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Abstract It is well known that plastic deformations in

shape memory alloys stabilize the martensitic phase. Fur-

thermore, the knowledge concerning the plastic state is

crucial for a reliable sustainability analysis of construction

parts. Numerical simulations serve as a tool for the realistic

investigation of the complex interactions between phase

transformations and plastic deformations. To account also

for irreversible deformations, we expand an energy-based

material model by including a non-linear isotropic hard-

ening plasticity model. An implementation of this material

model into commercial finite element programs, e.g.,

Abaqus, offers the opportunity to analyze entire structural

components at low costs and fast computation times. Along

with the theoretical derivation and expansion of the model,

several simulation results for various boundary value

problems are presented and interpreted for improved con-

struction designing.

Keywords Martensite � NiTi\materials � Mechanical

behavior � Shape memory � Superelasticity � Stress-induced
martensitic transformation

Introduction

Shape memory alloys possess unique properties which are

referred to as the pseudo-elastic (or austenitic) and the

pseudo-plastic (or martensitic) material behavior. In con-

trast to other metallic materials, shape memory alloys are

able to undergo a martensitic phase transformation not only

during thermal loading but also during mechanical loading.

The macroscopic effects of this evolution of microstructure

are strains up to 8% which are reversible (for the austenitic

behavior) or vanish after moderate heating and cooling of

the material (for the martensitic behavior) (see, e.g., [1–3]).

This characteristic makes shape memory alloys rather

unique for metallic materials and allow for various appli-

cations such as medical devices, automotive, and aviation

among which the medical sector is probably the most

important one. A prominent example of industrial con-

struction parts made of shape memory alloys are stents

which allow for a healing of congested blood vessels

without use of bypass surgeries.

Although the properties of shape memory alloys offer a

huge variety of applications, the thermomechanically

coupled material behavior, which influences also manu-

facturing, complicates a prediction of the functionality of

the final construction part under realistic boundary condi-

tions. Modern modeling techniques along with numerical

simulations support this complex engineering process in a

time- and cost-efficient way. There are several material

models for shape memory alloys available, e.g., [4–11] to

mention just a few. For the material model proposed in

[12–14] it could be demonstrated in [15] that all model

parameters can be expressed in terms of energetic quanti-

ties which allowed for a prediction of the mechanical

material behavior while being calibrated solely on thermal

experiments. This model property gives rise to the valid
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expectation that the numerical experiments are realistic and

close to testing results also for arbitrarily complex con-

struction parts. To be applicable also to further problems in

which plastic deformations are present, the material model

is expanded now by plastic effects including non-linear

isotropic hardening.

Several works on the inclusion of plastic defects into the

modeling of shape memory alloys already exist. For

instance, Wang and coauthors presented in [16] a

micromechanically motivated material model which

includes also effects of pretexture. They simulated the pre-

texture by varying crystal orientation in each finite element.

Although yielding interesting results, they only presented

results for the austenitic (= pseudo-elastic) case and no

thermal loading case. Furthermore, the varying orientation

for each finite element complicates the application of the

model to industrially relevant problems. Another energy-

based formulation was presented by Hartl and Lagoudas in

[17] which was implemented into Abaqus to perform

sophisticated simulations and compare them to experimental

results with convincing agreement (see also the preceding

model in [18]). This model was also limited to the pseudo-

elastic case. Lu and Weng presented one of the first self-

consistent models for shape memory alloys including plastic

effects in 1998, see [19]. Again, no pseudo-plastic (=

martensitic) material behavior could be captured by this

model. A model which accounts on the irrecoverable strains

due to cyclic loading was presented by Yu and coauthors in

[20]. They investigate the modeling of the effect of an

evolving shape of the hysteresis for cyclic loadings. Due to

the formation of dislocations during phase transformation,

local stress peaks stabilize themartensite phase which favors

the phase transition in the next loading step. This interesting

and important effect, however, is beyond the scope of this

contribution. Here, we focus on the plastic deformation

which is present after stresses reach a critical value when

following the elastic branch after the stress plateau in a

stress/strain diagram. Waimann et al. expanded the original

model on which the current contribution is based on in [21]

to model the cyclic behavior of shape memory alloys.

