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Abstract
Purpose of Review After several decades of research on edge effects in marine habitats, we still have little understanding of how
organisms respond to marine ecotones, and methodological gaps appear to be limiting our progress. Using recent literature
(2010–2018), we synthesized responses and processes of organisms across several marine habitats. Specifically, we examined the
uniformity of studies across biogenic habitats, the scales selected for exploring edge effects, the experimental approaches used,
and the confounding influences that muddle our interpretation of results.
Recent Findings The majority of edge effect studies are still conducted in seagrass systems and focused on response
patterns. We found that the majority of studies were equally likely to report an increase, decrease, neutral, or equivocal
effect depending on the context of the organism or habitat. Additionally, only a single measure, or a few related
responses, is assessed and causal mechanisms are rarely tested. We note that most studies quantitatively defined an
edge habitat as a linear distance from a habitat boundary (e.g., < 1 m, < 5 m), but the distances were not usually scaled to
the size, trophic level, or mobility of focal organisms.
Summary We provide a conceptual diagram as a roadmap for researchers for navigating the myriad influences that affect
floral and faunal responses to marine habitat edges. Future efforts should seek to move beyond mensurative searches,
explicitly incorporate potentially confounding variables, and more consistently test putative causal factors when known
or hypothesized. Additionally, we advise expanding research on habitat types other than seagrasses (e.g., mangroves,
shellfish, corals) and adjusting observational scales to more appropriately match mechanisms. Ultimately, we should
move beyond pattern description, repeated in a limited subset of nearshore habitats, and toward a quantitative under-
standing of the processes acting in these unique and potentially impactful marine ecotones.
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Introduction

Biogenic habitats are critical to marine and coastal productiv-
ity and exist as a mosaic of patches that vary in size, shape,
and degree of isolation due to a combination of anthropogenic
and natural dynamics, including eutrophication, destructive
fishing practices, navigational dredging, wind and wave activ-
ity, currents, and a suite of ecological processes. For the past
30 years, marine ecologists have largely applied terrestrial
landscape-scale principles while investigating how watershed
modification, habitat loss, and fragmentation affect the man-
agement and conservation of important marine species and
foundational habitats. Dubbed ‘seascape ecology,’ the still na-
scent field focuses on the ways in which complex spatial pat-
terning in marine habitats modifies interactions between spe-
cies and the environment, controlling the abundance and dis-
tribution of marine organisms. One of the most pronounced
features in seascapes are habitat edges or ecotones, typically
defined as transitions between habitats of different structural
complexity. Associated with these transition zones are chang-
es in abiotic conditions (i.e., flow [1•, 2]), as well as changes
in community and habitat structure relative to the interior of
either habitat [3]. Edge effects have received considerable
attention in the literature due to both observed and predicted
responses of organisms to habitat boundaries.

Edge habitats are thought to have different environmental
conditions than ‘core’ or interior habitats, which should influ-
ence ecological processes and subsequently community struc-
ture. Edges can differentially influence the movement of or-
ganisms, alter mortality rates, facilitate cross-boundary subsi-
dies, and create opportunities for novel species interactions
[4]. During the past 15 years, researchers have used empirical
and theoretical models to predict species responses to edges in
terrestrial [5] and marine [3] habitats. Edge zones that offer
greater access to resources and/or complementary resources
between two habitats may enhance abundance and diversity at
patch edges [3], resulting in what is often termed a ‘positive
edge response’ or one in which the estimated variable in-
creases from core to edge. Conversely, negative edge re-
sponses may result from higher predation rates [6] and/or in-
vasions [7] along edges. Most often, however, species do not
appear to respond to edges at all, with neither increased or
decreased abundance and diversity between core and edge
areas, resulting in a ‘neutral edge response’ (sensu Boström
et al [8]). The study of edge effects has achieved prominence
in seascape ecology because many anthropogenic activities
result in habitat loss and fragmentation, which often generate
edge habitat. Thus, it is critical to develop a clear understand-
ing of how edges modify organismal biology and ecosystem
function if urbanized estuaries and coasts are to be managed
successfully.

