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Abstract The entropy differences per unit volume (DStrans)

between the close-packed phases in a martensitic trans-

formation (MT) in Cu-based shape-memory alloys are

obtained from mechanical tests by measuring, as a function

of temperature (T), the critical resolved stress (s). Specif-

ically, DStrans values are obtained from the slope of s versus

T plots by invoking a relation which is straightforwardly

derived from the classical Clausius–Clapeyron equation,

viz., ds
dT

¼ � DStrans

c ; where c is the transformation shear

strain. Motivated by the significant scatter of the so

obtained DStrans values, the thermodynamic bases of such

evaluation procedure have been revised, by accounting for

the nucleation step of a martensite plate. The interface,

elastic strain, and chemical contributions to the Gibbs

energy of nucleation have been considered. A new

expression of the type ds
dT

¼ X� DStrans

c is obtained, where

the X term involves the elastic properties and their tem-

perature dependence. The new s�T�DStrans relation is

used to assess the DStrans values corresponding to the 2H/

18R and 18R/6R MTs in Cu–Al–Ni and Cu–Zn–Al alloys.

The DStrans values obtained by the present approach fall on

a scatter band centered around the zero value.

Keywords Stress-induced martensitic transformation �
Entropy of transformation � CuZnAl � CuNiAl

Introduction

Thermodynamic Background

In the experimental determination of thermodynamic

quantities, it is generally agreed that the martensitic

transformations (MTs) allow a high precision in the

determination of the relative phase stability between

austenite and martensite, due to the small temperature and/

or stress hysteresis between direct transformation and

reverse transformation. The thermodynamic values

obtained by common calorimetry, tension, and/or com-

pression experiments agree well within the typical uncer-

tainties. This is, in particular, the case of the single crystals

in NiTi [1] and in Cu-based alloys [2]. In particular, for Cu-

based alloys, there has been a considerable interest in the

estimation of the entropy difference (DS) by analyzing the

results of mechanical tests where the critical resolved stress

(s) at which the MT is induced is determined as a function

of temperature (T). Then, from the slope of the experi-

mental s versus T plots, an entropy difference is evaluated

using a form of the classical Clapeyron equation usually

referred to, in the present research field, as the Clausius–

Clapeyron (CC) equation, viz.,

ds
dT

¼ �DS
Vc

¼ �DStrans

c
; ð1Þ
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where DStrans is the entropy difference between structures

per unit volume, and c is the transformation shear strain.

Concerning the type of behavior expected, it should be

remarked that, for Cu-based shape-memory alloys, the

stress and temperature dependencies of DStrans and of c are

small [3]. As a consequence, an almost constant slope is

predicted by Eq. (1) for those systems, which has often

been referred to as ‘‘the CC behavior.’’

As a motivation of the present study in the following

section, it is shown that Eq. (1) has been used in several

alloy systems in the last decades.

Applications of Eq. (1) to Study the ‘‘the CC

behavior’’

Already in 1976 Otsuka et al. [4] stress-induced the MT to

two different martensitic structures in a Cu–Al–Ni alloy.

Although they find different slopes in the linear behavior

between critical stress and temperature, the calculated

enthalpies agreed within experimental scatter.

In 1984, Miyazaki and Otsuka [5] used Eq. (1) to cal-

culate the heat of transformation in a Ti50Ni47Fe3 alloy for

the transformation to the R-phase and to martensite. They

reported some discrepancies with the calorimetric mea-

surements and associated them to a wrong determination of

the strain associated to the transitions.

Miyazaki and Otsuka [6] studied in 1986 NiTi alloys

above and below the equiatomic composition. They

reported higher slopes for the transformation to the

R-phase as compared to that to martensite, which was

ascribed to the smallness in the transition strain due to the

R-phase transition.

In 1988, Stachowiak and McCormick [7] performed

calorimetric measurements under constant load in a Ti–

50.2 at.% Ni alloy. They detected the starting temperatures

for the transformation to the R-phase, to martensite and the

reverse transition to austenite, as a function of the applied

stress. Having found the linearity between stress and tem-

perature, they compared the experimentally determined

slopes with the ones calculated from Eq. (1) using the

measured transformation enthalpies and equilibrium

temperatures.

Pelegrina and Ahlers in 1992 [8] used mechanical

experiments to determine DStrans in Cu–Zn–Al alloys. They

concluded that there exists a composition dependence for

the entropy of transformation between austenite and

martensite.

In 1998, Orgéas and Favier [9] performed mechanical

testing experiments on equiatomic NiTi under three dif-

ferent deformation modes: tension, compression, and sim-

ple shear. The comparison of the measured stress–

temperature slopes to the data from the literature allowed

them to conclude that their results are strongly influenced

by the initial treatment conditions.

