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Abstract We develop a combined Ginzburg–Landau/

micromagnetic model dealing with conventional and

magnetic shape-memory properties in ferromagnetic shape-

memory materials. The free energy of the system is written

as the sum of structural, magnetic and magnetostructural

contributions. We first analyse a mean field linearized

version of the model that does not take into account long-

range terms arising from elastic compatibility and

demagnetization effects. This model can be solved ana-

lytically and in spite of its simplicity allows us to under-

stand the role of the magnetostructural term in driving

magnetic shape-memory effects. Numerical simulations of

the full model have also been performed. They show that

the model is able to reproduce magnetostructural

microstructures reported in magnetic shape-memory

materials such as Ni2MnGa as well as conventional and

magnetic shape-memory behaviour.

Keywords Magnetic shape-memory effect � Ginzburg–

Landau model � Micromagnetism � Magnetostructural

interplay � Microstructure

Introduction

Magnetic shape-memory effect (MSME) refers to a par-

ticular type of magnetostriction that originates from a

rearrangement of twin-related variants induced by the

application of a magnetic field [1]. This effect is usually

associated with a martensitic transition taking place in

materials with strong magnetostructural interplay driven by

the magnetocrystalline anisotropy. Magnetic field-induced

deformations in this class of materials are much larger than

those attained in the case of the best conventional mag-

netostrictive materials such as Terfenol-D (Tb0.27Dy0.73-

Fe2) and related rare-earth compounds.

The study of MSME started to receive increasing

attention after O’Handley’s group reported in 1996 [2]

deformations of *0.2 % induced by moderate magnetic

fields below 1 T in the Heusler alloy Ni2MnGa. The

authors suggested that the large response in strain in this

material is the result of magnetic field-induced twin

boundary motion. This is, to a large extent, the mechanism

selected by the material in order to minimize Zeeman

energy in the martensitic phase due to its large uniaxial

magnetocrystalline anisotropy. While this paper certainly

triggered intense research in this field, the same mechanism

was already proposed 20 years earlier by Libermann and

Graham [3] to explain the unusually large magnetostriction

observed in Dy single crystals. However, this work
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received little attention, probably because the effect was

observed at a quite low temperature of about 4 K.

The present paper deals with modelling conventional

and MSMEs in ferromagnetic compounds based on a

combined Ginzburg–Landau/micromagnetic free energy

that incorporates the strong magnetostructural interplay

responsible for the possibility of cross response to

mechanical and magnetic fields. The paper is organized as

follows. In ‘‘Basic Features’’ section, we introduce the

general features associated with conventional shape-mem-

ory properties and compare them to those induced by a

magnetic field. In ‘‘Modelling’’ section, we introduce the

general model. Next, in ‘‘Linearized Mean Field Treat-

ment’’ section, we derive and discuss a simple mean field

linearized version of the model and in ‘‘Numerical Simu-

lations’’ section, we present numerical simulations of the

model. Finally, in ‘‘Summary and Conclusions’’ section,

we summarize our main results and conclude.

Basic Features

Among the ferromagnetic alloys that are known to display

magnetic shape-memory properties, most of them belong to

the family of Heusler compounds [4, 5]. Ni2MnGa is the

prototypical material that undergoes a martensitic transi-

tion in its ferromagnetic phase with associated conven-

tional and magnetic shape-memory properties. At high

temperature, this Heusler alloy shows a B2 (Pm3m) near-

est-neighbour ordered structure, and upon cooling next-

nearest-neighbour order of the L21 (Fm3m) type develops.

The L21-phase becomes ferromagnetic at a Curie temper-

ature of Tc % 380 K. The martensitic transition occurs at

TM % 200 K towards a modulated 10 M crystallographic

structure that, to a good approximation, is close to a

tetragonal structure. The total magnetic moment is

*4.1 lB per formula unit, and is largely confined to the

Mn-sites [6]. The magnetic anisotropy of the L21-phase is

very weak. In contrast, the martensitic phase shows strong

uniaxial anisotropy (two orders of magnitude larger than in

the cubic phase) with easy axis along the short c-axis [7].

When the composition departs from the 2–1–1 stoichiom-

etry by increasing the electron to atom ratio, e/a, the 14 M

and non-modulated L12 martensites occur while the tran-

sition temperature increases. In contrast to modulated

martensites, the non-modulated martensite has an easy

plane perpendicular to the c-axis, which becomes the hard

axis in this case (see Ref. [1]).

The martensitic transition is a diffusionless structural

first-order transition between different crystalline phases,

which is achieved by means of a dominant shear mecha-

nism [8]. Due to the symmetry breaking taking place at the

thermally induced martensitic transition, a single crystal of

the high-temperature parent phase splits into a number of

twin-related variants. These variants tend to form a com-

plex heterophase such that no macroscopic change in shape

occurs. The presence of an externally applied stress breaks

variant-degeneracy, which results in a reduced number of

favourable variants giving rise to a macroscopic

deformation.