The evolution of plastic deformations is not only an

interesting ‘‘side information.’’ In contrast, it is known that

plastic deformations stabilize the martensitic phase which,

in turn, has a remarkable influence on the macroscopic

behavior of construction parts. Thus, we begin with the

theoretical derivation of the material model including non-

linear isotropic hardening. Afterwards, we present several

application examples, starting with tensile tests at various

temperatures, proceeding with a plate with notch, and

ending with a thermomechanically coupled simulation of a

stent including large deformations and contact boundary

conditions. We close our work with conclusions and an

outlook.

Material Model

The model roots back to the one presented in [12]. The

principal idea of the model is the introduction of a set of

internal variables, volume fractions for the individual

crystallographic phases, and Euler angles for the parame-

terization of the martensite strain orientation that describes

the load-dependent microstructural state in shape memory

alloys. The model was further condensed in [13]. Here, a

scheme for easy model calibration based on stress/strain

diagrams was also given (see also [14]). The entire model

was formulated solely in energetic quantities, i.e., in terms

of the Helmholtz free energy W and a dissipation function

D which accounts for the dissipative character of phase

transformations. It turned out that this energy-based for-

mulation provides a rather universal character: experi-

mental digital scattering calorimetry (DSC) measurements

allow for the estimation of the latent heat and deductively

of the caloric part of the Helmholtz free energy. Theoret-

ical investigation of the model equations showed that the

caloric part of the Helmholtz free energy and the dissipa-

tion function are linked. In the end, this allowed for a

complete model calibration based on DSC measurements.

Subsequent comparison of numerical prediction of the

mechanical behavior, i.e., force/displacement diagrams, to

their experimental counterparts revealed an extraordinary

good agreement without further model fitting or compa-

rable. This energy-based model was thus considered to

possessing a rather universal applicability, see [15]. In this

contribution, we start from this model and expand it to

account for irreversible deformations including effects of

non-linear isotropic harding.

For the model derivation, the principle of the minimum

of the dissipation potential is employed. This principle

results as a special case from the Hamilton principle (see

[22, 23]), for absent gradients of internal variables. It is

generally formulated as

L :¼ _WþDþ cons ! stat
_t
; ð1Þ

with the rate of the Helmholtz free energy _W, the dissi-

pation function D , and model specific constraints cons.

The Lagrange function L is evaluated at its stationary point

with respect to the rate of the generalized internal variable

_t. If gradients of the internal variable are included, the

more general form of the Hamilton principle has to be

used. An example for this case was presented in [24] for

evolutionary topology optimization.

Following [12, 13], two quantities are used as internal

variables which describe the microstructural state: on the

one hand, volume fractions for the crystallographic phase

austenite and variants of martensite are introduced, all

collected in the vector k with k0 indicating the austenite
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phase and ki, 0\i� n for the ith martensitic phase

(n indicates the maximum number of martensitic phases

considered). On the other hand, industrial shape memory

alloys are polycrystals for the vast majority of applications.

Since the polycrystalline material behavior differs signifi-

cantly from the single crystal, the orientation distribution

function of martensite strain has to be taken into account.

To this end, a dynamic evolution of the orientation distri-

bution function has been proposed in [12]. It has been

proven beneficial to introduce Euler angles a ¼ fu; m;xg
which serve also as internal variables. This modeling

approach is now expanded by irreversible deformation

effects. The irreversible deformations are considered in

terms of plastic strains ep while the hardening behavior is

described in terms of a hardening variable ah. The set of

internal variables is consequently extended, i.e.,

t ¼ fk; a; ep; ahg.
For the application of the minimum of the dissipation

potential, it is necessary to define the Helmholtz free

energy, the dissipation function, and the constraints. There

are no constraints to be considered for the Euler angles. On

the other hand, the volume fractions have to fulfill mass

conservation which is put into formula by

Xn

i¼0

ki ¼ 1 ,
Xn

i¼0

_ki ¼ 0 : ð2Þ

Furthermore, only non-negative values for the volume

fractions can be interpreted physically, meaning

ki � 0 8i : ð3Þ

There is one constraint for the plastic strains, precisely the

evolution of plastic strains is volume-preserving, i.e., the

plastic strains are traceless, yielding

X3

j¼1

ep;jj ¼ 0 ,
X3

j¼1

_ep;jj ¼ 0 : ð4Þ

The last constraint effects the hardening variable ah. The
physical process that causes the macroscopic hardening

phenomenon is the evolution of dislocations, termed �q.
Without modeling their evolution in detail, it may be

assumed that there exist a proportional relation between

the evolution of dislocations and the hardening variable.