Šittner et al. [10] performed in 1999 tension/compres-

sion tests in Cu–Al–Zn–Mn polycrystals and compared the

experimental results with the predictions of a simple

model. The use of the CC equation was found to be of

crucial importance for the model, since the temperature and

orientation dependence of the transformation stresses were

introduced through it.

In 2004, Brinson et al. [11] stress induced the MT in

polycrystalline NiTi. They determined the latent heat effect

by measuring simultaneously the temperature decay and

stress decay. Since both magnitudes approach equilibrium

values at identical times, they concluded that the temper-

ature decay after latent heat release is primarily responsible

for the stress relaxation observed. After this transient time,

the CC behavior could be measured and compared with

other published values.

Otsuka and Ren [12] in 2005 used Eq. (1) to differen-

tiate the case of stress-induced transformation from slip,

with the latter having a negative temperature dependence

of the critical stress.

In 2007, Auguet et al. [13] analyzed the use of shape-

memory alloys for damping applications in family houses.

They identified the more relevant macroscopic thermo-

mechanical properties characterizing the process of trans-

forming mechanical energy into heat, mentioning the CC

equation as a fundamental relation.

Kockar et al. [14] measured in 2008 the stress–temper-

ature slopes in ultrafine-grained NiTi fabricated using

equal-channel angular extrusion (ECAE). Using Eq. (1)

they evaluated the transformation entropy and deduced the

changes in the elastic strain and irreversible energies,

comparing hot-rolled samples with the ECAE-processed

ones.

In 2011, Olbricht et al. [15] studied the transitions in

ultrafine-grained Ni-rich NiTi. They constructed CC-type

of plots by combining mechanical tests, electrical resis-

tance measurements under constant load, and calorimetric

determinations. The small discrepancies between the

experimental techniques were related to features of each

transition.

In the following section, the results of applying Eq. (1)

to particular cases in Cu-based alloys are reviewed.

The Problem of the Entropy Differences in Cu-

Based Alloys

A qualitative summary of the relative phase stability in Cu-

based shape-memory alloys is presented in Fig. 1. All the

martensitic phases are close-packed structures, whose sta-

bility depends on composition, temperature, and applied

stress. The three phases of most interest are denoted as 3R,

Shap. Mem. Superelasticity (2019) 5:136–146 137

123



9R, and 2H for inherited B2 order, with ABC, ABCB-

CACAB, and AB stacking sequences, respectively. If

instead of B2, the DO3 or L21 order is present, the first two

structures duplicate the number of planes in the sequence,

and are accordingly renamed as 6R and 18R, respectively

[16].

In addition to the usual austenite-to-martensite trans-

formation induced either by temperature or by the appli-

cation of stresses (e.g., b to 18R), Fig. 1 suggests that there

exists the possibility of a transition between the martensites

(e.g., 2H to 18R) only induced by stresses. Examples of the

such transformations can be found for Cu–Al–Ni [17–21],

Cu–Zn–Al [22–27], Cu–Al–Be [28, 29], Cu–Sn [30], and

Cu–Zn [22, 31].

In the experimental s versus T phase diagram of these

alloys, the phase field limit between 2H and 18R and/or

that between 18R and 6R, are roughly linear, and in most of

the cases show a small negative slope (see Table 1). A

comparison of the reported ds/dT values is shown in Fig. 2

for those cases which will be treated in the present study. It

should be emphasized that only the experimental data

obtained from transitions involving single variant phases

were selected, in order to diminish the risk of nucleation

occurring in additional sites. The measurements plotted in

Fig. 2 should therefore be considered as the most com-

patible with the bases of the thermodynamic model to be

developed in ‘‘Thermodynamic Modeling’’ section.

In view of the significant scatter in the ds/dT values in

Fig. 2, some authors have assumed that the probable slope

is zero [26]. Alternatively, others attempted to estimate an

entropy difference between the martensitic phases using

Eq. (1) [19, 27, 29]. In the latter cases, the resulting DStrans

values are small in magnitude and positive, but the value

DStrans = 0 is claimed to fall outside the experimental

scatter. Such discrepancy between assuming DStrans ¼ 0

or[ 0 has originated a long-standing controversy with two

important implications for the understanding of the

transformations in Cu-based shape-memory alloys. First,

thermodynamically, a first-order transition with DStrans ¼ 0

could not be induced by a change in temperature. This is

not the common situation for the MTs, where quantities

such as MS and T0 are used to discuss stability. As a second

consequence, a negligible value of the entropy difference

between martensitic phases has been related with an

entropy difference between austenite and martensite

(DSmart=aust) varying linearly only with the electron con-

centration [32]. Alternatively, the nonnegligible DStrans led

to a model for DSmart=aust dependent on the structure of the

martensite but not on composition [33]. This controversy is

still unresolved and motivates the following attempt to

shed some light on the discrepancies between the reported

DStrans values for the systems referred to in Fig. 2.

