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Abstract
Purpose of Review We review recent methodological advancements in estimation of distance-dependent landscape effects on
terrestrial species. Thesemethods address key theoretical elements from landscape andmetapopulation ecology that were ignored
in previous approaches. Models that treat landscapes as circles within which all land features are equally important to a focal
population ignore distant-dependent population processes, such as dispersal, resource selection, and social interactions. Realistic
models that estimate variation in landscape-scale effects over space and time are necessary to understand the complex processes
that influence population dynamics.
Recent Findings The addition of kernel smoothers to generalized linear models has potential to increase the biological realism of
landscape-species models. These models include estimation of parameters that dictate the relationship between distance and
importance of landscape features to focal populations. There are examples of implementing these models in both maximum
likelihood and Bayesian frameworks, as well as examples using model selection to determine appropriate smoothing kernel shape.
One key limitation of these models is computational effort, although we provide some guidance for reducing model runtime.
Summary Models allowing for inference on explicit ecological processes are critical to advancing knowledge of the basic
landscape ecology of species and will benefit efforts to prioritize conservation and evaluate species recovery efforts. We describe
how distance-dependent landscape-scale effect models can be used for these purposes in a variety of scenarios. We conclude by
proposing a process-based, spatio-temporal framework for understanding the mechanisms behind the spatial scale at which
landscapes influence species.
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Introduction

Understanding the spatial scale at which landscape features
influence ecological processes (the scale of effect) has been

a central part of ecology for decades [1–6]. Although the im-
portance of landscape-level processes on local patterns is now
widely recognized, challenges still remain that hinder infer-
ence about the scale of effect [7]. One challenge is that many
of the early statistical methods that were employed to estimate
the scale of effect ignored important sources of uncertainty as
well as key theoretical elements from landscape ecology and
metapopulation ecology, such as distance decay functions [8].
A second obstacle is that mechanisms governing the scale of
effect are variable and complex [9], making it difficult to
identify unifying themes [7, 10•].

The primary objective of this paper is to review recent
methodological developments that address the statistical issue
described above. In particular, we summarize recent advance-
ments in estimating distance-dependent landscape effects, and
we identify strengths and weaknesses of these approaches that
warrant for further investigation. The distance-dependent
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approach assumes that the influence of a landscape feature on
local population processes (e.g., local abundance) decreases
continuously with increasing distance between the feature and
local process. An important weakness that we focus on is that
most efforts to understand the scale of effect have ignored
temporal dynamics, which often are critical to understanding
the mechanisms giving rise to observed patterns. We end by
proposing a general framework for using spatio-temporal
models to draw inferences on the scale of effect.

The Biological Relevance of Landscape Scale

Landscape ecology, as described by Forman [11], centers on
the spatial relationship among land features and ecosystems,
the movement of elements and species among them, and the
dynamic nature of these processes. Landscape ecology is in-
grained with concepts of geography [12], biogeography [13,
14], and phytosociology [15]. There are hundreds of metrics
that could be used to measure the complexity of any given
landscape [16]. These measurements adequately describe the
landscape, yet they do not in themselves illuminate the eco-
logical processes operating within those landscapes. To un-
derstand the relationships between populations (or communi-
ties or single organisms) and their surrounding landscape, a
species-centric view is required [17–21].

The processes that govern genetic diversity, occupancy,
and abundance are complex and often influenced by inter-
patch dynamics [22]. Consider a scenario where we use sev-
eral years of counts of breeding adults to monitor population
growth of two resident birds (species A and B) that use similar
resources and inhabit the same region. Population growth of
species A is sensitive to chick survival, and population growth
of species B is sensitive to adult survival. As the young of
species A disperse from nests, their survival varies with the
distribution and abundance of foraging cover (row crops).
Adult survival of species B varies with the distribution and
abundance of resources critical for nesting (native warm sea-
son grass) and overwinter forage (row crops). Resource selec-
tion and survival of both species are moderated by patch ad-
jacency to predator habitat and degree of patch isolation.
Dispersal of species A occurs over a larger area than the se-
lection of nesting and overwinter forage of species B. Would
we uncover these mechanisms or the scale of effect of these
mechanisms if we usedmodels with general measures of land-
scape complexity such as contagion, edge density, or patch
diversity? Identifying these species-specific relationships and
the degree to which these relationships decay with distance
would require not only measuring appropriate landscape fea-
tures at correct spatial scales but the collection of biological
data at appropriate temporal scales. Moreover, although it
would require much data, a dynamic model that explicitly
models survival, reproduction, immigration, and emigration

at the biologically appropriate scales would be ideal.
Dynamic inter-patch processes such as foraging [23], nest site
selection [24], mate finding [25], migration, or seeking refuge
from predators [26] can induce landscape-scale effects. The
mismatch in scale between our measurements and the dynam-
ic nature of landscape processes has long been a concern in
ecology [27] and necessitates a nuanced, biologically realistic
approach to modeling landscape context.