Certain materials undergoing a martensitic transition

show a highly nonlinear and quasi-reversible1 response to

an applied stress, which provides them with the capacity of

remembering their original shape after a severe deforma-

tion process. These materials are called shape-memory

materials [8]. Specifically, the shape-memory effect refers

to the fact that when these materials are mechanically

deformed in the low-temperature martensitic phase, the

deformation can be removed when the material is heated up

above the reverse martensitic transition temperature. Usu-

ally, a warming process of few degrees is sufficient for the

original shape (previous to the deformation) of the material

to be recovered. In the high-temperature phase, the same

systems display another unique property called superelas-

ticity. It consists of the possibility of recovering, upon

loading and unloading, a large strain (in some cases

C10 %) associated with the stress- or strain-induced

transformation. Indeed, these properties make this class of

materials very attractive from a technological point of

view, since they may function as sensors as well as actu-

ators, and are promising candidates for smart materials [8,

9].

In some magnetic materials, including Ni2MnGa, the

large recoverable deformations can be induced by means

of an applied magnetic field [10]. It is thus stated that

these materials display magnetic shape-memory proper-

ties that are comparable to the corresponding conven-

tional shape-memory properties, but with the magnetic

field playing the role of mechanical stress. In the case of

the MSME, the deformation is induced in the martensitic

phase and it is associated with the field-induced rear-

rangement of twin-related variants through twin boundary

motion. This mechanism becomes feasible when twin

boundaries are highly mobile and the magnetocrystalline

anisotropy is sufficiently high in order to restrict, as much

as possible, the rotation of magnetic moments. Then,

rearrangement of martensitic variants is promoted by the

difference in Zeeman energy of neighbouring variants in

such a way that their easy axis becomes aligned with the

applied field. On the other hand, magnetic superelasticity2

1 While not thermodynamically reversible, the transition is crystal-

lographically reversible and occurs with weak (or relatively weak)

hysteresis.
2 Some authors use the term magnetic superelasticity to describe the

stress-induced reorientation of martensitic variants under an applied

magnetic field. See for instance [11].
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occurs when the martensitic transition can be induced by

an applied magnetic field [1]. This requires a large-

enough difference between the magnetic moments of the

parent and martensitic phases such that an applied field

strongly modifies their relative phase stability. The

metamagnetic Ni–Mn–In Heusler alloy (and related

compounds) is the prototypical material showing this

property [12].

The possibility of a large magnetomechanical cross

response in magnetic shape-memory alloys favours mag-

netic shape-memory properties as a consequence of the

strong interplay between magnetism and structure. Such an

interplay is driven by the change of structure taking place

at the martensitic transition and leads to significant changes

in the magnetic properties of the system. An interesting

feature is the fact that the interplay shows up at two well-

separated length scales [12]. At the scale of the martensitic

variants, it is determined by the increase of magnetocrys-

talline anisotropy associated with the symmetry reduction

occurring at the martensitic transition. At a more micro-

scopic length scale (unit cell scale), it is controlled by the

corresponding change in the effective magnetic exchange

coupling. The change of magnetocrystalline anisotropy

provides the basic mechanism for the MSME to occur [13,

14]. On the other hand, the change in the effective

exchange induces a difference between the magnetic

moments of the high- and the low-temperature phases,

affecting their relative stability in the presence of an

applied magnetic field. This effect is essential for magnetic

superelasticity to be feasible [15, 16]. Application of a

magnetic field stabilizes the phase with higher magneti-

zation. Therefore, depending on specific features of the

magnetostructural interplay, forward or reverse martensitic

transition should be induced by application of a magnetic

field depending on whether the martensite has a larger or a

smaller magnetic moment than the parent phase. Materials

displaying magnetic superelasticity are commonly denoted

as metamagnetic shape-memory materials. From a practi-

cal point of view, the great advantage of magnetic

superelasticity is that in addition to large field-induced

deformations comparable to those attained by means of the

field-induced variant reorientation mechanism, it enables to

reach a much larger work output since the deformation

occurs by magnetically inducing the magnetostructural

transition [17].

At present, no materials showing simultaneously large

magnetic shape-memory and large magnetic superelasticty

effects have been found. This could be a consequence of

the fact that concomitantly large changes of anisotropy and

magnetization taking place at the martensitic transition

seem to be incompatible in Heusler and related ferromag-

netic alloys.

Modelling

In this section, we will present a model to describe shape-

memory effects in ferromagnetic materials. Different

approaches have been proposed to deal with ferroelastic

and martensitic textures including models based on a

combination of micromechanics and micromagnetic theo-

ries [18]. Among the most powerful and popular approa-

ches, we can refer to the method based on sharp-interface

minimizers first introduced by Ball and James [19] where

compatibility is mathematically accounted through the

Hadamard jump condition (or kinematic compatibility

condition). This approach has been extended in order to

incorporate magnetic degrees of freedom by James and

Wuttig [20] who successfully applied the method to model

magnetostrictive properties of the martensitic alloy Fe70-

Pt30. More recently, this approach has been used to model

MSMEs in Heusler alloys (see for instance Refs. [21, 22]).

