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Abstract This paper presents a comparative study between

two micro–macro modeling approaches to simulate stress-

induced martensitic transformation in shape memory alloys

(SMA). One model is a crystal plasticity-based model and

the other describes the evolution of the microstructure with a

Boltzmann-type statistical approach. Both models consider a

self-consistent scheme to perform the scale transition from

the local thermomechanical behavior to the global one. The

way the two modeling approaches describe the local

behavior is analyzed. Similarities and differences are pointed

out. Numerical simulations of the thermomechanical

behavior of an isotropic titanium-niobium SMA are per-

formed. These alloys have known a growing interest of sci-

entific community given their high potential for application

in the biomedical field. Stress–strain curves obtained from

the two simulations are compared with experimental results.

Evolutions of volume fractions of martensite variants pre-

dicted by the two approaches are compared for \100[,

\110[, and\111[tensile directions. Due to the absence of

comparative studies between multiscale models dedicated

for SMA, this paper fills a gap in the state of the art in this

field and provides a significant step toward the definition of

an efficient numerical tool for the analysis of SMA behavior

under multiaxial loadings.

Keywords Shape memory alloys (sma) � Martensitic

transformation � Micro–macro modeling

Introduction

Since the 80s the modeling of shape memory alloys (SMA)

behavior presents an everlasting interest [1]. The large field

of applications met by these alloys [2] combined with the

relative complexity of their behavior explain this interest.

Three main groups of models are classically distinguished.

Most part of the modeling effort has been devoted to the

development of phenomenological macroscopic approa-

ches. Popularity of this group of models comes from their

ability for implementation in finite element softwares for

structural analysis [3–5] and for the relatively easy cali-

bration of the material parameters involved [6]. Phase field

approaches constitute a second group of models aiming at

the description of the microstructure evolution during any

thermomechanical process. Several examples of these

models can be found in [7]. The third group of models aims

at determining the macroscopic behavior of the materials

through a description of its microstructure and a modeling

of local strain mechanisms [8]. The present paper focuses

on this third group called multiscale modeling. The

objective of the present work is to investigate multiaxial

aspects of the mechanical behavior of Ti–Nb alloys as a

new class of shape memory alloys [9, 10]. This is per-

formed from a numerical point of view considering the lack

of commercial Ti–Nb alloys products (plates, tubes,

sheets,…) required for a complete multiaxial experimental
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characterization. Multiscale modeling can then be consid-

ered as a virtual testing machine for material evaluation.

The choice of a particular multiscale model is not an easy

task. Many multiscale models have been developed and

published in the literature but to the authors’ best knowl-

edge, the capabilities of these various models have never

been compared. An important Round-robin for SMA

modeling was performed within the ESF S3T EUROCORE

project [11] but only phenomenological macroscopic

approaches have been considered. In an attempt to fill this

gap, two different multiscale approaches are considered in

the present work and applied to the modeling of a TiNb

alloy superelastic behavior.

Multiscale Modeling of SMA

Many multiscale models, based on micromechanics, are

used to describe the quasi-static behavior of SMAs. Three

characteristic microstructural scales are classically con-

sidered in these models (Fig. 1):

• The phase: either austenite or martensite variants. Each

phase is characterized by its crystallographic structure

and its properties (resistivity, stiffness, entropy, trans-

formation strain…)

• The grain or crystal: according to the evolution and

direction of transformation, the grain may consist in

single phased austenite, martensite variants or in a

mixture of both phases in separated domains. The local

strain mechanism is described at this length scale.

• The polycrystal: representative of an aggregate of

grains with given orientations separated by grain

boundaries. The crystallographic texture of parent

phase is the relevant information at this length scale.

Models mainly differ in the way the crystal behavior is

modeled. We mainly distinguish two different approaches:

• Plasticity-based models: these models are inspired by

crystal plasticity models of metallic alloys (steels,

nickel, or copper-based alloys). A like-Schmid law is

considered and evolution of the transformation is

expressed thanks to a consistency condition. Most of

the models describing the SMA behavior belong to this

category. Some models consider a single martensite

variant with the assumption that only one main variant

may appear during a superelastic monotonic uniaxial

loading. The multivariant/multidomain modeling

approaches mainly differ with each other regarding

the definition of the intragranular internal stresses. The

latter can be expressed as a constant value, as a full

interaction matrix or as a simplified matrix composed

of two independent terms associated with compatible

and incompatible domains respectively. It can also be

estimated from a second scale transition scheme in

which domains are seen as individual oblate inclusions.