The Threshold Landscape Model

Studies that relate landscape context (e.g., landscape compo-
sition and complexity) to local population processes have typ-
ically defined the landscape as a circular region surrounding
the focal site [28]. In studies considering multiple spatial
scales, landscapes are concentric circles that expand until
some large distance from the focal patch is reached [e.g.,
29]. When an appropriate scale is chosen either through a
priori model construction, arbitrarily, or through model selec-
tion, the assumption is that all land features within that circle
are equally important to the focal patch. In other words, ev-
erything in the landscape matters to the local population up to
a certain distance threshold (Fig. 1, middle panel). The thresh-
old model is essentially a distance-dependent approach that
assumes the effect of landscape features is uniform out to a
prescribed distance. The benefit of the threshold model of
landscapes is that it is easily translated to conservation pre-
scriptions. For example, it allows managers to predict how
populations will respond to variation in landscape cover types
or landscape complexity and make management recommen-
dations in a direct way, e.g., “x hectares of y land cover within
d distance are needed to increase local populations by z
amount”. Under the threshold model, any placement of the
prescribed land cover within the defined landscape is accept-
able, whether it be directly adjacent to the focal site or at the
edge of the landscape.

Distance-Dependent Landscape Effects

A linchpin of landscape and spatial ecology is Tobler’s first
law of geography: “everything is related to everything else,
but near things are more related than distant things” [30].
Space is a critical component of resource selection, and re-
source selection is tied to fitness [31]. Is it likely that all areas
within a species-specific landscape are equally available or
important to the species? Dispersal is not a uniform process,
but rather dispersal outcomes are best described using kernels
that decay with distance [32, 33]. Foraging behavior is another
distance-dependent process [34–36]. At the core of modern
metapopulation theory lie distance-dependent extinction and
immigration rates [37]. Any one of these processes could be
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the underlying mechanism of a particular landscape-scale ef-
fect and would violate the assumption of the landscape thresh-
old model. Conservation prescriptions made via the landscape
threshold model may have substantial negative consequences
if the biological process underlying landscape population re-
sponses is distance-dependent. Miguet et al. [38••] found that
accounting for a decline in landscape effect with increasing
distance improved model performance slightly but had signif-
icant implications for landscape management. For example, if
conservation funding is limited, the landscape threshold mod-
el would overestimate the size of the surrounding area needing
landscape management [38••]. This could lead to conservation
of areas that have no possible benefit to the focal population
which would waste valuable resources. More direct compari-
sons of the landscape threshold model and distance-dependent
model are needed, but a distance-dependent landscape model
may describe many systems better than a threshold landscape
model. Additionally, the distance-dependent approach can
produce spatially explicit conservation prescriptions that the
landscape threshold model cannot (e.g., conservation 3000 m
away is 88% less influential than conservation 1000 m away
[39••]).

Aue et al. [40] suggested that weighting landscape features
by their distance to focal populations would improve our abil-
ity to make inferences about landscape-scale effects. Recent
advancements in methods that consider landscape effects as
distance-dependent processes have emerged in terrestrial

ecology [40, 41••]. These approaches are similar to those used
in aquatic ecology [42] and home range estimation [43], for
example. The scale of effect typically defines a distinct area
within which landscape features influence a population, com-
munity, or some other responsemetric of interest at a localized
site [44] (Fig. 1, middle panel). The distance-dependent ap-
proach seeks to estimate an area relevant to local populations
but also to describe a relationship between increasing distance
and the importance of landscape features to the localized site
(Fig. 1, middle panel). In reality, this translates to a landscape
weighted by importance to the local population, where at
some distance, the effect of that land feature on local processes
is negligible (Fig. 1, right panel). This area where distance-
weighted effects are substantially greater than zero is concep-
tually similar to the scale of effect described by the landscape
threshold model (Fig. 1, right panel). In this review, we will
refer to the output of distance-dependent models as “distance-
dependent effects”.