Concerning the phase field approach introduced by

Khachaturyan [23, 24], it is formulated in terms of a free

energy functional, which depends nonlinearly on morpho-

logical variables coupled to strain. Such variables have the

role of identifying martensitic variants. In this approach,

the inhomogeneous deformation associated with compati-

bility constraints is treated within the Eshelby local

inclusion model. More recently, Zhang and Chen [25, 26]

have extended this approach to the case of magnetic

martensites by treating the magnetic degrees of freedom

within the micromagnetic approach. Later on, the method

has been used to analyse specific features of magnetic field-

induced boundary motion [27] and related hysteresis

effects [28], and to model MSME in a number of Heusler

materials [29].

In the present paper, we approach the problem by

combining a Ginzburg–Landau model for the structural

degrees of freedom with a micromagnetic treatment of

magnetism and magnetostructural interplay. The advantage

of the Ginzburg–Landau method is that it can be formu-

lated in terms of strains as the natural order parameters for

the problem. When lattice integrity is imposed in the

continuum limit through the St. Vénant condition (see for

instance Ref. [30]), an elastic long-range effect explicitly

arises, which is responsible for specific features of the

obtained microstructures. The method has been success-

fully applied to deal with pure martensitic systems with

different symmetries [31]. Here we show that by including

magnetic degrees of freedom, the long-range term is

modified due to the magnetostructural interplay. For the

sake of simplicity, we will consider here a magnetostruc-

tural square-to-rectangular transition which mimics the 3-d

cubic to tetragonal transition in, for instance, Ni2MnGa.

We will assume that the free energy of the system can be
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written as the sum of three contributions; the structural, the

magnetic and the magnetostructural contributions. That is,

F ¼ FS þ FM þ FM-S: ð1Þ

Note that the last term accounting for the magne-

tostructural interplay is the essential term that will make

the MSME possible.

Any distortion of the original square lattice can be

described by means of the symmetry-adapted strains

e1 ¼ 1
2
ðexx þ eyyÞ, e2 ¼ 1

2
ðexx � eyyÞ and e3 ¼ exy, which

account for changes of area, deviatoric distortions and

shears, respectively. In the preceding expressions, eij are

components of the linearized Lagrange strain tensor. For a

square-to-rectangular transition e2 ¼ e is the appropriate

order parameter while e1 and e3 are non-symmetry break-

ing deformations (or non-order parameters). Taking into

account symmetry considerations, the structural free

energy can be expressed as the following Ginzburg–Lan-

dau functional,

FS ¼
Z

d2r

(
1

2
A2e

2ðrÞþ1

4
B2e

4ðrÞþ1

6
C2e

6ðrÞ

þ 1

2
A1e

2
1ðrÞþ

1

2
A3e

2
3ðrÞ�reðrÞþcjreðrÞj2

)
;

ð2Þ

where the integral is over the system area and c measures

the energy cost of interfaces. A2 is related to the elastic

constant C0 and assumed to vary linearly with temperature

as A2 ¼ aðT � T�Þ, where T� is the low stability limit of

the square phase. This elastic constant is small in marten-

sitic materials. The coefficients A1 (¼ C11 þ C12) and A3

(¼ 4C44) are related to the elastic constants associated with

non-order parameters. Since the transition is expected to be

first-order, B2\0 and C2 [ 0. Here r is an externally

applied stress that couples to the order parameter.

According to micromagnetic theory [32, 33], the pure

magnetic contribution to the free energy is taken to be of

the form

FM ¼D

Z
m2

xðrÞm2
yðrÞd2r þ J

Z
rmðrÞj j2d2r

� l0MS

Z
1

2
Hd þHext

� �
�md2r;

ð3Þ

where m ¼ M=MS is the three-component3 unit magne-

tization vector and MS is the saturation magnetization.

The first term corresponds to the anisotropy energy of

the square lattice and thus only considers the in-plane

components of the magnetization. It is minimized for m

along x or y directions since the anisotropy coefficient D

is assumed positive. The second term is the exchange

energy which is determined by the spatial variation of

the magnetization orientation. Therefore, J is an

exchange stiffness constant. The third term includes the

magnetostatic energy associated with the stray or

demagnetizing field Hd, and the Zeeman energy

accounting for the coupling of the magnetization with an

externally applied field Hext. The demagnetizing field

Hd is created by the magnetization mðrÞ itself

throughout the system so that this results in long-range

magnetic interactions. Such a potential is responsible for

closing the magnetic field lines, which in turn is at the

origin of the creation of vortices and magnetic domains.

Its computation entails some difficulties such as time

cost, which can be overcome here using Fourier trans-

forms. The detailed computational method can be found

in [25, 26].