The interesting reviews from [1, 8] can be referred to

for more details.

• Statistical models: less usual, this modeling expresses

the microstructure as a statistical distribution. Statisti-

cal functions are used to estimate the evolution of the

transformation [12].

We can also classify models according to the adopted

scale transition schemes to link grain scale and polycrys-

talline scale. Mori–Tanaka scheme, self-consistent one,

uniform stress/strain approaches, or finite elements based

analyses may be used to perform the scale transition.

An important drawback for multiscale models is their

high computational cost depending on the complexity of

the local description. The local stress field is strongly

multiaxial, even for a macroscopic simple tension, due to

grain to grain interactions or to variant selection which may

be activated or deactivated at each loading step. Our

motivation in this study is to compare, for the first time in

the framework of shape memory alloys behavior, the for-

mulations and performances of two different multiscale

approaches.

In a first part, we introduce the micromechanical model

proposed by [13] which describes the local thermome-

chanical behavior inside a single grain considering the

crystallographic nature of the martensitic transformation.

Volume fractions of martensite variants are chosen as

internal variables and their evolution is derived from the

definition of a thermodynamic potential at the grain scale.

In a second part, we present the micromechanical model

proposed by [14], which describes the behavior of a rep-

resentative volume of polycrystalline SMA where a

Boltzmann-type statistical law allows the volume fractions

of martensite variants and of austenite to be calculated.

Finally, the two models are used to simulate the supere-

lastic behavior of a titanium-niobium (TiNb) alloy.

TiNb alloys are good candidates for biomedical appli-

cations. We can cite the study from [15] where TiNb alloysFig. 1 Characteristic microstructural scales considered in multiscale

models
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exhibit reduced ion release and better corrosion resistance,

compared to NiTi alloys. Some TiNb alloys exhibiting a

very low Young modulus, close to bone stiffness (which is

between 10 and 30 GPa), are presented in [16, 17]. These

TiNb alloys are especially good candidates for manufac-

turing bone implants. They reduce both the cytotoxicity

and stress-shielding, which defines bone loss mainly

observed with high stiffness implants [18].

Unfortunately, few experimental mechanical character-

izations of these alloys are nowadays available. Most of

these experimental data come from tensile loadings since

TiNb are most of the time available in a wire form. Rele-

vant multiscale modeling of TiNb alloys would allow a first

estimation of the multiaxial behavior of these alloys.

Siredey et al. [13] and Maynadier et al. [14]
Multiscale Models

Single Crystal Model of Siredey et al. [13]

This 3D multivariant model relies on micromechanics to

propose a simplified expression of the interaction energy

between the martensite variants in the material. An inter-

action matrix Hnm is used for the description of the inter-

actions between martensitic variants n and m with

respective volume fractions fn and fm. In the framework of

small perturbations, total strain en of a variant n of volume

Vn is the sum of elastic and transformation components

Eq. (1):

en ¼ eeln þ etrn ð1Þ

Habit planes between austenite and martensite variants

are defined by the unit normal to the habit plane n
*

and the

unit direction of transformation m
*

with an amplitude g. The

transformation strain etrn of each n variant is:

etrn ¼ 1

2
gðn* � m

* þ m
* � n

*Þ ð2Þ

Free energy for the whole grain is expressed in Eq. (3).

w ¼ �B T � T0ð Þ
X

n
f n þ rg

X
n
etrn f

n þ 1

2
rg : S

: rg �
1

2

X
n;m

Hnmf nf m ð3Þ

rg and T are the applied stress and temperature at the grain

scale, B, S, and T0 are respectively the sensitivity param-

eter to chemical energy evolution, the compliance tensor

and the reference temperature.

The transformation starts when the thermodynamic

force Fn ¼ ow
of n

associated with the internal variable fn

reaches a critical value ± FC that is characteristic of the

material.

dFn ¼
X

m

Hnm½ ��1 etrn drg � BdT
� �

ð4Þ

The evolution of fraction dFn in Eq. (4) is obtained from

energy derivation and application of consistency condition

(dFn= 0).