Review Methodology

We searched for peer-reviewed journal article titles, abstracts,
keywords, and subject headings published from January 2010
to April 2020 using the following Boolean search entered into
the University of Georgia Library Multi-Search tool, a tool
that utilizes many databases simultaneously, including Web

Fig. 1 The two approaches to estimating landscape-scale effects: the
threshold method and the distance-dependent method. Both approaches
attempt to answer the same question: what extent of the landscape should
we consider? Specifically, the distance-dependent approach seeks to
answer “how does the strength of landscape effects decrease with
distance?”. For example, on the left, how much of the landscape
surrounding the sampling point (red circle) matters to the population
within the sampling point? Heuristically, we can consider this question
in terms of “relative importance” (middle panel). The threshold approach

assumes all land features within some buffer are equally important to the
focal population. Land features outside of that buffer have no impact on
the focal population. The distance-dependent approach assumes some
decline in importance (e.g., a Gaussian function) with increasing
distance to the focal population. The resulting landscapes between the
two approaches can be markedly different (right panel). The colors of the
distance weighted landscape represent relative importance, ranging from
high (purple) to low (yellow)
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of Science, ScienceDirect, and Wildlife and Ecology Studies
Worldwide: “landscape AND (smoother OR kernel OR dis-
tance based OR distance-based OR distance-dependent OR
distance dependent OR distance-decay OR distance decay)
AND (response grain OR spatial extent OR spatial scale OR
scale of effect OR characteristic scale OR spatial scaling)
AND (ecologyORwildlife OR conservation) AND (occupan-
cy OR abundance OR community)”. We then evaluated each
manuscript returned from our search (n = 69) and retained
those relevant to our review (i.e., manuscripts related to ter-
restrial species-landscape relationships; n = 47). To supple-
ment our initial search, we also conducted ancillary searches
of relevant terms using Google Scholar and Mendeley.
Several manuscripts that we found used distance decay in their
models, for example, to describe the decline in beetle species
richness as distance from conservation practices increased
[45], but did not estimate scale of effect per se, so these man-
uscripts were excluded from our review. Additionally, we
evaluated manuscripts that cited Chandler and Hepinstall-
Cymerman [41••] and Miguet et al. [38••] because these man-
uscripts were specifically dedicated toward developing
distance-dependent approaches to estimating species-
landscape interactions. In total, we focused on 9 manuscripts
for this review that developed or applied the distance-dependent
approach to estimating terrestrial species-landscape
relationships [38••, 39••, 40, 41••, 42–47, 48••, 49, 50••].

The General Approach to Estimating
Distance-Dependent Landscape Effects

Both Chandler and Hepinstall-Cymerman [41••] and Miguet
et al. [38••] thoroughly describe the process of estimating
distance-dependent landscape effects, so we will summarize
the general approach briefly. The main assumption when es-
timating distance-dependent landscape effects is, of course,
that if there is an influence of a landscape feature on local
population processes, the strength of that effect decreases with
distance from the focal point. Practically, there must be a way
to estimate this relationship using data common to landscape-
species studies (e.g., counts or presence/absence data). The
manuscripts reviewed here all used kernel smoothing ap-
proaches. For determining landscape-scale effects, the
smoothing parameters can be estimated [38••, 41••, 48••, 49]
or determined via model selection [40, 50••]. Both approaches
are structurally similar in that they apply a kernel to smooth a
spatially explicit covariate (e.g., forest cover) around each
sampling point to compute a distance-weighted covariate val-
ue. It is important to note that the spatial covariate must be
discretized, for example, into concentric, non-overlapping
rings [48••] or pixels [39••]. A distance matrix is then calcu-
lated between each sampling site and each discrete unit of the
spatial covariate (e.g., a site x pixel matrix). Amatrix of spatial

covariate values associated with each discrete unit and sam-
pling site (e.g., a site x pixel matrix) is also provided as data.

The maximum distance between sampling sites and points
in the landscape considered in the model (dmax) is either de-
fined by the availability of spatial covariates or defined by the
investigator a priori as some distance that is predicted to en-
compass all landscape effects [e.g., 39••, 48••]. Spatial covar-
iates should extend beyond the boundaries of the study area by
dmax to avoid biased estimates introduced by boundary edge
effects. If initial modeling indicates that distance-dependent
landscape effects extend beyond this area, i.e., if there is non-
negligible kernel weight at dmax, the investigator should in-
crease dmax. During the estimation process for any one site, the
vector of spatial covariate values associated with surrounding
discrete units (e.g., rings or pixels) are weighted and summed
according to the modeled kernel smoother.

