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Abstract
In this text we compare the internal energy concept usually given in thermodynamics and physical chemistry textbooks with 
that from continuum mechanics. We review some continuum mechanics local balance equations. Next, we define internal 
and rigid energies for systems of particles. By comparing the internal energy balance for the systems of particles to that of 
continuum mechanics, we confirm that the work included in the usual presentation of the first law is related to motions that 
conserve both linear and angular momenta. We also confirm the existence of an internal energy conservation law.
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Introduction

Usual presentation of the first law

Many widely available physical chemistry textbooks intro-
duce the first law of thermodynamics and the law of con-
servation of energy as the same physical law. Usually, the 
first law states that, for any given closed system, there is a 
function U, called internal energy, which is defined for that 
system and varies by exchanging heat (Q) and work (W) with 
its surroundings. The first law is expressed by the following 
energy balance,

Here, the system is a fixed portion of matter contained 
within a well-defined region of space by a boundary, that is, 
a closed surface that separates the system from its exterior. 
Heat is the exchange of energy due to temperature differ-
ences. Complementarily, work is the exchange of energy 

that is not due to temperature differences. It is possible to 
separate the net work W into the sum of several terms: one 
referring to the deformation of the system’s boundaries and 
others, such as electrical work, friction work, shaft work, 
etc. [4], that is,

In this text, we will consider only the deformation work, that 
is, W = Wdf . A system is said to be rigid if its boundaries 
cannot be deformed, meaning that W = 0 and ΔU = Q.

In mechanics, the action of work is not only capable 
of deforming the body boundaries, but also of changing 
its kinetic energy. We can write the so-called mechanical 
energy theorem as

where K is the kinetic energy and Wtot is the total work. If a 
body is rigid, that means that Wtot = ΔK . Next, we use the 
theory of continuum mechanics to throw light on the mean-
ing of the term Wdf.

Basic definitions of continuum mechanics

Continuum mechanics is a branch of mathematical physics 
that aims to model and describe physical bodies not based 
on their molecular constitution. It was developed from the 
theory of elasticity and fluid dynamics and extended espe-
cially in the twentieth century [8].

(1)ΔU = Q +W.

(2)W = Wdf +Wel +Wfr +Wsh + ...

(3)Wtot = ΔK +Wdf,
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In continuum mechanics, the region of space we are inter-
ested in is called a body. At any given time, the points of the 
body compose a well-defined configuration. It is possible to 
choose any of these configurations as a referential one, so that 
all other configurations are measured with respect to it. The 
referential configuration is called the material one, whereas 
any other is called a spatial configuration.

Every point � in the material configuration is mapped to 
a unique point � of the spatial configuration by a deforma-
tion function � , so that � = �(�, t) . These points are defined 
uniquely by a position vector in a given coordinate system 
(Fig. 1). Since � is a vector, � is a vector function. We refer 
to � as a material point and to � as a spatial point. A field is 
a function assigned to each of these points in space. It can be 
scalar, vector or tensor valued. The gradient of a vector field 
is a second-order tensor field, that is, at any point, a matrix 
whose entries are defined by the derivatives of the three vector 
field components with respect to the three space coordinates. 
Therefore, the material gradient of the deformation function, 
given by the operator ∇ , is the deformation gradient, �(�, t) , 
defined as

are the components of � , i = 1, 2 or 3 and j = 1, 2 or 3.
The partial derivative of the deformation function with 

respect to time defines the velocity field, that is,

Then, we assign every spatial point a velocity vector, �̇(�, t) . 
Furthermore, the spatial gradient of the velocity field �̇(�, t) 
defines the velocity gradient ∇�̇(�, t) , which is a tensor 
field, just like the deformation gradient. Like any other ten-
sor field, the velocity gradient can be decomposed into two 
additive components: the symmetric part � and the skew 
part � . Thus,

(4)�(�, t) = ∇�(�, t), where

(5)Fij =
�xi

�Xj

𝜕

𝜕t
𝜒(�, t) =

𝜕

𝜕t
�(�, t) = �̇(�, t) = �̇(𝜒−1(�, t), t) = �̇(�, t).