Single Crystal Model: Maynadier et al. [14]

The model is based on the comparison of the Gibbs free

energy densities of each martensite variant n and austenite

phase a.1 The same hypothesis of homogeneous stress rg

than for Siredey’s model is applied at the variant scale,

resulting in Gibbs free energy density expression reported

in Eq. (5) where index i indicates n variants ? a phase.

The transformation strain is the same as in Eq. (2) except

for austenite whose transformation deformation is null (as

reference deformation).

wi ¼ hi � Tsi � rg : e
tr
i � 1

2
rg : S : rg ð5Þ

hi, si and S are enthalpy density, entropy density, and

compliance tensor of the martensite variant or austenite

phase. rg denotes the stress at the grain scale.

A probabilistic estimation of each variant or austenite

phase (denoted as variant n ? 1) volume fraction is made

using a Boltzmann distribution [see Eq. (6)]. Interactions at

the interfaces are not taken into account. The modeling

uses one numerical parameter, As, which drives interfacial

effects. This parameter can be related to the Boltzmann

constant and temperature via a statistical volume.

f i ¼ expð�AswiÞPnþ1
i¼1 exp �Aswið Þ

ð6Þ

This formulation allows the term 1
2
rgSrg in Eq. (5) to be

removed since it does not change from one variant to

another.

In this approach, the microstructure is defined as a dis-

tribution and fractions are obtained by direct comparison

between Gibbs free energy density levels of the con-

stituents. This strategy is completely different from the

strategy used by Siredey et al. [13]. The latter is a threshold

model with a fixed critical value for martensite nucleation

and an evolution of the fractions derived from the consis-

tency condition.

This model of Maynadier et al. [14] has been recently

extended to chemo-magneto-mechanical couplings in

magnetic shape memory alloys accounting for thermal

exchanges [19].

We can point out similarities between the free energy

expressions from Siredey and Maynadier.

1 The so-called R-phase of equi-atomic NiTi can be considered in

this modeling in addition to martensite and austenite phases.
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The Gibbs free energy density in Eq. (5) can be written

at the grain scale:

W ¼
X

i
f iWi ¼

X
n
f nWn þ 1 �

X
n
f n

� �
Wa

¼ Wa þ
X

n
f n Wn �Wað Þ ð7Þ

With fn the volume fraction of martensite variant n, and

wa the Gibbs free energy density of austenite phase.

Since stress and compliance are considered homoge-

neous, one gets from Eq. (7):

W rg; T
� �

¼ Wa�
1

2
rg : S

: rg þ
X

n
f n hn � hað Þ

� T
X

n
f n sn � sað Þ � rg :

X
n
f netrn ð8Þ

The energy is known for a constant. We fix:

W rg ¼ 0; T ¼ T0

� �
¼ 0 where T0 is a reference tempera-

ture. We get so:

Wa þ
P

n f
n hn � hað Þ ¼ T0

P
n f

n sn � sað Þ.
This can be introduced in the Gibbs free energy density

in Eq. (8):

W rg; T
� �

¼
X

n
f n sn � sað Þ T0 � Tð Þ � 1

2
rg : S : rg � rg

:
X

n
f netrn

ð9Þ

All martensite variants are assumed to exhibit the same

entropy: sn= sma
To get from Eq. (9) the Siredey expression in Eq. (3),

we have to consider:

• B constant is introduced corresponding to the variation

of entropy density between austenite and martensite:

B ¼ Ds ¼ sa � sma � 0

• The interaction between variants that increases the free

energy density: Winter ¼
P

n;m f nf mHnm

• A Legendre Transformation (or complementary energy

expression): wþWþWinter ¼ w 0; T0ð Þ ¼ 0

So that: W ¼ �w�Winter

It is interesting to notice that the Gibbs free energy

expression in Eq. (5) concerns each variant in the volume

of the grain while expression in Eq. (3) is the Helmholtz

expression for the whole grain (possibly a mix of austenite

and martensite).

Scale Transition Rules: From Grain to Polycrystal

Both models are based on thermodynamics and involve

transitions from variant to grain then from grain to poly-

crystalline scale. The macroscopic behavior of the poly-

crystalline SMA is estimated by averaging the behavior of

single grains using the self-consistent scale transition

scheme. The latter is relevant to describe aggregates of

crystals. The effective tensor Ceff is expressed as: Ceff=-

\Cg: [(Cg? C*)-1: (Ceff? C*)][with the Hill constraint

tensor C*. This implicit expression needs a numerical

resolution.