Additionally, the plastic strains also describe effects caused

by dislocations in a ‘‘condensed’’ way. It is thus convenient

to postulate _�q / _ah � j _epj , � _ah þ j _epj � 0 which is

ensured by the Kuhn–Tucker parameter c2, defined by

c2 ¼
�c2 : � _ah þ j _epj[ 0

0 : else

�
ð5Þ

For the inclusion of all constraints, Kuhn–Tucker [c for

Eq. (3) and c2 for the constraint in Eq. (5)] and Lagrange

[bT for Eq. (2) and bP for Eq. (4)] parameters are used,

respectively,

L ¼ _WþDþ bT
X3

i¼0

_ki � c � _kþ bP
X3

j¼1

_ep;jj þ c2ð� _ah þ j _epjÞ ! min
_k; _a; _ep; _ah

:

ð6Þ

The dissipation function D has to be chosen in a way that

the resulting evolution equation is of the desired type, e.g.,

rate-independent, rate-dependent (= viscous), or elasto-

viscoplastic. The evolution of the plastic strains is assumed

to evolve in a rate-independent fashion which demands a

contribution of the rate of the plastic strains to the dissi-

pation function which is homogeneous of order one. The

evolution of the Euler angles is assumed to be rate-de-

pendent for sake of simplicity, whereas the evolution of

volume fractions is assumed to evolve in an elasto-vis-

coplastic manner (see [13]). This results in

D ¼r1j _kj þ
r2

2
j _kj2 þ ra

2
jjXjj2 þ rpj _epj

¼r1j _kj þ
r2

2
j _kj2 þ ra

2
_u2 þ _m2 þ 2 _u _x cos mþ _x2

� �
þ rpj _epj

ð7Þ

with the skew-symmetric matrix of angular velocities X
and dissipation parameters r1; r2; ra; rp.

Finally, the Helmholtz energy has to be specified. For

each crystallographic phase, it is assumed to be quadratic

in the elastic strains and to be contributed by caloric

effects. This yields

�Wi ¼
1

2
ei � QT � gi � Q� ep
� �

: Ei : ei � QT � gi � Q� ep
� �

þ ciðhÞ :

ð8Þ

Here, ei denotes the total strain in the respective phase. The

quantity gi is the transformation strain, Q ¼ QðaÞ is the

rotation matrix, ep is the plastic strain (which is constant for

the entire material point but evolves during loading), Ei is

the stiffness tensor, and ciðhÞ is the temperature-dependent

caloric energy. The energy for each phase is homogenized

via relaxation, meaning

�W ¼ inf
ei

Xn

i¼0

ki �Wi

�����
Xn

i¼0

kiei ¼ e

( )
: ð9Þ

Skipping the detailed calculation and just presenting the

result gives

�W ¼ 1

2
e� QT � �g � Q � � ep
� �

: E e� QT � �g � Q� ep
� �

þ �cðhÞ ð10Þ

with the effective quantities
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�g ¼
Xn

i¼0

kigi ; �E ¼
Xn

i¼0

kiE
�1
i

" #�1

; �cðhÞ ¼
Xn

i¼0

kiciðhÞ

ð11Þ

More details can be found in [12, 13]. The total Helmholtz

free energy consists of �W and a hardening contribution,

termed Wh:

W ¼ �WþWh : ð12Þ

Inserting the relaxed energy W, see Eq. (10), and the dis-

sipation function according to Eq. (7), into the principle of

the minimum of the dissipation potential in Eq. (6) yields

the stationarity conditions

oL
o _ki

¼ 0 ¼ �pT;i þ r1
_ki
j _kj

þ r2 _ki þ bT � c ð13Þ

oL
o _a

¼ 0 ¼ �pa þ raobjI _a ð14Þ

oL
o _ep

¼ 0 ¼ �pP þ rp
_ep
j _epj

þ bPI þ c2
_ep
j _epj

ð15Þ

oL
o _ah

¼ 0 ¼ �ph � c2 : ð16Þ

Here, the driving forces for the volume fractions

pT;i :¼ �oW=oki, the Euler angles pa :¼ �oW=oa, the

plastic strains pP :¼ �oW=oep, and the hardening variable

ph :¼ �oW=oah have been introduced. The inverse objec-

tivity operator is defined as

objIg ¼ objI

g1

g2

g3

0
BB@

1
CCA :¼

g1 � g3 cos#

g2

g3 � g1 cos#

0
BB@

1
CCA : ð17Þ

Equation (13) can be transformed to the evolution equation

for the phases

_k ¼ 1

r2
jdevApTj � r1½ �þ

devApT
jdevApTj

ð18Þ

with ½x�þ :¼ ðxþ jxjÞ=2 and the active deviator devApT :

¼ pk � In
1
nA

P
j2A pT;j where the active set A ¼

ijki 6¼ 0f g [ fijki ¼ 0 ^ _ki [ 0g has been defined. The

quantity nA is the number of active phases and In is the

one-vector of length n. For more details, we refer to [13].