For illustration, if we were to estimate the effects of forest
density (forest) on the abundance (Ni,t) of an amphibian at
ephemeral wetland sites (indexed by i) over 10 years (indexed
by t) using a Gaussian smoothing kernel embedded in a gen-
eralized linear model, we may model abundance in year 1 as:

Ni;1∼Poisson λi;1
� �

log λi;1
� � ¼ β0 þ β1s foresti;1;σ1

� �

where λi, 1 is expected abundance at site i in year 1, β0 is the
intercept of the linear model, and β1 is the coefficient of effect
of distance-weighted forest density on year 1 abundance, s-
(foresti, 1, σ1). The value of forest density at site i in year 1 is
the sum of distance-weighted forest values within surrounding
areas j (e.g., each discretized ring):

s foresti;1;σ1

� � ¼ ∑ jw1 i; j;σ1ð Þforest j
where weights in year 1 w1 at each distance from site i to ring
(or pixel) j is determined by a Gaussian kernel:

w1 i; j;σ1ð Þ ¼
exp −d2i; j

� �
=2σ1

2

∑
J

j¼1
exp −d2i; j

� �
=2σ2

1

where d is the distance between site i and ring (or pixel) j.
Note that when using rings to discretize the landscape, this
equation also includes the area of each non-overlapping
concentric ring [9]. The Gaussian kernel used here has
one parameter, σ1, dictating its shape in year 1. In subse-
quent years, we could model N as random Poisson process,
with expected abundance λi, t varying based on realized
abundance in the previous year, some intrinsic growth rate
γ0, and the effect of landscape-scale forest density on
growth rate γ1, where each year we allow scale of effect
σt to vary:

λi;t ¼ Ni;t−1exp γ0 þ γ1s foresti;t;σt
� �� �
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We allow the scale of effect to vary among years to reflect
(phenomenologically) any shifts in population dynamics that
drive the relationship between landscape-scale forest density
and abundance (e.g., juvenile dispersal or predation). A tem-
poral lag in the effect of landscape processes on local abun-
dance could be included in the model as well. The parameters
could be estimated within the model [39••, 41••] or deter-
mined via model selection [38••].

Model Considerations

Kernel Shape

The kernels typically have 1 or 2 parameters that dictate the
shape of the relationship between increasing distance and the
weight of a landscape feature (see Table 1 in Miguet et al.
[38••]). Gaussian kernels were most commonly used to weight
landscapes [39••, 40, 41••, 48••]. Kovács et al. [50••] used a
rotationally symmetric two-dimensional t distribution kernel.
Miguet et al. [38••] describe several alternative kernels, in-
cluding negative exponential and exponential power func-
tions. Practically any function that decreases with distance
could be used to weight landscape features, including a thresh-
old model (Fig. 1) or a step function [49]. The selection of the
kernel could be informed by biological processes [46]. For
example, if it is expected that landscape effects decrease
sharply with increasing distance, a negative exponential func-
tion or an exponential power function may be most appropri-
ate. Yeiser et al. [39••], Aue et al. [40], Chandler and
Hepinstall-Cymerman [41••], Moll et al. [48••], and Kovács
et al. [50••] defined the shape of the kernel a priori, and
Miguet et al. [38••] used model selection to determine the
most appropriate kernel shape. Miguet et al. [38••] compared
identically parameterized models with different weighting
functions that defined the spatial smoothing kernel, including
a threshold model, using Akaike’s information criterion (AIC
[51]). If model selection indicates that any one model has
substantial support, this would alleviate assumptions about
the shape of the relationship between increasing distance and
importance of landscape features. In general, functions that
include more than one parameter (e.g., the exponential power
family of functions) provide greater flexibility [38••].
However, adding parameters to the scale of effect may in-
crease the difficulty of estimation.