Finally, the following magnetostructural term is

assumed (see Ref. [32]),

FM-S ¼ j
Z

m2
xðrÞ þ m2

yðrÞ
h i

e1ðrÞd2r

þ j
Z

m2
xðrÞ � m2

yðrÞ
h i

eðrÞd2r

þ j0
Z

mxðrÞmyðrÞe3ðrÞd2r;

ð4Þ

where j and j0 are magnetostrictive coefficients. Note

that only the coupling of magnetization and strains at

the minimum order allowed by symmetry has been

considered. Actually, this term essentially determines

the magnetocrystalline anisotropy of the martensitic

phase.

In 2-d, if lattice integrity is assumed, the three

strains e1, e2 ¼ e and e3 are not independent. This can

be taken into account by minimizing the preceding free

energy under St. Vénant compatibility constraint [34,

35]. The contribution to the free energy from non-order

parameters is a long-range term that can be written in

Fourier space as

FnonOP ¼ 1

4p2

Z
Ac2ðkÞeðkÞeð�kÞdk

þ j
4p2

Z
Ac1ðkÞeðkÞ

Z
eik�r m2

xðrÞþm2
yðrÞ

h i
drdk

þ j0

8
ffiffiffi
2

p
p2

Z
Ac3ðkÞeðkÞ

Z
eik�r m2

xðrÞm2
yðrÞ

h i
drdk;

ð5Þ

where

3 Even if the model is 2-d, assuming that magnetization is a 3-

component vector with two components in-plane is important since it

allows to consider a more realistic magnetization dynamics that takes

into account precession of the magnetic vector around the applied

magnetic field
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Ac1ðkÞ ¼
k2
x � k2

y

� �
k2
x þ k2

y

� �

k4 þ 8
R
k2
xk

2
y

; ð6Þ

Ac2ðkÞ ¼
A3

2

k2
x � k2

y

� �2

Rk4 þ 8k2
xk

2
y

; ð7Þ

Ac3ðkÞ ¼
k2
x � k2

y

� �
kxky

R
8
k4 þ k2

xk
2
y

: ð8Þ

R ¼ A3=A1 is the ratio between the shear and the bulk

moduli. Notice that this long-range term is minimized for

kx ¼ �ky which explains the directionality of long-range

correlations along the diagonals of the square lattice

which are the soft directions due to the low value of C0.
It is worth noting that when the magnetostructural

interplay vanishes, this long-range free energy reduces to

the long-range free energy already reported for square-to-

rectangle pure structural transitions [34], which is char-

acterized by the kernel Û ¼ Ac2ðkÞ. When j is large, we

expect F to be minimized for mx ¼ �1 for e\0 and

my ¼ �1 for e[ 0. In both cases, e1 ¼ e3 ¼ 0, and we

thus expect this long-range contribution to be the dom-

inant one. In this case, it is clear that the strength of the

long-range interaction is proportional to C44 and there-

fore increases with the elastic anisotropy (measured as

the ratio C44=C
0).

The low-temperature ground state of the structural

contribution to the total free energy corresponds to a

homogeneously deformed lattice. In order to obtain a

more realistic twinned structure, the self-accommodation

process that makes the transition strain modulation

(twinned structure) to be energetically favourable with

respect to the single-domain structure must be taken into

account. Such a process occurs when the martensitic

phase nucleates within the parent (square) matrix and

consists of preserving the lattice coherency at the parent-

martensite interfaces, keeping such habit planes macro-

scopically undistorted. It has been shown [36] that this

condition gives rise to an additional term in the long-

range potential which depends on the strain at the phase

boundary, and whose main interaction goes as �1=jkj,
where k is the wave vector parallel to the boundary. The

minimization of the structural free energy including this

term leads to a new ground state consisting of a modu-

lated twin pattern whose characteristic width k scales as

k�
ffiffiffi
L

p
, where L is the width of the transformed region.

This scaling is in agreement with available experiments

(see for instance [37]).

Linearized Mean Field Treatment

The model presented in the preceding section gives a

detailed mesoscopic description of the magnetostructural

behaviour exhibited by ferromagnetic shape-memory

materials. In particular, as it will be shown in the next

section, the model reproduces properly fine details of the

microstructure as well as the MSME. Before going into the

results, we would like to gain some insight into the mag-

netic field-induced twin reorientation, that is at the origin

of the large reversible strains observed in the MSME, and

extend this case to include an externally applied stress.

However, due to the significant number and complex

interplay of the energetic contributions, the full model

solution requires numerical simulations. In this sense, the

output may be difficult to analyse with clarity, and the key

physics underlying the intricate behaviour may remain

hidden in the numerical computation. For this purpose, in

the present section, we reduce the model within a simpli-

fied pseudo-mean field approximation that focuses on the

main factors involved and omits secondary energetic

contributions.

The magnetic field-induced strain under stress has been

addressed by a large number of (pseudo-)phenomenologi-

cal models (among others see Refs. [13, 14, 22, 38–42]).