Scope of the Present Work

Specifically, in the present study, the evaluation of DStrans

from s versus T data will be reanalyzed by considering an

early remark by Olson and Cohen [34] about the impor-

tance of an accurate account of the strain contribution in

evaluating thermodynamic properties from both calori-

metric and mechanical testing experiments. Such method

of analysis has been recently applied by Laplanche et al.

[35] to the reorientation of martensitic variants in NiTi

alloys. Those authors analyzed the negative slope of the

stress–temperature curve in terms of a model based on

classical nucleation theory, and accounting for the varia-

tion of the elastic constants with temperature.

Inspired by these two [34, 35] enlightening contribu-

tions, in the following discussion and for Cu-based shape-

memory alloys, the possibility will be explored of (i)

deducing a more accurate relation between the experi-

mental slope ds=dT of MT data and the entropy difference

DStrans; (ii) using such relation to determine the most

probable DStrans values; and (iii) shedding some light on the

DSmart=aust controversy.

Thermodynamic Modeling

The MT occurs as a nucleation and growth process. The

latter is normally visualized as a macroscopic shear.

Notwithstanding, the very beginning of the nucleation

event is normally treated within the oblate-spheroidal-

embryo approach [36].

The pioneering study by Kaufmann and Cohen [36–38]

started a long tradition of thermodynamic studies of the

MT. The key conceptual strategy [39] is to express the

Gibbs energy change (DG) involved in the nucleation of a

martensitic embryo as the sum of interface (‘‘inter’’),

Fig. 1 Schematic phase diagram showing the relations between the

various phase fields of the martensitic phases typically found in Cu-

based alloys
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Table 1 Experimental

information on the applied

stress r versus temperature

T slopes for Cu-based shape-

memory alloys, reported by

various authors

Systems References Phases dr=dT

(MPa/K)