For an improved numerical treatment, an adaptive viscosity

r2 is chosen according to

r2 ¼ �jdevApTj�2
devApT �

odevApT
ok

� devApT
� ��1

: ð19Þ

The evolution equation for the Euler angles can be derived

from Eq. (14) as

_a ¼ 1ffiffiffi
2

p
rað1� cos2 #Þ

obj pa ð20Þ

with the objectivity operator

obj g ¼ obj

g1

g2

g3

0
BB@

1
CCA :¼

g1 � g3 cos#

g2ð1� cos2 #Þ

g3 � g1 cos#

0
BB@

1
CCA : ð21Þ

It remains to calculate the evolution equation for the plastic

strains from Eq. (15). First, summation of all components

with identical indices gives

�tr pP þ 3bP ¼ 0 , bP ¼
1

3
tr pP ; ð22Þ

where the constraint according to Eq. (4) has been

employed. Hence, Eq. (15) transforms to

_ep ¼
j _epj

rp þ c2
r� 1

3
I : r

� �
¼ j _epj

rp þ c2
devr :¼ qp devr

ð23Þ

with the stress deviator devr. The (positive) pre-factor qp :
¼ j _epj=ðrp þ c2Þ� 0 is identified as consistency parameter

and a Legendre transform of the dissipation function with

respect to _ep results in the associated yield function

U :¼ jdevrj � ðrp þ c2Þ�
!
0 ð24Þ

and the Karush–Kuhn–Tucker conditions qp � 0, U� 0,

qpU ¼ 0, see e.g., [25]. Still, the evolution of _ah as well as
the Lagrange parameter c2 need to be specified. To this

end, let us evaluate Eq. (16) resulting in

c2 ¼
oW
oah

: ð25Þ

Furthermore, we assume that the maximum plastic strains

possible evolve for a given rate of the dislocations

( _ah ¼ j _epj) yielding

_ah ¼ qp rp þ
oW
oah

	 

: ð26Þ

For the hardening energy Wh we propose the following

approach

Wh ¼
1

2
k1a

2
h þ

1

b
ah k1 � k0ð Þ þ k0 � k1

b
e�bah

	 

ð27Þ

with the initial and end slope of the hardening curve, k0 and

k1, respectively, and the exponential parameter b which

controls the transition from k0 to k1. The yield function

including hardening thus reads (with rp being the initial

deviator norm of the yield stress)
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U ¼ jdevrj � rp þ k1ah þ
1

b
ðk1 � k0Þ e�bah � 1

� �	 

:

ð28Þ

The material parameters which control the plastic behavior

of the material, that are k0, k1, b, and rp, are presented here

as temperature-independent quantities. This, however, does

not limit the generality of the model: all parameters may be

replaced by temperature-dependent functions. In this con-

tribution, in which the approach is presented for the first

time, we use temperature-independent values in Sect. 4.

From the evolution equation for the plastic strains in

Eq. (23), it can be seen that ep evolve in the direction of the

stress deviator (which is of usual fashion for plasticity).

Since the transformation strain depends on the current

orientation, given in terms of the Euler angles a, the very

same holds true for the stresses. Thus, the plastic strains

evolve not only dependent on the direction of the (local)

load direction but also dependent on the current martensite

strain orientation.