Most of them include explicitly dissipation terms occurring

in twin reorientation to account for hysteresis in strain-

magnetic field loops and deal with magnetostatic effects by

means of approximate calculations of demagnetizing fac-

tors. In particular, Wang et al. [38] proposed a phe-

nomenological constitutive model based on a variational

approach of a pseudo-free energy that neglects exchange

interactions. Kiefer and Lagoudas [39] introduced a

micromechanical model aimed at studying magnetostrain

curves under the effect of an additional bias magnetic field.

Auricchio et al. [40] considered a simple model, which is

restricted to the limit of very strong magnetocrystalline

anisotropy, so that no magnetization rotation is allowed

inside each variant. They also neglected demagnetization

effects. Chen et al. [41] proposed a very versatile consti-

tutive 3-dimensional model, where the calculation of the

magnetostatic field is carried out properly by means of

finite-element analysis. The model allows to take into

account the effect of multi-axial stresses and rotating

magnetic fields. The model reported by LaMaster et al.

[42] is formulated with only three adjustable parameters,

and allows for 2-dimensional magnetic and stress fields.

Among the cited models, O’Handley’s model [13, 14] is

worth mentioning as it can be fully solved analytically
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although it does not address the case of an applied stress.

The present mean field model also allows analytical solu-

tions and includes the effect of an externally applied stress.

As we will see, the key results obtained by models in lit-

erature can be qualitatively reproduced by our approach.

The starting point for this simplified description is a

spatially extended system with local Ising-like strains [43]

accounting for the two rectangular twin-related deformed

cells, being e2 ¼ ��e. Since the magnetic field-induced twin

reorientation occurs in the martensitic phase, the austenite

phase and the martensitic transition described by the elastic

Landau energy can be omitted. Moreover, long-range

elastic interactions are substituted by a non-local structural

term of the form of FMF
S ¼ 1

2
Chei2

, where hei is the

average deformation of the system, and C[ 0 is an

effective modulus that accounts for the elastic response of

the twinned phase to an applied force. The inverse of C is

thus a good measure of the twin boundary mobility. If we

denote by 1 � n (n) the fraction of the system with defor-

mation �e (��e), then hei ¼ ð1 � 2nÞ�e. In the absence of

externally applied forces, FMF
S is minimized for n ¼ 1

2

which corresponds to a globally non-deformed system, thus

accounting for an effective self-accommodation process.

Associated with each deformed cell, a classical

Heisenberg-like magnetic spin is also considered, with the

easy-magnetization axis along the corresponding c-axis.

The c-axis will be axis x(y) for variant �e (��e). In the

general case, the spins will not be aligned with the c-axis

but rather they are allowed to form an angle h (/) in cells

with strain �e (��e) (see Fig. 1). As pointed out by Kiefer and

Lagoudas [39], such magnetization rotation inside the

martensitic variants is known to be an important feature

that favours the magnetic field-induced twin reorientation.

The magnetic spins will only contribute to the free

energy through the magnetostructural coupling FMF
M-S and

the Zeeman energy FMF
Hext

:

FMF
M-S ¼�

X
jhei M2

x �M2
y

� �

¼� jV�eM2
s n cosð2/Þ þ ð1 � nÞ cosð2hÞ½ �

ð9Þ

and

FMF
Hext

¼� l0HMsVnðcos a sin/þ sin a cos/Þ
� l0HMsVð1 � nÞðcos a cos h� sin a sin hÞ;

ð10Þ

where a is the angle between the x-axis and Hext.

We also consider a stress field r that favours deforma-

tion �e. Thus

FMF
rext

¼�
X

rhei¼�Vð1�nÞr�eþVnr�e¼Vr�eð2n�1Þ:
ð11Þ

Since magnetostatic and exchange energies are not taken

into account here, this approximation is not intended to

study fine magnetic microstructure details such as internal

magnetic stripes, which indeed will be obtained by

numerical simulations of the full model. Notice that the full

MSME cannot be strictly reproduced by the mean field

approximation because the model cannot reproduce hys-

teresis effects and thus field-induced strains are directly

recovered just after removing the external field.

The equilibrium solutions of the model are given

by minimization of the total free energy

FMF ¼ FMF
S þ FMF

M-S þ FMF
Hext

þ FMF
rext

. Analytical solu-

tions for different cases are summarized in the Table 1.

Indeed, the model exhibits a general threshold in the

magnetic field for the alignment of the magnetic spins

which is given by l0Hc ¼ 4jMs�e. This threshold is also

found in other models [13, 14, 38, 39].

Figure 2a, b (where we have set j ¼ 2:2 � 106 and

C ¼ 1:8 � 105, in arbitrary units) show the magnetic field

dependence of n and mxh i for different constant applied

stress fields, for a magnetic field orientation of a ¼ 0o. In

this simple case, both the magnetic and stress fields favour

the same variant, whose fraction is ð1 � nÞ. As a conse-

quence, the larger the stress field, the lower the magnetic

field needed to saturate both magnetization and strain.

Notice that the magnitude of the saturation strain is directly

related to the twin reorientation. Interestingly, while the

magnetization always saturates at mxh i ¼ 1 (corresponding

to the single magnetic domain), for low values of the stress

field (black and red curves) the strain saturates at values

1 � n\1 (n[ 0) no matter how high the magnetic field is.