Tensile axis MS (K) s

Cu–Al–Ni [17] 18R ? 2H - 0.053 ½ 2 11 16 � 248 0.206

[18] 2H ? 18R - 0.416 ½ 1 3 20 � 306 0.466

18R ? 2H ? 0.014

18R ? 6R - 0.496 0.469

6R ? 18R ? 0.173

[19] 2H $ 18R - 0.206 ½ 1 3 20 � 308 0.466

18R $ 6R - 0.139 0.469

18R ? 6R - 0.174

[20] 18R ? 6R - 0.290 � ½ 0 0 1 � 268 0.496

6R ? 18R ? 0.100

[21] 18R ? 6R - 0.295 � ½ 0 0 1 � 276 0.496

18R ? 6R - 0.240 � ½ 0 0 1 � 281 0.496

18R ? 6R - 0.302 � ½ 0 0 1 � 243 0.496

Cu–Zn–Al [22] 18R ? 6R 0.175 � ½ 0 2 15 � 272 0.477

[23] 18R ? 6R - 0.627 � ½ 2 5 43 � 254 0.478

18R ? 6R - 0.165 � ½ 1 4 43 � 248 0.484

18R ? 6R - 0.244 � ½ 2 4 57 � 253 0.487

18R ? 6R - 0.203 � ½ 3 5 35 � 223 0.467

18R ? 6R - 0.231 � ½ 1 5 44 � 242 0.480

[24] 18R ? 6R - 0.459 ½ 5 8 13 � 263 0.208

[25] 18R ? 6R 0.00 ½ 2 5 57 � 246 0.484

[26] 2H $ 18R ? 0.35 ½ 6 10 43 � 270 0.429

2H $ 18R - 0.31 ½ 2 5 57 � 246 0.481

2H $ 18R - 0.56 ½ 1 1 3 � 223 0.357

2H $ 18R - 0.34 6 7 37½ � 200 0.441

2H $ 18R - 0.64 ½ 3 3 11 � 184 0.393

2H $ 18R (- 1.92) ½ 1 5 6 � 263 0.130

2H $ 18R - 0.38 ½ 6 20 63 � 237 0.400

2H $ 18R - 0.41 ½ 0 0 1 � 214 0.493

2H $ 18R ? 0.53 ½ 5 6 54 � 178 0.470

2H $ 18R - 0.86 11 26 64½ � 235 0.349

2H $ 18R (? 3.80) 5 6 16½ � 256 0.342

2H $ 18R ? 0.85 3 4 34½ � 229 0.469

2H $ 18R - 0.42 3 8 64½ � 195 0.472

[27] 2H ? 18R - 0.336 3 5 22½ � 276 0.432

18R ? 2H - 0.011

Cu–Al–Be [28] 18R ? 6R - 0.3 � 0 0 1½ � 263 0.496

[29] 18R ? 6R - 0.286 0 1 8½ � 296 0.479

6R ? 18R - 0.190

Cu–Sn [30] 18R ? 2H - 0.326 1 5 30½ � 180 0.463

18R ? 6R - 0.180 0.465

Cu–Zn [22] 18R ? 6R - 0.027 � ½3 5 8� 141 0.204

[31] 18R ? 6R - 0.51 not available 153 not available

18R ? 6R - 0.28 not available 153 not available

The values labeled 2H $ 18R and 18R $ 6R were determined as the average of the direct and reverse

transformations, and the values labeled 2H ? 18R, 18R ? 2H, 18R ? 6R , and 6R ? 18R correspond to

single transformations. The tensile axis, the austenite-to-martensite transformation temperature at zero

stress (MS) and the Schmid factor s, involved in the relation s ¼ sr; are given for each sample. The slope

values in parentheses are considered unrealistic and thus excluded from the present analysis
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elastic strain (‘‘elast’’), and chemical (or phase transfor-

mation, ‘‘trans’’) contributions:

DG ¼ DGinter þ DGelast þ DGtrans: ð2Þ

Among these contributions, DGinter is proportional to the

area (A) of the embryo, whereas DGelast and DGtrans are

proportional to its volume (V). By introducing quantities

expressing the interface contribution per unit area (Cinter)

and the elastic strain (Dgelast) and transformation (Dgtrans)

contributions per unit volume, Eq. (2) is usually [40]

written as follows:

DG ¼ ACinter þ VDgelast þ VDgtrans: ð3Þ

The Elastic Strain Contribution

The elastic strain contribution to DG in Eq. (3) for the

formation of a martensitic oblate-spheroidal embryo of

radius r and semithickness c is given by [41]

Dgelast ¼ Kelast c

r
; ð4Þ

where Kelast is

Kelast ¼ plð2 � mÞ
8ð1 � mÞ c2 þ pl

4ð1 � mÞ n
2: ð5Þ

In Eq. (5), m and l (G for some authors) are the Poisson

ratio and the shear modulus, respectively, for the matrix.

For the MT, the quantities c and n represent the shear in the

habit plane and the normal deformation, respectively. As

the MT in Cu-based alloys, to be treated in ‘‘Assessment of

DStrans for Cu-Based Shape-Memory Alloys’’ section,

implies no volume change, n = 0 will be assumed [3, 35]

and thus c represents the transformation shear strain.

Gibbs Energy of Formation

For the nucleation of a thin oblate-spheroidal embryo [36]

with V ¼ 4
3
pr2c and A � 2pr2; Eq. (3) becomes

DG ¼ 2pr2Cinter þ 1

6
p2rc2 lð2 � mÞ

ð1 � mÞ c2 þ 4

3
pr2cDgtrans:

ð6Þ

Even though the above equation considers the nucleation in

an elastically isotropic material, it has been successfully

used to describe the martensite reorientation process in the

anisotropic NiTi system [35]. Encouraged by these [35]

results, the present study will explore the applicability of

Eq. (6) to assess entropy differences for the MT in Cu-

based shape-memory alloys (‘‘Assessment of DStrans for

Cu-Based Shape-Memory Alloys’’ section). To this aim,

the following thermodynamic picture was developed.

Consider a martensite nucleus of a fixed size coexisting

in metastable equilibrium with the matrix at the start of the

MT. It will remain in such condition if the differential

changes in the quantities Cinter, l, m and Dgtrans do not

modify its Gibbs energy of formation. Mathematically this

corresponds to the condition d(DGÞ ¼ 0; which leads to the

following differential equation:

2pr2d Cinter
� �

þ 1

6
p2rc2 ð2 � mÞ

ð1 � mÞ c
2dl

þ 1

6
p2rc2 l

ð1 � mÞ2
c2dmþ 4

3
pr2cd Dgtransð Þ

¼ 0; ð7Þ

where d(Cinter), dl, dm, and d(Dgtrans) will be treated in the

next section.

Independent Variables and General Relations

The problem of establishing the dependencies of the

physical parameters upon the relevant variables of the

model is a frequent one. As an example, it is worth men-

tioning the case in [42], where an attempt to account for the

effect of sample size upon the various parameters within a

thermodynamic framework was hampered by the lack of

experimental information. A similar problem will be dealt

with in the following.