Tenets of landscape ecology, such as the effects of habitat
fragmentation and landscape composition and configuration

on ecosystem function, have been applied with little modifi-
cation to the studies of edge effects in marine systems [9].
Terrestrial studies have documented how the vegetative struc-
ture of ecotones can result from even subtle gradients in envi-
ronmental conditions (e.g., light [10], microclimate [11, 12])
compared to the core habitats. Organism distribution and net
species interactions often respond accordingly [13, 14],
resulting in edges with accumulations of organisms and re-
sources. However, despite environmental gradients, Ries
et al. [5] found that this is by no means a universal pattern,
with a large number of terrestrial studies, involvingmany taxa,
reporting neutral responses to patch edges. Similarly, in ma-
rine systems, we routinely observe edge-related patterns that
vary by species, system, and samplingmethod, in part because
the field is still developing [8]. Inconsistent edge effects in
marine systems might be attributable to a still emerging field;
however, we argue that major differences in the physics of the
constituent medium (i.e., water vs. air) lead to important dis-
tinctions in density, heat capacity, light attenuation, oxygen
concentration, etc. between marine and terrestrial habitats,
creating a number of challenges to the translation of terrestrial
concepts and experimental approaches to marine systems
[15••]. Thus, our expectations of the factors driving edge re-
sponses and the assumed ubiquity of edge effects may be
misplaced. By identifying which physical and biological pro-
cesses are edge-responsive, we can better predict where and
when we might see edge effects.

Despite the ambiguity of edge effects, they remain critical
for management purposes. There is a gap in our understanding
of the ecological consequences of changing seascape spatial
arrangement, and habitat boundaries, and the edge habitats
they create, remain important structural attributes of sea-
scapes. The predictive framework of faunal responses to hab-
itat edge is dependent upon resource distribution between the
two adjacent habitats [3, 10]. However, shape, magnitude, and
direction of the response across edges vary with habitat com-
plexity, resource distribution, and the causal process or pro-
cesses at work [3, 16, 17]. While a majority of previous stud-
ies showed no edge effects on abundance, richness, or diver-
sity, we commonly see effects on recruitment [18••], predation
[19], and animal movement [20], suggesting that the snapshot
nature of many studies may not be sufficient for uncovering
edge effect patterns.

In a broad review of seascape ecology, Boström et al. [8]
discussed edge effects from the literature within the context of
three biogenic habitats—seagrasses, salt marshes, and coral
reefs. The spatiotemporal scales varied within and across hab-
itats, and some of the studies used the amount of edge habitat
or differing perimeter to area ratios to determine an edge re-
sponse, rather than a direct comparison of edge to core loca-
tions. Although there were some taxon-specific responses to
patch edges, the majority of the studies yielded equivocal
results [8]. The authors concluded that future edge studies
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should seek to test the mechanisms underlying spatial pat-
terns, where and when they occur. Additionally, they sug-
gested expanding work in other biogenic habitats, across mul-
tiple life history stages, and on animal movement and behav-
ior within edge habitats. To expand upon their synthetic cri-
tique, we reviewed the literature on marine biogenic ecotones
published since the Boström et al. [8] review. By examining
edge responses of fauna across six biogenic habitats (seagrass,
salt marsh, mangrove, shellfish reef/bed, coral reef, and
macroalgae), we answered the following questions: (1) How
common are edge studies across biogenic habitats in general?
(2) Are the spatial scales typically used appropriate for evalu-
ating edge effects? (3) Has the experimental approach to edge
effects in marine habitats matured over time? and (4) What
variables confound the interpretation of edge effects, and are
they being directlymeasured or implied by literature post hoc?
Our goals were to audit the investigation of edge effects in
coastal seascapes, assess the commonalities in questions and
results across habitats, identify conceptual pitfalls or road-
blocks, assess experimental rigor, locate missed opportunities
for discovery, reassess starting assumptions and identify cir-
cular reasoning, and make recommendations on future re-
search directions to improve our understanding of edge effects
in marine systems.

Methods

The aforementioned review of seascape ecology by Boström
et al. [8] evaluated literature for the years preceding 2010; there-
fore, we reviewed the literature appearing after 2010 on edge
effects in biogenic marine habitats. Studies were amassed
through the use of personal libraries as well as database
searches. The database ISI Web of Knowledge (www.
webofknowledge.com) was used, and searches were bounded
from studies published from July 2010 through October 2018;
wildcards (e.g., seagrass*) were combined with the following
key terms: edge, edge effect, and ecotone, to search the title,
abstract, and keywords. Our main criterion was explicit
comparisons of a process or pattern between the edge and
interior of the focal biogenic habitat. We included seagrasses,
salt marshes, mangroves, coral reefs, shellfish beds (oysters and
mussels), and macroalgae as focal habitats. In addition, we
included mesocosm studies that made direct comparison
between the edge and interior of a focal habitat.