This indicates that C is relatively large with respect to j,

since for certain range of the stress field the elastic energy

prevails over the magnetostructural energy, and conse-

quently, the complete magnetic field-induced twin reori-

entation cannot be accomplished.

Another interesting situation arises when the magnetic

and the stress field are applied in such a way that each field

favours a different strain variant respectively and hence

operates against each other. This competing situation is

shown in Fig. 2c, d where one can observe a nonlinear
Fig. 1 Schematic description of the mean field approximation. For

details see the text
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behaviour with the following trends: the larger the stress

field, the higher the magnetic field needed to induce twin

reorientation, and the lower the attainable saturation strain.

Moreover, above a certain stress threshold (called blocking

stress), the reorientation is inhibited regardless of the

magnitude of the applied magnetic field. All these features

are in agreement with the experimental observations [44–

48] and with the models previously discussed. Note that, as

indicated before, hysteretic effects associated with removal

of the magnetic field cannot be reproduced by the present

approximation.

In addition to the previously mentioned features, in

Fig. 2c, d it can also be observed that the magnetic field

required to fully align the magnetization in both variants is

stress-independent. This was also obtained by Kiefer and

Lagoudas [39]. In contrast, in Ref. [40] the inverse situa-

tion is found. It is the onset of the magnetic field-induced

twin reorientation which seems to be stress-independent

and thus no delay is found. Actually, according to the

experiments quoted above, both thresholds do depend on

stress. It is worth noting that in both models (as done in the

present approximation), the calculation of the demagne-

tizing field is, at least, partially disregarded. Since it is

involved in the magnetic domain wall motion occurring

inside the twins (magnetic stripes), it may affect fine details

of the behaviour as discussed here.

Figure 2e, f shows the magnetic field dependence of /
and mxh i for a ¼ 0� and a ¼ 45�. The stress field is absent.

They reveal that the saturation magnetic field is lowest for

a ¼ 45�, which is parallel to the twin boundaries. Notice

that in the latter case (contrary to the case a ¼ 0�), none of

the strain variants is favoured, so that no magnetic field

energy is spent in twin reorientation, but it is fully spent in

reorienting the magnetization only. This is in agreement

with the result obtained by O’Handley [13, 14]. Note that,

the obtained dependence of the rotation angle / on the

magnetic field is qualitatively equivalent to that reported in

Ref. [22].

Figure 3 shows the dependence of mxh i and eh i on an

applied magnetic field for different sets of values for j and

C. In this case, r ¼ 0. It is intended to highlight the role of

both the magnetostructural and elastic contributions and

resembles again the general trends reported by O’Handley

[13, 14]. Summarizing, there is a competition between the

magnetostructural energy and the elastic energy: While the

former maintains the magnetization aligned with the easy-

magnetization axis determined by the magnetocrystalline

anisotropy and thus favours the magnetic field twin reori-

entation, the latter penalizes the perturbation of the self-

accommodated strain microstructure.

Numerical Simulations

In this section, we go back to the full model presented in

‘‘Modelling’’ section to study in detail structural and

magnetic microstructures and shape-memory properties,

which cannot be considered within the mean field

approximation discussed in the previous section. Model

parameters for our 2-d model have been taken from Ref.

[49]. These parameters correspond to a situation of strong

magnetoelastic interplay and high twin boundary mobility.

For the simulations, we need dynamic equations for the

magnetization and for the strain. Following the micro-

magnetic theory, the magnetization dynamics is governed

by the Landau–Lifshitz–Gilbert (LLG) equation:

Table 1 Solutions of the mean field model for a ¼ 0 and p
2
. A ¼ l0H

4
ffiffi
2

p
jMs �e

a rext Hext h / n

0 8r l0H	 4jMs�e 0 arcsin
l0H

4jMs �e

� �
1
2

1 þ 1
2C�e2
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0
H2V
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�h
�l0HMsV � 2Vr�eÞ�
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1 þ a2
� 	 om

ot
¼� c0m�Heff � c0am� m�Heff

� 	
;

ð12Þ

where Heff is a local effective magnetic field which, from

micromagnetism arguments, is obtained as Heff ¼ � 1
l0

oF
om.

According to LLG equation, the magnetization vectors

make a damped precessional motion around Heff , with a
the damping constant and c0 the gyromagnetic ratio (Even

if the model is 2-d, assuming that magnetization is a 3-

component vector with two components in-plane is

important since it allows to consider a more realistic

magnetization dynamics that takes into account precession

of the magnetic vector around the applied magnetic field).