Application to Titanium–Niobium Polycrystalline
Alloy

Titanium–niobium alloys undergo a cubic (a0 = 0.

328 nm) to orthorhombic phase transition (a = 0.318 nm;

b = 0.4818 nm; c = 0.464 nm). The values of cell param-

eters are taken from measurements made by [16].

We focus on TiNb26at.% composition, which leads to a

martensitic structure at ambient temperature (Ms= 265 K

and Af= 296 K). The representative volume element (RVE)

is defined by a set of 100 grains with random orientations

to obtain an isotropic crystallographic texture. Homoge-

neous isotropic elasticity such as Eaust.= Emart.=-

E = 22 GPa and m = 0.33 is assumed.

Parameters used in both modeling are listed in Table 1.

Crystallographic theory of martensite is used to estimate

the possible interfaces. This theory is based on the

assumption of an invariant plane separating austenite and

martensite phases. Based on this theory, we found 2 9 6

(12) austenite/single martensite habit planes variants

(Table 2) and 24 habit planes between austenite and

twinned martensite pairs. The 2 9 6 habit planes variants

are denoted V1?, V2?, V3?, V4?, V5?, V6? and V1-, V2-,

V3-, V4-, V 5-, V 6-. Twinned pairs are formed between

variant I and variant J with respective size ratios k and

(1 - k). In our calculations, k value is close to 1

(k = 0.999), which means that configuration is close to a

single variant one. Indeed, simulations considering either

single variants or twinned variants give similar results. We

only present the results considering the set of 12 possible

austenite/single martensite variants in Table 2.

Hnm is simplified considering only two terms

H1 = 40 MPa and H2 = 400 MPa respectively for com-

patible and incompatible combinations (Table 3). B value

is identified from tensile test measurements:

B = 0.08 MPa/K.

As= 1.4 9 10-5 m3/J1 is obtained from a differential

scanning calorimetry (DSC) measurement (the identifica-

tion process is explained in [19]).

Figure 2 illustrates a comparison between both model-

ing during superelastic tensile loading, considering the set

of 12 possible austenite/single martensite variants. The

simulations are compared with experimental results from

[20]. Both models lead to a very similar global stress–strain

curve (stress gap \ 4 MPa) until a strain value E11 = 1%

(fmartensite around 13%). Above this value, the gap between
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the two curves remains low but increases with the loading:

for fmartensite = 50%, the stress gap is 14 MPa; for fmarten-

site = 90%, the gap reaches 23 MPa.

One advantage of the micromechanical models over

macroscopic phenomenological ones is that they give

access to the local quantities evolution during the loading

process.

We choose to plot in Fig. 3a the local stress–strain

behavior of some specific grains inside the RVE denoted

grain22, grain17, and grain2 where stress axis is close to

\111[, \001[, and \011[ crystallographic directions,

respectively (Fig. 3b). Both modelings give similar phase

transformation kinetic (Fig. 3). The values of local stresses

are however smaller for Maynadier et al. [14]. The evo-

lution of variants volume fractions as function of stress is

Table 1 List of modeling

parameters
Siredey et al. [13] Maynadier et al. [14]

Transformation temperatures: Ms= 265 K, Af= 296 K

Cell parameters: a0 = 0.328 nm; a = 0.318 nm; b = 0.4818 nm; c = 0.464 nm

Elastic constants: E = 22 GPa, m = 0.33

Habit planes 12 9 (n,m,g)-? Table 2

Interaction H1= 40 MPa, H2= 400 MPa

B = sa - sma= 0.08 MPa/K;

T0 ¼ 1
2
Ms þ Af

� �

As= 1.4 9 10-5 m3/J-1

Entropy Ds = sa - sma= 0.08 MPa/K

Dh ¼ ha � hma ¼ Ds� T0

Table 3 Shape of the

interaction matrix

(C Compatible, I Incompatible)