When ∇�̇(�, t) = �(�, t) , the motion is said to be rigid, 
whereas when ∇�̇(�, t) = �(�, t) , the motion is said to be a 
pure stretch [3]. The velocity field for rigid motion at a point 
� is linearly related to the velocity at any point � according to

where �(t) is the axial vector of the skew tensor field � . The 
pure stretch velocity field has the form

where �i , for i = 1, 2, 3 , are the the symmetric tensor field � 
eigenvalues and �i are the principal directions. This means 
that the symmetric tensor can be diagonalized, and each 
component in the main diagonal corresponds to one of the 
�i . This is called the spectral theorem [3]. Pure stretches 
conserve both the linear and angular momenta of the body.

Continuum mechanics balance equations

Balance equations may be written for any additive property 
defined by a scalar, vector or tensor field in a continuous 
body. If � is such quantity, with � being its volumetric den-
sity, the global and local balance equations for a body por-
tion P at time t are respectively

Here, ��P is the total flux of the quantity across the boundary 
�P , �P is the total production or destruction of the quantity 
inside the body portion P , �� is the quantity flux superfi-
cial density at point � , and �� is the quantity production or 
destruction volumetric density at point � , all them at time t.

The product ⊗ depends on the nature of the field. If � is 
a scalar field, ⊗ is just a scalar multiplication. If � is a vector 
field, ⊗ is a tensor product. If � is a second-order tensor, ⊗ 
is another kind of product. For our purposes, we consider 
local balance equations only as well as scalar and vector 
fields � only [6]. Thus, we may plug different fields into 
Eq. 10 to obtain local balance equations for different quanti-
ties. The operator div is the divergence operator, which is 
defined for vector and tensor fields. For a vector field � , its 
divergence is the scalar field div� =

∑3

i=1

�vi

�xi
 , where vi are 

the components of � and xi are the system coordinates. For 
a tensor field � , its divergence is a vector field div� whose 

(6)∇�̇(�, t) = �(�, t) +�(�, t).

(7)�̇(�, t) = �̇(�, t) + �(t) × (� − �),

(8)�̇(�, t) =

[

3
∑

i=1

𝜆i(�� ⊗ ��)

]

(� − �),

(9)
d�

dt
(P, t) = ��P(P, t) + �P(P, t), and

(10)
𝜕𝜑

𝜕t
(�, t) + div(𝜑⊗ �̇(�, t) − �𝜑(�, t)) − 𝜎𝜑(�, t) = 0.

Fig. 1  Mapping material points of the reference configuration � to 
spatial points in the spatial configuration B

t
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components in the orthogonal directions of the system coor-
dinates x1 , x2 and x3 are 

∑3

j=1

�T1j

�xj
,  
∑3

j=1

�T2j

�xj
  and  

∑3

j=1

�T3j

�xj
 , 

respectively, and Tij is the tensor � element at row i and 
column j of the nine-element square matrix that represents 
the tensor.

Mass balance

As stated earlier, a body is considered a fixed amount of mat-
ter contained in a region of space of variable volume. This 
means that the total mass of a body is considered constant 
in time, but not its density. For the mass balance, we choose 
� = � , which is the volumetric density of mass, and both 
�� = � and �� = 0 as a consequence of the conservation of 
mass, that is, mass cannot flow through the boundaries or be 
created/destroyed. Then, Eq. 10 becomes

Equation 11 is named the continuity equation.

Linear momentum balance

For the linear momentum balance, we choose

where � is the Cauchy stress tensor and �� are the body 
forces, that is, the volumetric density of forces production or 
destruction. The Cauchy stress tensor maps the normal vec-
tor � at any given point on a surface to the surface traction � , 
which is force per unit area. That is, � = �� . Thus, the local 
linear momentum balance becomes

which is the well-known Cauchy equation of motion. It 
relates to the motion of the body for a given state of stress. 
By imposing symmetry on the tensor field T, Eq. 12 also 
implies the local angular momentum balance [6].

Note that forces acting upon a real body will always 
change its momenta (linear or angular, or both momenta) 
simultaneously and cause a body distortion that does not 
alter such momenta, that is, a pure stretch. Therefore, forces 
that change the linear momentum, as well as forces that do 
not alter it, may be produced or destroyed and are consid-
ered by �� . Obviously, the production or destruction of the 
second ones does not influence the linear momentum volu-
metric density, 𝜌�̇(�, t).

(11)
𝜕𝜌

𝜕t
(�, t) + div(𝜌�̇(�, t)) = 0.

