the results, as seen in Fig. 3c–g for

spring indices of 4 or below. These results indicate an

effective practical model for predicting first cycle behavior

of shape memory springs manufactured as outlined in the

experimental procedures section. Figure 6 collects this data

into a plot comparing the loss factor versus the nominal

spring index. The trend in Fig. 6 shows a gradual parabolic

rise as nominal spring indices decrease. For engineering

convenience, a least-squares second-order polynomial was

fit to the data resulting in Eq. 15.

j � 1:48C2 � 17:4C þ 49:8: ð15Þ

We recognize and emphasize that Eq. 15 is merely

provided for convenience in designing springs over the

entire range of spring indices since data for springs with

indices other than those tested in this work may not be

readily available. Equation 15 is valid within the range of

spring indices of 2.73 to 4.92, above which the loss factor

is 0. This trend may be valid for spring indices below 2.73;

however, this is already quite low from a fabrication

standpoint. A spring index of 2.00 would be considered the

theoretical limit of spring manufacture, below this, the wire

would begin to self-intersect. This equation should provide

an effective engineering basis to design SMA NiTi springs

within a large range that can produce substantial forces

compared to their size. However, additional work is needed

to determine the range of efficacy of Eq. 15 but a similar

model refinement approach can be expected to apply to

other SMA alloys. Strain is mostly dependent on the

change in geometry and given the ability of the martensitic

phase transformation in SMAs to accommodate plastic

deformation [12–15], this model could potentially be

extended to other SMA alloys.

Conclusions

Shape memory actuators have been introduced into a range

of applications, including several that require high forces in

restricted spaces. The work of [1] extended [10] and pro-

vided an accurate method for modeling the load–dis-

placement behavior of shape memory springs (and

therefore the actuation force and stroke) following heating.

However, that work failed to accurately predict spring

displacement responses for spring indices below 5 as seen

from experiments conducted in this work. By accounting

for the residual strain induced in the fabrication process,

the current model effectively remedies the disparity

between data and prediction by decreasing the effective

wire diameter under loading. The model is consistent with

previously observed phenomena where the phase trans-

formation in plastically deformed SMAs is not significantly

altered [12–15]. The proposed model is effective for

Fig. 6 Loss factor (j in Eq. 9)

versus the spring index (C, ratio

of spring diameter to wire

diameter) for the various load–

displacement responses of shape

memory alloy spring actuators.

The dotted line is a second-

order polynomial fit shown in

Eq. 15
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springs that have not been fully annealed. An additional

annealing process may resolve several of the effects

explored in this analysis but may also lead to an unwanted

reduction in the strength of the spring and changes in

geometry.

The procedures and models outlined in this paper pro-

vide an effective toolset for engineers and scientists for

predicting shape memory spring actuator response. The

model and correction factor applied can be used to

implement novel designs that meet increasingly stringent

requirements of high force and work densities. This is

especially useful in applications where space is a premium.

Additional work may be needed to determine the range of

efficacy of the fit to the loss factor vs. spring index

response determined in this work to other SMAs but a

similar model refinement approach can be expected to

apply. Strain is mostly dependent on the change in geom-

etry and given the ability of the martensitic phase trans-

formation in SMAs to accommodate plastic deformation,

this model could potentially be extended to other SMA

alloys. The framework in this work applies to the initial

spring actuation cycle but can also be easily extended to

predicting the behavior for subsequent cycles as was done

in [16, 17]. The approach would be to use the final effective

wire diameter after the first few cycles into subsequent

cycles, but without incorporating the loss factor in future

cycles. From a practical or application point of view, shape

memory spring actuators are trained or stabilized for sev-

eral cycles prior to use. That training or stabilization reg-

imen can easily be integrated in this framework. It is also

noted that we did not examine the unloading aspects of the

spring actuators in this work. The main objective of the

paper was to establish a methodology to accurately predict

the actuation force which was being over predicted for

shape memory springs with small spring indices. The

unloading response, in most actuator applications, usually

arises from the actuator being switched off and hence in the

more compliant martensitic phase. We nevertheless see no

reason why this methodology cannot be applied to

unloading of the martensitic phase as was verified in

[1, 12, 18, 19]. Lastly, the effective diameter approach

presented here has physical basis by examining dislocation

densities from spatially resolved transmission electron

microscopy experiments, beyond the scope of this present

work.
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