Algorithmic Implementation

The material model consists of four differential equations

which describe the evolution of the four internal variables

k, a, ep, and ah. For the solution of such (coupled) systems

of differential equations, there exists various strategies for

finding an approximate solution. We perform for each

variable a ‘‘consistent linearization’’ from a broken Taylor

expansion, meaning

nnþ1 � nn þ on

ot

����
n

Dt ; ð29Þ

where nþ 1 denotes the current and n the previous time (=

load) step. The quantity n is one of the time-dependent

variables to be calculated. The derivative on=ot is nothing

but the rate of the respective variable. It holds for each

evolution equation _n � Dn=Dt. The second term in Eq. (29)

hence becomes Dton=otjn � Dnn. Thus, we update

according to the following (explicit) scheme

knþ1 ¼kn þ Dkn; enþ1
p ¼ enp þ Denp

anþ1 ¼an þ Dan; anþ1
h ¼ anh þ Danh :

The increments Dnn are given by the evolution equations

and the superscript n indicates that they are evaluated for

the current time step nþ 1 using the (given and fixed)

values from the previous time step n. Furthermore, we

perform same linearization for the stresses and apply an

operator split for the stresses in terms of the Euler angles:

for each time step, we fix the Euler angles for the com-

putation of the stresses, i.e., r ¼ rðe; k; epÞ, and update a

independently. The rate of the stresses is thus given (in

Voigt notation) by

_r ¼ or

oe
� oe
ot

þ or

ok
� ok
ot

þ or

oep
� oep
ot

; ð30Þ

such that the linearization according to Eq. (29) yields

rnþ1 ¼ rn þ or

oe

����
n

�Den þ or

ok

����
n

�Dkn þ or

oep

����
n

�Denp : ð31Þ

The individual derivatives of the stress read (see also [14])

or

oe

����
n

¼ �Ejn; or

oep

����
n

¼ ��Ejn;

or

oki

����
n

¼ � opT;i

oe

����
n

¼ � QT � gi � Qþ E�1
i : r

� �
: �E

� �n
:

The computation of the tangent, which is necessary for a

finite element implementation, is due to the consistent

linearization very simple. For instance, the Abaqus tangent

is defined as

C :¼ oDr
oDe

¼ð31Þor
oe

����
n

¼ �Ejn : ð32Þ

This implementation follows an explicit Euler procedure

which possesses the drawback of being numerically

unstable for large time steps. We therefore limit the times

steps to 1% of the maximum load (which holds true for

mechanical and thermal loads). As can be seen in the

numerical results, we obtain very smooth and stable solu-

tions with an exceptionally good convergence behavior

although we employ an explicit update. Therefore, we

consider this procedure to be more beneficial for complex

problems than an implicit update scheme, for instance,

which renders to be very complex for the current material

model due to the complicated constraint for the volume

fractions k: the active set may be regarded as a non-dif-

ferentiable function whose derivative is still necessary for

an implicit procedure. Details on a different numerical

implementation of the original model can be found in [14].

Numerical Results

For all simulations, we used the set of parameters given in

Table 1 of which the parameters of the original model are

taken from the calibration presented in [13, 14]. We present

results for different boundary value problems: we start with

a simple tensile test for a first understanding of the model

results. Afterwards, we proceed with a plate with notch

which shows the stabilizing effects of irreversible strains

on the martensite phase. Finally, we present a result for a

stent which is crimped in a first loading step at –10 �C in a

martensitic configuration, heated later to body temperature
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of 37 �C, and finally deployed at the very same tempera-

ture. The material model is implemented both into FEAP

and Abaqus and shows in both finite element programs a

fast convergence behavior by also being extremely stable.

Tensile Tests

In anticipation of the temperatures investigated for the stent

simulation, we present tensile tests for –10, 20, and 37 �C
for loading and unloading to zero strains. They are given in

Fig. 1.

The material model describes the temperature-dependent

behavior without further modifications in an accurate way:

at low temperatures (–10 �C), the martensitic behavior is

present with a pseudo-plastic stress/strain response exhibit-

ing the typical negative stress during unloading. At high

temperatures (37 �C), the austenitic behavior is present,

whereas at a temperature close to the Af temperature (20

�C) still the austenitic behavior is present but with a stress

close to zero during unloading. All results show the clear

plastic response at high strains yielding a non-linear transi-

tion into a second stress plateau which is caused by the

evolution of plastic deformations. This effect is also visible

during unloading: whereas a pure austenitic (= pseudo-

elastic) behavior would yield zero stresses for zero strains

after unloading, the evolution of plastic strains causes well-

known eigen-stresses which appear as negative stress values

even for the pseudo-elastic behavior. A clear indicator for a

reduction of the plastic strains is the negative stress plateau

at 37 �C.