Once qualifying studies were compiled, we identified the
habitat, the focal organisms, the matrix habitat, the spatial scale
of the edge, period of observation, the process or response
measured, and the overall edge effect result (i.e., increase, de-
crease, neutral, or equivocal).We defined an increase in process
or pattern as a positive response, a decrease as a negative, and
no change (as defined by the authors) as neutral. Importantly,
we used the manuscripts’ focal questions to determine the

response (i.e., if a manuscript was examining survival of a prey
species and showed a decrease near the edge, we considered
that a negative response, whereas if a manuscript was examin-
ing foraging of a predator species, whichwas higher at the patch
edge, we considered that a positive response). In addition, we
classified studies that displayed multiple but inconsistent re-
sponses within and among species, or across time, as having
equivocal results. We considered both patterns (e.g., biomass,
density, diversity, richness; Table 1) as well as ecological pro-
cesses (i.e., events or actions resulting in the measured re-
sponses, such as predation or water/resource flow; Table 2).
We noted the author definitions of edge distance, when avail-
able, to determine if authors were arbitrarily determining the
edge distance or if they were designing experiments sensitive to
the organism size, trophic level, or mobility. One paper was
excluded because it selected an anomalously large edge dis-
tance (150 m) for a sessile organism (mussels) without suffi-
cient justification.

Results

Our search terms identified 105 potential papers using the terms
‘edge’, ‘edge effects’, or ‘ecotones’ within the title, abstract, or
as keywords. From these, we eliminated 33 papers from con-
sideration that referred to species range edges rather than habitat
edges, did not make direct comparisons between an edge and
core habitat, or were reviews or meta-analyses, leaving us with
71 publications for analysis. Almost half of the papers exam-
ined edge effects in seagrass habitat (n = 33), with relatively
few studies focused on mangroves (n = 12), shellfish beds/reefs
(n = 12), salt marshes (n = 10), macroalgal habitats (n = 3), and
coral reefs (n = 1) (Fig. 1a). Study organisms ranged from bac-
teria to fishes, although 20% of studies examined broader tax-
onomic categories or functional groups (e.g., ‘invertebrates,’
‘macrofauna,’ ‘epifauna’ etc.). Observational time scales varied
considerably, with almost as many studies using a single sam-
pling event (32%, n = 23) as those replicated temporally over a
few months (30%, n = 22). A few studies were repeated sea-
sonally (8%, n = 6), or across multiple years (12%, n = 8). The
rest of the studies lasted less than a month, with a number of
experiments lasting only a few hours to days (13%, n = 9).

The majority of studies examined edge effects across
boundaries between structured focal habitat patches and un-
structuredmatrix habitat, typically soft sediments, although 15
studies compared two structured habitats. Of the 71 studies, 22
(34%) adopted a continuous sampling design from the habitat
transition toward the interior of the focal habitat, and thus did
not explicitly delineate habitats as edge or interior/core. The
remaining studies (n = 49) examined categorical edge and in-
terior habitats where 43 explicitly defined an edge (e.g., < 1 m,
< 5 m). The remaining six categorical studies compared edge
to interior but did not clearly define the width of the edge
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habitat. Of the studies that defined an edge, whether using a
categorical or continuous scheme, the range was 0.03–20 m,

although the majority defined the edge habitat as less than 5 m
(n = 40; 56%; Fig. 1b). The mean edge distance was

Table 1 Summary of a subset of
studies showing only responses
(not processes) of different taxon
to marine habitat edge effects.
Studies that reported multiple
responses based on species or
driven by a confounding factor
(i.e., patch size, shape) were
reported as equivocal

Organism Habitat Response Increase Decrease Neutral Equivocal

Abiotic Mangroves Distribution, soil Ph 1 1 0 0

Seagrass Carbon storage 0 1 0 0

Bacteria Mangroves Diversity 0 1 0 0

Saltmarsh Denitrification 0 0 0 1

Bivalve Mussel bed Adhesion strength,
condition, course shell
debris, dislodgement,
distribution, growth,
size, survival

3 3 3 2

Oyster reef Condition, growth,
survival

0 1 0 3

Crustacean Mangroves Bioturbation, density, size 0 2 1 1

Oyster reef Density 0 0 0 1

Echinoderm Kelp Density 1 0 0 0

Seagrass Density 1 0 0 0

Fauna Mangroves Diversity 0 0 0 1

Mussel bed Diversity 0 1 0 0

Seagrass Density, diversity,
richness

2 4 1 2

Fish Coral Density, richness 0 0 1 1

Mangroves Density 1 0 1 0

Seagrass Biomass, density, size,
survival

3 1 1 2

Gastropod Mangroves Density, size 0 2 0 0

Saltmarsh Biomass, density, size 0 4 0 0

Seagrass Composition, density,
diversity

2 0 0 3

Insect Mangroves Diversity 0 0 1 0

Invertebrate Macroalgae Richness 0 1 0 0

Seagrass Diversity, richness,
survival

1 1 2 0

Macrovertebrate Seagrass Composition, density,
diversity

1 0 1 4

Plant Mangroves Diversity 0 0 1 0

Saltmarsh Growth, mortality,
survival

2 1 0 0

Seagrass Blade length, reproductive
output

0 1 1 0

Table 2 Summary of a subset of
studies that measured a process,
rather than responses, of taxa to
marine habitat edges. Studies that
reported multiple responses based
on species or driven by a
confounding factor (i.e., patch
size, shape) were reported as
equivocal