In turn, the relevant strain field eðrÞ is allowed to evolve by

means of a pure relaxational dynamics:

oe

ot
¼ �s

dF
de

: ð13Þ

Note that magnetic and structural dynamics are not

independent since they are coupled through the magne-

toelastic term FM-S included in the total free energy F. To

numerically solve the model, the system is discretized

using the finite differences scheme onto a square mesh with

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Panels a and b show the

n fraction and x-component of

the average magnetization mxh i
respectively as a function of the

magnetic field for different

applied stress fields, for the case

a ¼ 0�. Panels c and d are

analogous to a and b for

a ¼ 90�. Panels e and f show the

orientation angle / and mxh i
respectively as a function of the

magnetic field for a ¼ 0� and

a ¼ 45� in the absence of stress

(Color figure online)
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periodic boundary conditions. Starting from randomly

disordered configurations, the dynamical equations are

iteratively applied until the system reaches a stabilized

configuration (see Refs. [49, 50] for details).

At temperatures below the transition, martensitic twins

develop and the magnetization vectors, hereafter referred

to as spins, arrange in a configuration such as that shown in

Fig. 4a. Assuming that almost all the spins lie in the x� y

plane, they can be characterized by their in-plane orienta-

tion given by the polar angle b, defined as the angle

between the spin and the bottom border of the snapshot.

Spins may take mainly four orientations: b ¼ 0�, 90�, 180�

and 270�, corresponding to dark red, dark blue, light red

and light blue domains respectively in the figure, that result

from the magnetostructural coupling, i.e., the magne-

tocrystalline anisotropy of the martensitic phase. Notice

that a given strain variant couples energetically to two

antiparallel orientations equivalently. The resulting four

orientations combine in such a way that two types of

magnetic domain walls appear:

– On one hand, as the arrows in the snapshot show, the

change in the strain variant through the domain wall

induces a Db ¼ 90� in the spin orientation. Magne-

tostructural interactions bring magnetic domain walls

to appear along the diagonal twin boundaries, thus

forming 45� angles with the spins. This is represented

in the snapshot by the change of colour from blue to

red. From these domain walls, the underlying structural

configuration can be easily deduced.

– On the other hand, magnetic stripes appear within the

twins (as indicated by same colour, different grades) as

a result of the magnetostatic interactions. Magnetic

stripes are characterized by a Db ¼ 180� between spins

belonging to nearest-neighbour stripes. It is worth

noting that the width of the magnetic stripes and of all

the magnetic domain walls is determined by the

balance between exchange and magnetocrystalline

anisotropy contributions. This kind of micromagnetic

configuration shows excellent qualitative agreement

with experimental observations, as it is shown in

Fig. 4b.

Once we have obtained the right self-accommodated

low-temperature magnetic and structural configurations,

we can proceed to study the effect of both magnetic and

Fig. 3 Each panel shows the average magnetization mxh i (black

lines) and average strain eh i (red lines) as a function of the applied

magnetic field. From panel to panel, magnetostructural constant j and

elastic constant C are changed according to the offside axis. Specific

values for j and C are also indicated in each panel for the sake of

clarity. All values are in arbitrary units (Color figure online)

Fig. 4 Comparison between a 256 � 256 stable magnetic configuration obtained by numerical simulation (a) and an experimental

micromagnetic structure observed in Co–Ni–Ga magnetic shape-memory alloy (b). Adapted from Ref. [51] (Color figure online)
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stress fields on magnetization and strain respectively, and

analyse the magnetic field-strain cross response in the case

of the MSME. First, we focus on the conventional shape-

memory effect which is shown in Fig. 5. It is illustrated by

the evolution of the strain throughout the whole process,

consisting of loading [(a)–(c)], unloading [(c)–(d)] and

heating [(d)–(f)]. Selected snapshots of the microstructure

are shown in representative points of the curve. Red and

blue colours correspond to the two symmetry-allowed

martensitic variants. Yellow colour stands for the austenite

phase. The shape-memory effect takes place due to (i) the

nonlinear stress–strain behaviour upon loading resulting

from the stress-induced twin reorientation, which allows

significant averaged (i.e. macroscopic) strain (about 4 %

for this system); (ii) the retention of the single-domain

configuration (and hence, of the macroscopic strain) upon

unloading; and (iii) the occurrence of the reverse marten-

sitic transition upon heating that brings the system back to

zero macroscopic (and also zero microscopic) strain.