𝜑(�, t) = 𝜌�̇(�, t),

�𝜑(�, t) = �(�, t), and

𝜎𝜑(�, t) = 𝜌�(�, t),

(12)

𝜕𝜌�̇

𝜕t
(�, t) + div(𝜌�̇(�, t)⊗ �̇(�, t) − �(�, t)) − 𝜌�(�, t) = 0,

Balance of the momentum derived kinetic energy

Considering the local linear momentum balance, given by 
Eq. 12, it is possible to obtain a balance like equation for the 
corresponding kinetic energy, which we call the momentum 
derived kinetic energy,

For this equation, we recognize the balance terms

To explain what the � ∶ ∇�̇ term means, suppose a matrix 
obtained by interchanging rows and columns of that one 
representing the tensor � , named the transposed matrix of � . 
Multiply this transposed matrix to the one representing the 
tensor ∇�̇ , keeping the matrix for ∇�̇ on the right side. Then, 
sum the diagonal terms of the obtained product matrix. That 
is the scalar � ∶ ∇�̇ value.

Note that, because Eq. 13 comes from the local linear 
momentum balance and for a symmetric � it also implies the 
local angular momentum balance, this equation just consid-
ers forces that are able to alter the linear or angular momen-
tum of the body, or both. Thus, the corresponding kinetic 
energy volumetric density time rate cannot include the pro-
duction or destruction of forces that do not alter both linear 
and angular momenta. This exclusion is provided by extract-
ing the term � ∶ ∇�̇(�, t) from 𝜌�̇ ⋅ �(�, t) . In this context, it 
is worth remembering that the kinetic energy involves the 
sum of non-negative velocity quadratic terms, whereas for 
the linear momentum only linear velocity terms are summed, 
which may cancel each other.

Total energy balance

For the total energy, we choose

where 𝜌
2
�̇ ⋅ �̇ and �� are the energy volumetric densities, 

respectively, for the momentum derived kinetic energy and 
complementary (total less momentum derived) energy. The 
quantity � is the vectorial heat flux superficial density and 
the scalar �r is the thermal energy source or sink volumetric 
density. Therefore, the total energy balance becomes

(13)

𝜌

2

d(�̇� ⋅ �̇�)

dt
(𝐱, t) = div(𝐓�̇�)(𝐱, t) + 𝜌�̇� ⋅ 𝐛(𝐱, t) − 𝐓 ∶ ∇�̇�(𝐱, t).

𝜑(�, t) =
𝜌

2
�̇(�, t) ⋅ �̇(�, t),

�𝜑(�, t) = ��̇(�, t), and

𝜎𝜑(�, t) = 𝜌�̇ ⋅ �(�, t) − � ∶ ∇�̇(�, t).

𝜑(�, t) = 𝜌

(

1

2
�̇ ⋅ �̇ + 𝛾

)

(�, t),

�𝜑(�, t) = ��̇(�, t) − �(�, t), and

𝜎𝜑(�, t) = 𝜌(r + �̇ ⋅ �)(�, t),
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Complementary energy balance

We consider a body having only the momentum derived 
kinetic energy and the complementary one, the total energy 
being the sum of both. Then, subtracting the momentum 
derived kinetic energy balance Eq. 13 from the the total 
energy balance Eq. 14, we obtain the complementary energy 
balance equation for a continuum body, that is,

For this equation, we recognize the balance terms

Internal and rigid motion kinetic energies 
for a system of particles

Rigid motion kinetic energy ( Erig)

A rigid motion of the system cannot change the distances 
between the particles and sub-particle centers of mass. It 
is thought that this is because the system moves as a whole 
and the particles and sub-particles are carried along with 
it (compare to continuum mechanics Eq. 7). The kinetic 
energy associated with this kind of motion is called rigid 
motion kinetic energy, Erig . This energy can change only by 
means of exchanging work to the system surroundings, Wrig , 
and never by exchange of heat, because it is not possible to 
translate or rotate a system by homogeneously heating or 
cooling it.

Internal energy (U)

The internal energy of the system is the sum, over all its 
particles, of the total (kinetic and potential) energy of each 
particle motion and its corresponding sub-particle motions, 
subtracted from the system energy, Erig . For example, sup-
pose the particles are molecules. One can consider the move-
ment energy of the molecules, the atoms that constitute the 
molecules, as well as electronic, nuclear and sub-nuclear 
movements energies. However, internal energy can change 
both with the exchange of heat to the system surroundings 
(by conduction, Q) or a mathematically well-defined work 

(14)
𝜕

𝜕t
𝜌

(

1

2
�̇ ⋅ �̇ + 𝛾

)

(�, t) + div
(

𝜌(
1

2
v2 + 𝛾

)

�̇(�, t)

− ��̇(�, t) + �(�, t)) − 𝜌(r + �̇ ⋅ �)(�, t) = 0.