Shape Parameter Estimation Vs Selecting a Shape
Parameter Via Model Selection

The parameters controlling the shape of the weighting kernels
have been estimated in both likelihood-based [40, 41••] and
Bayesian frameworks [39••, 48••, 49] and selected via model

selection in a likelihood-based framework [38••, 50••].
Estimation of kernel shape parameters is the same as estimat-
ing any other unknown parameter in likelihood-based or
Bayesian frameworks [39••, –40, 41••, 48••, 49]. For model
selection, several candidate models with the same parameter-
ization are considered; however, each has different values
assigned to the shape parameters that dictate the relationship
between land features and distance [38••, 50••]. The models
are then ranked according to some information criterion (e.g.,
AIC [51]). Estimation can be difficult if there are small effect
sizes or little spatial autocorrelation in landscape metrics
[41••]. Making inference via model selection may also be
difficult in these scenarios (e.g., many models would receive
equal support). One drawback of using model selection to
determine distance-based landscape effects is that it is difficult
to understand the uncertainty around shape parameters.
Selecting one characteristic scale of effect (i.e., the top model)
would not carry any uncertainty. Averaging predictions over
all candidate models is one way to incorporate uncertainty into
the model selection approach. In general, we expect that the
inference would be similar whether using an estimation ap-
proach or a model averaging approach. As with any model,
fitting these models to data that is information poorwould lead
to very high uncertainty.

Limitations

There can be great computational effort associated with esti-
mating distance-based landscape effects. Computational effort
in this case can be increased in many ways (e.g., model com-
plexity, Bayesian vs Frequentist approach), but directly rele-
vant to the distance-dependent approach are the resolution of
the discretized landscape (i.e., pixel size or ring width) and
extent of the study area considered (dmax). As with any spatial
analyses, there is a tradeoff between the resolution of the data
and the geographic extent at which you can make inferences
when computational resources are limiting. As mentioned in
The General Approach to Estimating Distance-Dependent
Landscape Effects section, initial analyses will determine if
dmax is sufficiently large. Extending dmax and maintaining
the same resolution of the discretized landscape could result
in models that require excessive memory or processing time.
High-performance computing via cloud services allows relief
from typical limits of processing and memory limits on local
machines. If high-performance computing services are not
available, then a solution is to lower the resolution of the
discretized covariate. This could lead to estimation and infer-
ence issues if response variables of interest vary at resolutions
finer than that of the distance-weighted covariate (i.e., the
modifiable aerial unit problem [52, 53]). Additionally, in-
creasing dmax too far can lead to estimation issues as there is
less variation among sampling points when distance-weighted
landscapes substantially overlap [41••].
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Primary Knowledge Gap: What Governs the Scale of
Effect?

Predicting the mechanisms of species’ scale of effect could
improve the design of reserve networks, conservation corri-
dors, enrollment of conservation parcels in working land-
scapes, and the design of regional-scale ecological research.
Miguet et al. [9] hypothesized several mechanisms for spe-
cies’ selection of spatial scale: local movements, dispersal
movements, population density, space-time relationships,
and numerous indirect effects. The sensitivity of a species’
dynamics to these processes can vary with time and space
[e.g., 54], which suggests the potential for spatio-temporal
variation in scale of effect in any given population. The po-
tential complexity in the mechanisms that drive scale of effect
is likely akin to the complexity that drives population dynam-
ics. So far, there is little evidence for any unifying mecha-
nisms governing scale of effect [9, 48].

Our understanding of the mechanisms behind distance-
dependent landscape effects will be accelerated by study de-
signs and models grounded in biologically relevant hypothe-
ses. Suárez-Castro et al. [55] found that in landscape ecology,
“interactions between species traits and landscape structure
are usually ignored”. Ecologists interested in understanding
landscape-scale effects should approach study design in con-
text of the question: “why would there be landscape-scale
effects?”. Two related questions should be considered: (1)
which population processes (e.g., fecundity, dispersal) are
governing population outcomes (e.g., abundance, site occu-
pancy)? and (2) are there land features at biologically relevant
scales that influence those population processes? Explicitly
considering biological traits or processes that influence
distance-dependent landscape effects would dictate land cover
classification [56], the sampling design, the spatial extent of
the study, the resolution (temporal and spatial) of data collect-
ed, and the type of modeling approach used.While there is not
likely to be one consistent predictor of scale of effect across
species and landscapes, we find it plausible that there could
emerge a hierarchy of mechanisms consisting of those
outlined in Miguet et al. [38••] that are consistent among taxa.
For example, we would predict that movement capabilities,
likely allometrically influenced, would be an intrinsic predic-
tor of scale of effect, while factors like population density,
landscape fragmentation, and local movement patterns mod-
erate scale of effect across different geographies.