Finally, we focus on the MSME, which is depicted in

Fig. 6. Snapshots are micromagnetic configurations, with

the same colour code as in Fig. 4. The starting point is

precisely a self-accommodated magnetic and strain con-

figuration [snapshot (a)], with approximately vanishing

macroscopic strain. It is worth noting that the nonlinear

magnetic field-strain behaviour resembles the stress–strain

curve shown in Fig. 5. Looking at the evolution of the

magnetic configurations [snapshots (a)–(d)], for a given

range of the magnetic field, the Zeeman energy progres-

sively causes the extinction of the magnetic stripes with

magnetic moment opposite to the field [i.e. light red stripes

in snapshot (b)], which are indeed energetically unfa-

vourable. However, at this step the Zeeman energy is still

not able to induce reorientation of all the spins perpen-

dicular to the field [blue stripes, see snapshot (b)]. The way

the system proceeds is twofold [see snapshot (c)]; on one

hand, the spins adjacent to the twin boundary reorient

easier than those in the non-favourable-twin bulk, so that

the twin boundary moves forward and the favoured twin

grows. This occurs because reorientation of boundary-ad-

jacent spins is less penalized directly by the exchange and

magnetostatic energies, and indirectly through the magne-

tostructural coupling in the Ginzburg–Landau free energy

contribution, than in the case of the nucleation of favour-

able (red) magnetic domains within the bulk of non-

favourable (blue) twins, which would require stronger

externally applied magnetic fields. On the other hand, an

interesting secondary effect of the extinction of the mag-

netic stripes within the favourable (red) twin variant takes

place due to the fact that the magnetic stripes in the non-

favourable (blue) twin variant are no longer supported by

the magnetostatic energy and are progressively removed. In

the present particular case, dark blue stripes are removed

because of the extinction of light red stripes. Instead, light

blue domains still survive since they are magnetostatic-

favourable with dark red domains. Notice that the spins in

the bulk of the vanishing stripes are reoriented parallel to

the surviving domains and not to the magnetic field. That is

to say, dark blue spins reorient and become light blue spins

instead of dark red spins.

Above a given value of the magnetic field, the magne-

tization saturates (all the spins are aligned with the field),

Fig. 5 Shape-memory effect. The snapshots show 256 � 256

microstructural configurations at selected points of the curve. Arrows

indicate the order of procedure of the simulation experiment. For

details see the text (Color figure online)

Fig. 6 Magnetic shape-memory effect. The snapshots show 64 9 64
magnetic configurations at selected points of the curve. Arrows in the

snapshots are depicted to show the orientation of the magnetic

moments within each colour. The initial part of the curve, lying in the

plane H-hei (and corresponding to the snapshots a–d) shows the

nonlinear elastic response of the system to the magnetic field. When

the magnetic field is removed, d–e, the system retains the macro-

scopic strain and the magnetic configuration. Upon heating, the

backward martensitic transition is induced, so that, although the

magnetic configuration is not modified (e–f), the system recovers the

initial null strain. The initial small non-vanishing strain is due to the

finite size of the simulation cell (Color figure online)
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so that the system attains a single magnetic domain. In our

present case, a single strain domain is also attained, which

maximizes the achievable macroscopic strain and hence the

MSME. Notice that once the single magnetic domain is

reached, in contrast to the conventional shape-memory

effect where the strain keeps increasing (at low rate) with

the external stress, in the present case a further increase of

the magnetic field has no effect on the strain. This is a

consequence of the fact that the interplay of the strain with

the magnetic field is mediated by the magnetization (the

magnetostructural term). Hence, when the magnetization

saturates and the strain arranges according to all the ener-

getic contributions (the magnetostructural and elastic

energies), the magnetostructural energy cannot keep

decreasing despite an increase in the magnetic field. Notice

that the ratio between the magnetostructural energy

(magnetocrystalline anisotropy of the low-temperature

phase) and the elastic energy (elastic constants) determines

whether the system is able to undergo a full or partial

magnetic field-induced twin reorientation. It is worth

reminding that this result is in agreement with the results of

the mean field model. After removing the magnetic field,

the system remains macroscopically deformed. Then, an

increase of temperature above the reverse martensitic

transition allows to remove the strain so that the macro-

scopic austenitic state is recovered, which completes the

magnetic shape-memory path.

Summary and Conclusions

We have developed a magnetostructural model based on

(i) a Ginzburg–Landau elastic free energy extended to

include long-range anisotropic interactions, (ii) the micro-

magnetic theory and (iii) a term accounting for the mag-

netostructural interplay. A mean field approximation of the

model is carried out which, among other effects, excludes

both explicit long-range elastic and magnetic interactions.

This treatment is intended to highlight the balance between

the magnetostructural interplay and the elastic energy

which is at the origin of the response of the system to

externally applied magnetic and stress fields. Analytical

solutions are obtained in particularly interesting cases such

as selected magnetic field orientations. In general, it is

found that the balance of the two energy terms plays a key

role in determining the magnetic field-induced twin reori-

entation. The optimal orientation of the magnetic field to

saturate the magnetization is parallel to the twin boundary,

instead of favouring one of the martensitic variants.

To obtain a more accurate magnetostructural behaviour,

numerical simulations of the full model have been per-

formed. Simulations show that the model is able to

reproduce several multiferroic features observed in real

materials. In particular, the cooperation between the mag-

netostatic field and the magnetostructural coupling is cru-

cial in order to understand fine details of the microstructure

such as the particular arrangement of magnetic stripes

within elastic twins. Also, when the latter term is strong

enough, the magnetic field-induced twin reorientation that

takes place in an a priori self-accommodated magnetoe-

lastic system allows the MSME to occur. The evolution of

the magnetic domains towards the single magnetic domain

is not trivial: the magnetic interfaces which are parallel to

the twin boundaries, and the magnetic stripes behave dif-

ferently as has been discussed in detail.
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