(15)𝜌
d𝛾

dt
(�, t) = −div(�)(�, t) + 𝜌r(�, t) + � ∶ ∇�̇(�, t).

𝜑(�, t) = 𝜌𝛾(�, t),

�𝜑(�, t) = −�(�, t) and

𝜎𝜑(�, t) = 𝜌r(�, t) + � ∶ ∇�̇(�, t).

that does not cause rigid motion on the system, W (see 
Eq. 1). Such exchanges do not alter sub-particle motions. 
Therefore, these motions correspond to a constant term 
inside the internal energy, which vanishes with the varia-
tion of internal energy.

Energy balance

Since the system only has the Erig and U energies, and the 
system can exchange energy to its surroundings by means 
of heat and work only, the system total energy change from 
an initial time to a given time t is

where the total work Wtot(t) exchanged along this time inter-
val is an additive term formed by the work W(t) that is con-
verted into internal energy and the quantity Wrig(t), , which is 
converted into rigid motion kinetic energy, that is,

Note that we defined the system of particle rigid motion and 
internal energies in terms of movements, that is, in terms 
of temporal derivatives, such that Eqs. 16 and 17 explic-
itly depend on time. This allows comparisons to continuum 
mechanics equations.

System of particles: first law and continuum 
mechanics

Imposing time dependence to Eq. 1, it can be written as

Thus, analogously to the subtraction of Eq. 13 from Eq. 14 
to obtain Eq. 15, which is the complementary energy bal-
ance, subtracting the equality ΔErig(t) = Wrig(t) from Eq. 16 
and considering Eq. 17, the first law of thermodynamics is 
obtained (Eq. 18). We can also write the first law by deriving 
Eq. 18 with respect to time, that is, in terms of powers. Then,

where H(t) =
dQ

dt
 and P(t) = dW

dt
.

Note that, V being the body volume, the complementary 
power of the body at time t is

Thus, integrating over the body volume the complementary 
energy balance equation for the continuous body (Eq. 15) 
and subtracting the integrated equation from the internal 

(16)ΔU(t) + ΔErig(t) = Q(t) +Wtot(t),

(17)Wtot(t) = Wrig(t) +W(t).

(18)ΔU(t) = Q(t) +W(t).

(19)
dU

dt
(t) = H(t) + P(t),

(20)
dΓ

dt
(t) = ∫

V

�
d�

dt
(�, t) dV .
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energy power equation (Eq. 19), by considering no heat 
exchange and no thermal energy source or sink ( H = 0 , 
� = � and r = 0 ), we notice that

Therefore, the complementary and internal energies are 
the same if and only if the power P(t) equals the integral 
∫
V
� ∶ ∇�̇(�, t) dV  . Because a continuous body is a mathe-

matical model for the real physical system, which ultimately 
is a system of particles, it is expected that the complemen-
tary and internal energies are the same.

Considering that � is a symmetric tensor field, it 
follows that the product � ∶ ∇�̇ = � ∶ � , because 
� ∶ ∇�̇ = � ∶ (� +�) and � ∶ � = 0 , since � is skew. 
Thus, P(t) = ∫

V
� ∶ �(�, t) dV  . Then, remembering that 

the symmetric part of the velocity gradient, � , is related 
to motions that conserve both linear and angular momenta 
(subsection 1.2), we confirm that P(t) cannot change such 
momenta, as expected. Moreover, bodies in an isotropic state 
of stress display � = −p� , where p is the scalar pressure 
and � is the unit tensor, while div(�̇)(�, t) = 0 if the body 
volume cannot change [5]. Thus, � ∶ ∇�̇ = 0 for constant 
volume bodies in isotropic state of stress. Then, as well as 

dU

dt
(t) −

dΓ

dt
(t) = P(t) − ∫

V

� ∶ ∇�̇(�, t) dV .

mass, linear and angular momentum balances refer to the 
corresponding conservation laws, and there is a conservation 
law for the internal energy.
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