V1? V2? V3? V4? V5? V6? V1- V2- V3- V4- V5- V6-

V1? C C I I I I I C I I I I

V2? C C I I I I C I I I I I

V3? I I C C I I I I I C I I

V4? I I C C I I I I C I I I

V5? I I I I C C I I I I I C

V6? I I I I C C I I I I C I

V1- I C I I I I C C I I I I

V2- C I I I I I C C I I I I

V3- I I I C I I I I C C I I

V4- I I C I I I I I C C I I

V5- I I I I I C I I I I C C

V6- I I I I C I I I I I C C

Fig. 2 Simulation of superelastic tensile behavior (T = 300 K[Af)

for TiNb26at.% Alloys

Table 2 Possible austenite/single martensite variant interfaces

(g = 0.055)

n1 n2 n3 m1 m2 m3

V1? - 0.658 0.533 0.533 0.683 0.517 0.517

V2? - 0.658 - 0.533 0.533 0.683 - 0.517 0.517

V3? 0.533 0.658 0.533 0.517 - 0.683 0.517

V4? - 0.533 - 0.658 0.533 - 0.517 0.683 0.517

V5? 0.533 0.533 - 0.658 0.517 0.517 0.683

V6? - 0.533 0.533 - 0.658 - 0.517 0.517 0.683

V1- - 0.658 - 0.533 - 0.533 0.683 - 0.517 - 0.517

V2- - 0.658 0.533 - 0.533 0.683 0.517 - 0.517

V3- - 0.533 0.658 - 0.533 - 0.517 - 0.683 - 0.517

V4- 0.533 - 0.658 - 0.533 0.517 0.683 - 0.517

V5- - 0.533 - 0.533 - 0.658 - 0.517 - 0.517 0.683

V6- 0.533 - 0.533 - 0.658 0.517 - 0.517 0.683
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plotted in Fig. 4 for the three grains. The variants selection

for both approaches is very similar especially regarding the

main variants. More variants are selected in [14]. In fact, if

we look at grain17 (Fig. 4b), couples of variants (V1?,

V1), (V2?, V2-), (V5?, V5-), and (V6?, V6-) are

selected while only variants V1-, V2?, V5-, V6? nucleate

in Siredey et al. [13]. These couples of variants have very

close thresholds and lead to the same strain levels. But, in

Siredey et al. [13], the hardening effect leads to a unique

selection of the best oriented pair of variants.

Figure 4 shows that the local stresses level in each

variant is lower for Maynadier et al. [14] than for Siredey

et al. [13]. Indeed, the incompatibilities due to heteroge-

neous variants’ selection are not accounted for in this

approach. We can notice that the local stresses remain in

the same magnitudes for both models (very close values are

obtained for grain17 (Fig. 4b) and grain22 (Fig. 4d)).

Grains with orientations close to \011[ are the first to

transform. Grain2 (Fig. 4a) belongs to this category. In

addition, we also made a comparison of the transformation

thresholds under biaxial stress condition. Results are

reported in Fig. 5. The shape of the transformation surfaces

predicted by both models is very similar.

All these similarities between the numerical predictions

provided by both models can be understood considering

that the two formulations differ mainly by the interaction

term. As a Gibbs formulation, Eq. (5) ensures a minimum

energy principle and can consequently be used in a

Boltzmann probability function. This formulation allows

an expression of incremental martensite fraction to be

derived at the threshold (Eq. (10)), very close to the esti-

mation given in Eq. (4) from Siredey’s approach, showing

that As parameter can be related to terms of Hnm matrix.

df n ¼ As etrn : dr � BdT
� �

ð10Þ

Consequently Siredey et al. [13] and Maynadier

et al. [14] models are expected to give comparable results

if parameters are appropriately identified.

Discussion

The way the microstructure of the grain is described by

both models is very different: distribution of variants

without interfaces for [14], martensite domains separated

by interfaces and presenting invariant habit planes with

austenite for [13].

As expected, the model from Maynadier et al. [14] pre-

sents a smaller stress–strain slope in Fig. 2 due to homoge-

neous stress assumption at the grain scale. Indeed, when we

look at the behavior of individual variants in Fig. 3, we can

notice that slopes are lower for [14]. This result is consistent.

As expected, the appearance of new variants inside a grain

does not lead to any hardening effect.

The selection of incompatible variants leads to higher levels

of internal stresses for Siredey et al. [13] (through H2 value

from interaction matrix). This fact explains the higher slopes in

the stress–strain variants behavior (Fig. 4). The distribution of

volume fractions of variants is such that transformation strains

at the grain scale are very close from one modeling to another

(Fig. 3). Local stresses at the grain scale are the same for both

models due to homogeneous stress hypothesis.