The differentials d(Cinter), dl, dm, and d(Dgtrans) will be

expressed in terms of the independent variables tempera-

ture (T) and force (f) as follows:

d Cinter
� �

¼ oðCinterÞ
oT

dT þ oðCinterÞ
of

df ; ð8Þ

dl ¼ dl
dT

dT; ð9Þ

Fig. 2 Experimental values for the slopes in the critical resolved

shear stress versus temperature plots in Cu–Al–Ni and Cu–Zn–Al

alloys. The specific transition between martensitic phases is indicated

at the bottom. The data stem from the measurements presented in

Table 1
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dm ¼ dm
dT

dT ; ð10Þ

and

d Dgtransð Þ ¼ �DStransdT � Dltransdf ; ð11Þ

where Dltrans is the actual length change expressed per unit

volume. Indeed, Dltrans depends on the shape of the trans-

formed region. This feature will be accommodated in the

present formalism by using the resolved stress s instead of

the applied force f [see Eq. (14)].

In Eqs. (9) and (10), the stress dependence of the elastic

constants has been neglected, on the basis of the observed

linearity in the stress–strain curve up to a 300 MPa stress,

which is typical of the Cu-based alloys considered in the

present study (see, e.g., [19]).

In Eq. (8) the factor q(Cinter)/qf will be neglected, as a

first approximation, in view of the lack of experimental

data.

A New s–T–DStrans Thermodynamic Relation

By inserting the previous results in Eq. (7), the following

condition is obtained:

6r

c

oðCinterÞ
oT

þ p
2
c2c

ð2 � mÞ
ð1 � mÞ

dl
dT

þ p
2
c2c

l

ð1 � mÞ2

dm
dT

� 4rDStrans

" #

dT

� 4rDltransdf ¼ 0

ð12Þ

which leads to the following relation

df

dT
¼

3
2c

oðCinterÞ
oT

þ p
8
c2 c

r

ð2�mÞ
ð1�mÞ

dl
dT

þ p
8
c2 c

r
l

ð1�mÞ2
dm
dT

� DStrans
h i

Dltrans
:

ð13Þ

Starting from this result, a new s–T–DStrans relation can be

derived by considering that

ds
dT

¼ s

A

df

dT
; ð14Þ

where s is the Schmid factor relating the tensile axis with

the crystallographic system for the shear in the habit plane,

A is the area of the cross section of the sample, and

Dltrans ¼ sc
l

V
ð15Þ

with l being the length of the sample. The Schmid factor

allows to connect the strains through e ¼ sc: By further

considering that V ¼ Al; Eq. (13) yields

ds
dT

¼ 3

2

1

c
1

c

oðCinterÞ
oT

þ p
8
c
c

r

ð2 � mÞ
ð1 � mÞ

dl
dT

þ p
8
c
c

r

l

ð1 � mÞ2

dm
dT

� DStrans

c
:

ð16Þ

Equation (16) is the most general result of the current

study for a transformation at constant pressure, which

reduces to Eq. (1) in two general cases: First, when (r/c)

and c increase so that the volume V ½¼ ðr=cÞ2
c3� approa-

ches the macroscopic limit, as expected. Second, when all

dependencies upon temperature are negligible.

Assessment of DStrans for Cu-Based Shape-Memory
Alloys

In the present section, the use of Eq. (16) to refine the

evaluation of DStrans from ds
dT

data in the MT between the

close-packed martensites in Cu-based shape-memory

alloys will be explored. To this aim, a thermodynamic

database including the engineering elastic constants (l and

m), their temperature dependence, the transformation shear

strain, and the interface Gibbs energy is developed in ‘‘The

Database with Experimental and Estimated Information’’

section. On these bases, specific forms of Eq. (16),

appropriate for Cu–Al–Ni and Cu–Zn–Al alloys are

reported in ‘‘The Specific s–T–DStrans Relation for Cu–Al–

Ni and Cu–Zn–Al’’ section.

The Database with Experimental and Estimated

Information

Elastic Constants and Their Temperature Dependencies

The elastic constants Cij of the close-packed 2H structure

in Cu–Al–Ni have been measured as a function of tem-

perature by [43]. Similar measurements for the 18R

structure in Cu–Zn–Al can be found in [44]. These elastic

constants are considered to be representative of those for

the compact martensitic phases in each alloy, independent

of the structure (2H, 18R, 6R). The elastic constants cor-

respond to the reference system drawn as red squares in

Fig. 3. In this plot, the stereographic projection and the

Miller indices in black correspond to austenite, and the

stereographic triangle indicates the location of the tensile

axes which, in traction, can induce the transformation

between the latter structures. It is drawn as blue crosses in

an arbitrary orthogonal coordinate system with the tensile

axis aTA as a first axis.