An additional complication is that many of the processes
that could govern scale of effect may be occurring simulta-
neously. It is not uncommon for a study to uncover several
spatial scales at which species respond to environmental
change [10•]. In context of the distance-dependent view of
landscape-scale effects, this means multiple relevant relation-
ships between increasing distance from the focal point and
importance of landscape features. Several processes,

including resource distributions that vary over space and time
influencing different vital rates and differing spatial scale at
which these processes are occurring, can contribute to the
species-specific nature of habitat and landscapes [21]. When
estimating one distance-dependent relationship, are we essen-
tially averaging across several distinct spatially explicit pro-
cesses and producing one relationship that may not represent
any relevant population-landscape relationship? A potential
avenue for further model development is uncovering ways to
estimate multi-dimensional scale selection within a single spe-
cies and compare this to estimatingmultiple distant-dependent
relationships.

Bridging the Knowledge Gap: A Proposed Spatio-
Temporal Framework

Many studies of landscape-scale effects include estimation of
abundance or occupancy, which are snapshots of populations
that are dictated by births, deaths, emigration, and immigra-
tion. The scale of effect estimated from occupancy and abun-
dance data is an emergent property that results from spatio-
temporally explicit processes. Let us return to our example in
the The Biological Relevance of Landscape Scale section of
how dispersal and resource selection of young in species A
influences breeding season abundances. The variation in the
abundance estimates is reflecting processes that occurred dur-
ing the previous breeding season. Even if breeding season
abundance is sensitive to young survival during the previous
year, there are other events occurring between two breeding
seasons that can influence populations. As a result, inference
on the mechanisms behind changing demography is muddled.
In this case, we would learn more bymeasuring age-structured
survival via mark-recapture methods and relating survival to
landscape features [55, 56]. In the same way that a scale of
effect estimator can be embedded in the linear model of abun-
dance, it can be included in these generalized linear models.
Estimating the influence of landscape structure on key vital
rates in conjunction with estimating breeding population size
would provide a broader understanding of the mechanisms
driving the dynamics of this population. The costs of captur-
ing and monitoring individuals increase substantially with
scale, however, so integrating data sets that include broad-
scale, information poor data (e.g., occupancy or abundance)
with various local-scale, information rich data would provide
an avenue for understanding the mechanisms of population
dynamics across large geographic areas [57, 58].

There are several additional processes that have lagging
effects on populations. For example, occupancy often has less
to do with current conditions than site and landscape condi-
tions of the previous year. Estimating metapopulation dynam-
ics using a spatio-temporal framework allows for understand-
ing how time lags and spatial processes influence populations
[59]. In general occupancy, abundance, or diversity at any
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given site is a result of interspecific and intraspecific interac-
tions and spatio-temporal variation in vital rates. These pro-
cesses inherently vary over space and time. In order for us to
understand the landscape-scale consequences of habitat loss,
resource fragmentation, or climate change on species of con-
servation concern, we need to house our models and hypoth-
eses within a spatio-temporal framework. In this context, the
inference of these models is greatly enhanced by estimating
distance-dependent landscape effects.

Conclusions

It is increasingly clear that landscape-scale effects moder-
ate the success of broad-scale conservation programs, and
in light of limited funding, fleeting political capital, and the
urgency of species decline across the globe, it is imperative
that we use models that are defensible and based in biolog-
ical realism. The emergence of distance-dependent
methods when estimating scale of effect in terrestrial sys-
tems is a welcome advance that we believe can improve the
application of landscape ecology to conservation prob-
lems. Landscape effects should be evaluated in a way that
is driven by hypotheses around the mechanisms of species’
scale selection. This would accelerate the construction of a
literature database that could be leveraged to make predic-
tions about scale of effect that would influence conserva-
tion and management planning.

Trial and error will undoubtedly be an integral part of de-
veloping this method for use in terrestrial landscape ecology.
There are many practical considerations to implementing
these models, including ensuring the appropriate scale of data
is used, managing computation time, selecting the most ap-
propriate smoothing kernel, and finding effective ways of
translating distance decay relationships into conservation pre-
scriptions. The application of distance dependence to estimat-
ing landscape-scale effects is in its early stages, but the liter-
ature referenced herein should provide an initial set of caveats,
considerations, and model structures for the practitioner to
consider [38••, 39••, 40, 41••, 42–47, 48••, 49, 50••].
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