Limitations of the Models

The main limitation of Siredey model is its inability to

predict shape memory effects. Indeed, concomitant

appearance of all martensite variants during a cooling leads

to unrealistic values of internal stresses. DSC curves cannot

be modeled properly. On the contrary, Maynadier

et al. [14] is able to predict a DSC curve as shown in

Fig. 6. Siredey et al. [13] is limited for martensite nucle-

ation and reorientation aspects during a mechanical load-

ing. Maynadier et al. [14] is able to predict shape memory

effects too. We illustrate the case of Grain 17 pre-loaded at

T = - 20 �C\Af in Fig. 7. The martensite variants are

accommodated at the initial stage exhibiting equivalent

volume fractions (fn = 1/12). A mechanical loading is

Fig. 3 a Local behaviors of specific grains inside the volume b Ori-

entations of the grains
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Fig. 4 Selection of variants for specific grains inside the volume a Grain 2 b Grain 17 c Orientations of the grains d Grain 22

Fig. 5 Biaxial transformation surfaces a Threshold of 0.1% of martensite volume fraction b Threshold of 1% of martensite volume fraction
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applied next. During this loading, the best oriented variants

are selected among the others whose volume fraction

decreases.

Above all, Maynadier et al. [14] presents limitations

linked to the reversible framework of the formulation. The

introduction of an additional constant Lg in the energy

expression is a possible solution to model the mechanical

(and DSC) hysteresis (see Fig. 6). Enthalpy density is

expressed considering an extra constant ?Lg or - Lg

respectively for direct and reverse transformation. This

simplified formulation of hysteresis is only relevant if

initial and final stages are single phased (100% austenite or

100% martensite). Hence, Siresey et al. [13] appears more

accurate for non-monotonic and non proportional loadings.

An example of cyclic loading applied to Grain17 is shown

in Fig. 8. With Siredey et al. [13], we can perform inner

loops because the effect of loading history is consid-

ered (Fig. 8b). When we try to perform the inner loop with

Maynadier et al. [14], the curve directly joints the major

cycle (Fig. 8a). There is no history effect. Moreover a

given stress state always leads to the same distribution of

variants, no matter the loading path.

Conclusion

In this work, we performed comparisons between two

multiscale models: Siredey et al. [13] proposed a plasticity-

based model, and Maynadier et al. [14] a statistics based

one. We used crystallographic theory of martensite for

Fig. 6 Experimental and simulated DSC for TiNb24at.%: Ds = 0.11

MPa/K, T0 = 392.5 K, Lg = 0.29E?6 J/m3

Fig. 7 Reorientation process in Grain 17 (close to\001[direction) during an uniaxial loading at T = - 20 �C a Stress -strain curve b Selection

of variants

Fig. 8 Cycling tests on Grain 17 (close to \001[ direction) at

T = 27 �C (loading steps including a minor cycle: r11 (MPa)=

[0 ? 250 250 ? 15 15 ? 250 250 ? 0] a Maynadier et al. [14] b

Siredey et al. [13]
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calculation of possible habit planes and identification of

groups of compatible and incompatible variants for TiNb.

Despite some strong differences highlighted in ‘‘Dis-

cussion’’ section, both modelings lead to similar marten-

sitic transformation kinetics and similar selection of

variants for both uniaxial and biaxial loadings. The local

mechanical behavior (considering isothermal conditions) of

some specific grains predicted by both models gives similar

results. The transformation surfaces for proportional biax-

ial tension—compression loadings are also similar. Similar

results have been obtained when both approaches have

been applied to another titanium-niobium alloy with a

different composition (TiNb24at.%). Moreover, models have

been tested in anisothermal conditions (accounting for heat

exchanges—not presented in the paper) leading to a

superelastic behavior very close to each other.

Considering computational aspects, Siredey et al. [13]

uses 30 input parameters and is implemented in

C?? language while Maynadier et al. [14], in MATLAB,

needs 29 input parameters. The calculation times are quite

similar (* 10 min for a loading until 250 MPa with

step = 0.01 MPa) but it is hard to draw a conclusion from

this information because the way the two models are

implemented is very different.
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