Starting with the single-crystal elastic constants, an

estimation has to be made of the engineering constants m, l

Shap. Mem. Superelasticity (2019) 5:136–146 141
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and their temperature dependencies in the martensite.

Instead of using the Voigt or Reuss averaging procedures,

an attempt was made to specifically account for the

nucleation of martensite in the MT between compact

structures. This process takes place as a shear deformation

in a plane orthogonal to the c axis, in the direction a of the

martensite (see red squares in Fig. 3). In this way, the

constant l can be identified with the elastic constant C55. In

order to define the Poisson ratio, the guidelines in [45] were

accepted by making

m ¼ � eO

eT

; ð17Þ

where eT is the strain along the tensile direction and eO is

the strain in an orthogonal direction relative to the tensile

axis in the coordinate system drawn as blue crosses in

Fig. 3. It should be remarked that although the tensile axis

(aTA) is well defined, the choice of the remaining axes bTA

and cTA is arbitrary. This coordinate system allows to

calculate two values for m. By rotating around aTA, it is

found that the average of the two m values as well as its

temperature dependence are independent of the choice of

bTA and cTA, i.e., unique m and dm/dT values can be

determined.

The behavior of m and dm/dT for the Cu–Al–Ni and Cu–

Zn–Al martensites, as calculated from the previous model

and referred to the usual stereographic triangle for tensile

axes in the austenitic coordinate system, is presented in

Fig. 4. In the Cu–Al–Ni system, a maximum of 0.45 for m
occurs in the neighborhood of the 0 1 2½ � austenite axis

and decreases to 0.32 for the �1 1 1½ � direction (Fig. 4a). In

the Cu–Zn–Al martensite, m shows a maximum of 0.41 for

the 0 0 1½ � austenite axis and decreases to 0.28 when

approaching the �1 1 1½ � direction (Fig. 4b). Furthermore, in

Cu–Al–Ni, dm/dT increases when approaching the direction

0 0 1½ � (Fig. 4c) and the contrary occurs for Cu–Zn–Al

(Fig. 4d). In any case, the effect of temperature upon m is

small. In order to estimate the values involved in the

Eq. (16), the reported tensile axes (Table 1) were adopted.

The room-temperature elastic constants of the 2H

structure for Cu–Al–Ni alloys with two different compo-

sitions have also been reported in [46, 47]. The values

reported in [46] lead to a dependence of m upon the choice

of the tensile axis similar to that shown before. On the

contrary, the elastic constants reported in [47], for an alloy

with the lowest Ni content, lead to values of m behaving

similar to Cu–Zn–Al alloys, with a maximum for the ten-

sile axis at 0 0 1½ �: Such discrepancy cannot be

explained in terms of the changes in composition or elec-

tronic concentration in the material. Nevertheless, the so-

obtained values of m and l do not differ significantly from

those obtained with the first set of elastic constants [43].

Transformation Shear Strain

For the transformation from 18R to 6R, or from 2H to 18R,

which occurs on the basal plane, the strain is given by [26]

cA=B ¼ 1
ffiffiffi
2

p 2w2 � 1

w
aA � aBð Þ; ð18Þ

where aI are the corresponding stacking fault densities:

a2H = 0.5, a6R = 0, and a18R = 0.346 [48]. The value of w
is connected to the austenite-to-martensite transformation

temperature at zero applied stress (MS) [49] through

w ¼ MS ðKÞ þ 6590

7320
ð19Þ

using the reported MS values presented in Table 1.

Temperature Dependence of the Interface Gibbs Energy

Direct measurements of the temperature dependence of

Cinter for the systems of interest in the present study were

not found in the literature. As a consequence, preliminary

estimations were adopted, which were based on measured

values of the temperature dependence of the solid/gas

surface energy for the elements [50]. Specifically, a

weighted average of such quantities, corresponding to the

representative compositions Cu–27.3 at.% Al–3.7 at.% Ni

and Cu–12.8 at.% Zn–17.6 at.% Al, yielded

oðCinterÞ
oT

¼ �0:23 mJ=m2 K ¼ �0:00023 Pa m=K: ð20Þ

Fig. 3 Stereographic projection along [0 0 1] for the austenite. The

main axes (a, b, c) of the stress-induced martensitic variant are shown

as red squares. The blue crosses represent an arbitrary coordinate

system related to the tensile axis (aTA) located in the usual

stereographic triangle. See text for details (Color figure online)
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Estimation of the Nucleus Characteristic Parameters