Plate with Notch

As a more sophisticated example, we present simulation

results for a plate with notch under tension in vertical

direction at 37 �C. The notch will not evolve in a dynamic

way so that no crack propagation is investigated. One finite

element is chosen in thickness direction. The total number

of tri-linear elements is 720 with 1526 nodes. The global

material reaction is given in terms of a force/displacement

diagram shown in Fig. 2. It can be seen that during phase

transformation and evolution of plastic strains, a distinct

change in the slope of the curve is present. This, however,

does not form a perfect plateau due to the localized

microstructural evolution. After unloading, a small per-

manent deformation remains. This is well in agreement to

the distribution of plastic strains, shown in Fig. 3.

At the tip of the notch, stress peaks are present which

trigger an evolution of plastic deformations. They exhibit a

dog bone shape at maximum load (left hand side) and

decrease slightly during the process of unloading.

This evolution of plastic strains has a strong impact on

the phase transformation, depicted in Fig. 4. The distribu-

tion of the austenite phase differs at maximum load slightly

from the one in [13] which was simulated while neglecting

plastic deformations. Furthermore, this example demon-

strates the fundamental influence of plastic strains on the

Table 1 Material parameters
ĝ 0.055 [–] m̂ 0.45 [–] r1 6.34 [MPa] rp 1000 [MPa]

Eaustenite 83 [GPa] maustenite 0.35 [–] k0 40 [GPa] k1 1 [GPa]

Emartensite 40 [GPa] mmartensite 0.35 [–] b 300 [–] ra 100 [GPa]

causteniteðTÞ ¼ ð�3:2465� 0:51TÞ [MPa] cmartensiteðTÞ ¼ 0 [MPa]

Fig. 1 From left to right tensile tests for –10, 20, and 37 �C

Fig. 2 Plate with notch: force/displacement diagram
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phase composition: after unloading, plastic strains stabilize

the martensitic phase such that the reverse transformation

from martensite to austenite remains incomplete.

In contrast, the amount of austenite remains at zero

percent at the tip of the notch.

Stent

The last example presented here is the simulation of a stent

which is modeled by one strut discretized using approxi-

mately 150,000 nodes. The results are mirrored later to

Fig. 3 Plate with notch: distribution of the norm of the plastic strain jepj at maximum load (left) and at unloading (right). Zoomed plot

Fig. 4 Plate with notch: distribution of the austenite phase k0 at maximum load (left) and at unloading (right)

Fig. 5 Stent: distribution of one martensitic phase. From left to right: initial state at –10 �C; crimped configuration at –10 �C; after heating in

crimped position at 37 �C; deployed configuration at 37 �C
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display the total stent. The simulation is performed with the

commercial software Abaqus in which a fully non-linear

geometrical treatment is employed. The initial temperature is

set to be –10 �C implying the martensitic configuration.

Contact boundary conditions are applied for the crimping.

After fully crimped, the contact boundary conditions are

fixed and the temperature is increased to a typical body

temperature of 37 �C. Afterwards, the stent is deployed

expanding to a configuration without prescribed boundary

conditions. The complete picture is given in Fig. 5.Due to

geometrical reasons, phase transformation is most prominent

during crimping at the edges of the stent. During heating,

parts of the stent remain in the martensitic configuration,

enforced by mechanical stresses. Other parts with lower

mechanical stress states transform temperature-driven to the

austenitic configuration such that the amount of martensite

reduces to zero percent in these areas. When the stent is

deployed, the material transforms completely to the austenitic

configuration which is the stable one at 37 �C.The impact of

plastic deformations is in this example of minor importance

(see Fig. 6, right hand side). However, for a stronger com-

pression rate or other alloy compositions, for which the

model parameters have to be updated after calibration, the

effect of plasticity might be much more pronounced.

Conclusions and Outlook

We presented the expansion of an energy-based material

model for shape memory alloys by plastic effects including

non-linear isotropic hardening. The model was derived

from the Hamilton principle and calibrated based on pre-

vious publications. Tensile tests at various temperatures

provided an insight to the general behavior of the material

model. A plate with notch under tension served as an

example for the interaction of plastic deformations and

phase transformations which are of particular interest for

construction parts with stress localizations due to

geometric reasons. A real-life simulation was presented as

final example by simulating a stent under both mechanical

and thermal loads. This simulation was performed using a

commercial finite element environment (Abaqus). Contact

boundary conditions and a non-linear deformation measure

were applied. The very satisfactory convergence behavior

indicates the capability of this material model to provide

realistic simulation results also for industrially relevant

problems including non-linearities and a huge number of

unknowns (finite elements / nodes). Future investigations

could aim at the cyclic behavior of shape memory alloys.
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