For the evaluation of the semithickness c and the radius r of

the nucleus, the values c* and r*, respectively, corre-

sponding to a critical embryo, were obtained by applying to

Eq. (6) the usual conditions oDG
oc

� �
r
¼ 0 and oDG

or

� �
c
¼ 0

[51, 52]. This yields

c� ¼ � 2Cinter

Dgtrans
; ð21Þ

r� ¼ 4KelastCinter

ðDgtransÞ2
: ð22Þ

Due to the lack of direct measurements of Cinter, esti-

mated values had to be used. The value Cinter ¼ 200 mJ=m2

has been adopted in [37] as typical for solid metallic

phases. Similarly, the surface energy correlations given by

Chalmers [53] suggest for Cu and some Cu alloys a

somewhat larger value, viz., Cinter ¼ 250 mJ=m2: The

average Cinter ¼ 225 mJ=m2 was used for the estimate of

the nucleus characteristic parameters.

The estimation of Dgtrans was based on the results for the

Cu–Zn–Al system reported in [26]. Specifically, the

enthalpy change was found to present a hysteresis inde-

pendent of composition and dependent on the transition,

implying Dgtrans ð2H=18RÞ ¼ �2:9 MJ=m3 and

Dgtrans ð18R=6RÞ ¼ �6:3 MJ=m3:

Applying a similar procedure to the results for a single

Cu–Al–Ni alloy [54] yields Dgtrans ð2H=18RÞ ¼
�5:6 MJ=m3 and Dgtrans ð18R=6RÞ ¼ �11:7 MJ=m3:

The Kelast values defined in Eq. (5) were evaluated using

n = 0, the elastic constants (‘‘Elastic Constants and Their

Temperature Dependencies’’ section), and the transforma-

tion shear strain (‘‘Transformation Shear Strain’’ section).

The c and r values obtained by inserting the given

information in Eqs. (21) and (22) were used to apply

Eq. (16) in the following section.

The Specific s–T–DStrans Relation for Cu–Al–Ni

and Cu–Zn–Al

By inserting the measured and estimated data discussed

above, the values of the first three terms in Eq. (16) (la-

beled A, B, and C, respectively) and their sum

X ð¼ A þ B þ CÞ, such that

ds
dT

¼ X� DStrans

e
ð23Þ

were evaluated. The results indicate that the least important

contribution (labeled C) originates in the temperature

dependence of m. As C is the only positive term con-

tributing to X, the latter adopts negative values.

The X terms calculated for the Cu–Al–Ni and Cu–Zn–

Al alloys reported in Table 1 are shown in Fig. 5, distin-

guishing the data for 2H to 18R from those for 18R to 6R

Fig. 4 Calculated mean values

of the Poisson ratios m for a Cu–

Al–Ni and b Cu–Zn–Al

martensites presented in the

usual austenitic stereographic

triangle. In a similar way is

presented the temperature

dependence of the Poisson

ratios for c Cu–Al–Ni and

d Cu–Zn–Al. See text for details
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transformations. The X values cluster at specific regions,

different for each alloy and transition. The behavior of X
when varying the characteristic parameters of the nucleus

is presented as lines in Fig. 5, taking for the remaining

parameters their mean values in each of the clustering

regions. It can be seen that on increasing the r/c value, X
decreases asymptotically in magnitude to a constant value.

The calculation also shows that for a constant the r/c ratio,

the magnitude of the X term increases with the decrease of

the c value.

Another case of interest is that of the squares in Fig. 5,

where small variations of the sizes would lead to drastic

changes in the X values. In such conditions, the start of the

transition will be highly dependent on the experimental

conditions. Hence, a wide range of variation in the mea-

sured ds=dT might be expected.

Assessment of DStrans

In this section, Eq. (23) with the X values in Fig. 5 will be

used to evaluate DStrans from the available measurements of

ds=dT (Fig. 2). As usual in this field, the entropy differ-

ences will be expressed per mol as DStransVm; where Vm is

the molar volume [32]. The resulting entropy differences

(full symbols in Fig. 6) are compared with those obtained

by the application of Eq. (1) (open symbols in Fig. 6). In

both plots a similar scatter can be observed. However, the

X term shifts the experimental cloud to more negative

values, making the mean value to fall on DStrans ffi 0: In

other words, the comparison made in Fig. 6 suggests that

the magnitude of DStrans given by Eq. (1) is overestimated.

A similar situation might also occur in the 18R/6R

transformations in Cu–Al–Be and Cu–Zn, as for the tran-

sitions in Cu–Sn, reported at the end of Table 1. Unfortu-

nately, the lack of experimental data on their elastic

properties impeded the proper evaluation of DStrans for

these alloys.

It should be mentioned, that Wang et al. [55] have

modified the CC equation in order to treat various phe-

nomena occurring at the nanoscale in a multifunctional

titanium alloy. Beyond the formal similarities with

Eq. (16), their approach is conceptually different from the

present one, since they intend to represent a stress versus

temperature behavior involving three linear ranges. Their

phenomenological model does not offer a direct method to

estimate entropy differences between the phases involved

in MTs.

The present study calls the attention upon the need to

take into account the nucleation process when handling the

measured ds/dT values, before making further physical

interpretations.

Turning now to the controversy concerning the structure

or composition dependence of the average entropy differ-

ence between the austenite and martensite, DSmart=aust; the

present finding, DStrans ffi 0 for several transformations

between martensitic structures and alloy systems, lends

support to the early suggestion of DSmart=aust being inde-

pendent of the structure of the martensite [26].

Concluding Remarks

Equation (16) expresses the new material-specific relation

between DStrans and the slope of the experimental s versus

T plots. Instead of the simple proportionality usually

adopted following the CC-type relation, the new relation,

viz., ds
dT

¼ X� DStrans

c ; includes a term (X) involving,

among other parameters, the engineering elastic constants

and their temperature dependence. Admittedly, the use of

Fig. 5 Calculated X values as the sum of the three first terms at the

right hand side in Eq. (16) for the transitions and alloys presented in

Table 1. The lines correspond to the variation of X as a function of

the r/c variable under constant remaining parameters

Fig. 6 Entropy differences per unit volume ðDStrans � VmÞ for the

stress-induced transformation between martensitic structures obtained

from Eq. (16) (full symbols) and Eq. (1) (open symbols). The specific

transition between martensitic phases is indicated at the bottom
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this relation requires additional experimental information,

which in many cases is unfortunately not available.

In spite of the approximations necessitated by the lack

of direct measurements, the present results indicate that the

incorporation of the X term might critically affect the

evaluation of DStrans for the key MT in Cu-based shape-

memory alloys, i.e., the 2H/18R and 18R/6R transforma-

tions in Cu–Al–Ni and Cu–Zn–Al shape-memory alloys.
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13. Auguet C, Isalgué A, Lovey FC, Martorell F, Torra V (2007)

Metastable effects on martensitic transformation in SMA. Part 4.

Thermomechanical properties of CuAlBe and NiTi observations

for dampers in family houses. J Therm Anal Calorim 88:537–548

14. Kockar B, Karaman I, Kim JI, Chumlyakov YI, Sharp J, Yu

(Mike) C-J (2008) Thermomechanical cyclic response of an

ultrafine-grained NiTi shape memory alloy. Acta Mater

56:3630–3646

15. Olbricht J, Yawny A, Pelegrina JL, Dlouhy A, Eggeler G (2011)

On the stress-induced formation of R-phase in ultra-fine-grained

Ni-rich NiTi shape memory alloys. Metall Mater Trans A

42:2556–2574

16. Delaey L, Chandrasekaran M (1995) Nomenclature of marten-

sites in b-phase alloys. J Phys IV Colloq C2 suppl J Phys III

5(C2):251–256

17. Otsuka K, Sakamoto H, Shimizu K (1975) Martensitic transfor-

mations between martensites in a Cu–Al–Ni alloy. Scr Metall

9:491–498

18. Shimizu K, Sakamoto H, Otsuka K (1978) Phase diagram asso-

ciated with stress-induced martensitic transformations in a Cu–

Al–Ni alloy. Scr Metall 12:771–776

19. Otsuka K, Sakamoto H, Shimizu K (1979) Successive stress-

induced martensitic transformations and associated transforma-

tion pseudoelasticity in Cu–Al–Ni alloys. Acta Metall

27:585–601

20. Sakamoto H, Shimizu K (1987) Pseudoelasticity due to consec-

utive b1 ¢ b1

0
¢ a1

0
transformations and thermodynamics of the

transformation in a Cu–14.4Al–3.6Ni alloy. Trans JIM

28:715–722

21. Sakamoto H, Nakai Y, Shimizu K (1987) Optimization of com-

position for the appearance of pseudoelasticity due to consecutive

b1 ¢ b1

0
¢ a1

0
transformations in Cu–Al–Ni alloy single crys-

tals. Trans JIM 28:765–772
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44. Gonzàlez-Comas A, Mañosa L, Planes A, Lovey FC, Pelegrina

JL, Guénin G (1997) Temperature dependence of the second-

order elastic constants of Cu–Zn–Al shape-memory alloy in its

martensitic and b phases. Phys Rev B 56:5200–5206

45. Rovati M (2003) On the negative Poisson’s ratio of an

orthorhombic alloy. Scr Mater 48:235–240

46. Sedlák P, Seiner H, Landa M, Novák V, Šittner P, Mañosa L
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