Habitat Process/response Increase Decrease Neutral Equivocal Total

Kelp Settlement 0 0 1 0 1

Mussel
bed

Behavior, erosion, recruitment,
temperature, habitat structure/density

6 2 0 0 8

Oyster
reef

Behavior, recruitment, habitat
structure/density

0 1 0 2 3

Saltmarsh Sediment dynamics, habitat
structure/density

2 2 2 6

Seagrass Foraging, herbivory, predation,
recruitment, settlement, habitat
structure/density

4 5 2 4 15
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3.0 m ± 4.7 m (mean ± SD), and grouping the study organisms
into categories defining their mobility (sessile, mobile, plank-
ton), trophic level (primary producer, primary consumer, pred-
ator), or individual body size did not show any clear pattern
related to corresponding edge size (Supplemental Fig. S1).

Overall, the papers we examined measured more pat-
terns (65%) than processes (35%; Supplemental Table S1)
Out of the 46 studies that measured patterns in relation to
patch edges, the majority measured organismal density
(52%, n = 24), but species diversity was also common
(28%, n = 13) (Table 1). Focal taxa were variable, with
the highest number of studies examining ‘fauna’ (17%,
n = 8) and bivalves (15%, n = 7). These patterns showed
a decreased response 32% of the time; it was more com-
mon to find a negative response on species density, diver-
sity, and survival at patch edges while equivocal results
also common (27%) due to differences across multiple
species of fauna, at different edge locations, or in metric
used (i.e., diversity vs. richness) (Table 1).

We found 24 papers that examined edge effects on processes
with the majority conducted in seagrass (50%, n = 12), followed
by mussel beds (21%, n = 5), and saltmarsh (17%, n = 4)
(Table 2). Of these studies, the most common processes exam-
ined were settlement/recruitment (n = 8) and predation (which
we included foraging and grazing; n = 9). Additionally, nine
studies examined the structural complexity/density of the habitat
as a proxy for the mechanism of interest. As above, the effects of
habitat edges on processes were variable across taxa and habitats
(Table 2). Settlement and recruitment were often higher at habitat
edges (n = 4), although one study demonstrated a decreased re-
sponse and two studies reported no effect. Similarly, when pre-
dation, grazing, and foragingwere considered together, four stud-
ies showed an increase at patch edges, while decreased and neu-
tral responses were found in two studies each. In total, most of
the studies (n = 50) were strictly mensurative (observing re-
sponses only); many fewer (n = 13) actually measured or exper-
imentally assessed the mechanism that was thought to be driving
the observed edge effect, while the rest of the papers invoked
mechanisms from the literature.

Discussion

The distribution of marine species is driven by both the sur-
rounding physical environment and ecological interactions
and processes, both of which can abruptly change at habitat
edges. As such, these transition zones are recognized as im-
portant features in seascape ecology, and organismal and eco-
logical processes at edges continue to be major research foci.
Similar to previous assessments of the edge effect literature,
we report inconsistent or equivocal edge effects on species
responses across major marine habitats. Further, we found that
(1) most studies were conducted in seagrass habitats, (2) most
researchers took a mensurative approach to exploring re-
sponses with few examples of manipulative work, (3) studies
were mostly conducted along non-structured matrix habitats,
and at relatively fine spatiotemporal scales.We have identified
a number of potential issues pertaining to the study of marine
ecotones that may have stymied progress in this nascent
subdiscipline.

(1) How common are edge studies across biogenic habitats?

Boström et al. [8] found that the majority of the research on
edge effects remains within seagrass habitats, predominantly
within a binary (habitat vs. no habitat) seascape context.
Although our review shows that edge effect studies have in-
creased in certain habitats (i.e., shellfish, mangroves),
seagrasses still represent the preponderance of effort. There
is likely a historical component favoring seagrasses, as these
were the first marine habitats in which landscape ecological
principles were applied [21] and seagrasses often exist in
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patchy mosaics with distinct boundaries, making edge delin-
eation relatively straightforward. In addition, seagrass patches
are easy to replicate (i.e., using artificial seagrass units), which
can allow researchers to perform more controlled, manipula-
tive studies. Experiments using natural and artificial
seagrasses typically explore questions within a binary land-
scape (seagrass vs. sand) with well-defined habitat edges,
rather than transitions between two complex habitats where
pattern interpretation is more difficult.

Marine habitats other than seagrasses are less represented
in the literature and may be fundamentally more difficult to
work within. Edges may be less distinct and therefore more
difficult to delineate in situ. They may be ephemeral due to
stochastic species occurrence, as is the case for some
macroalgal canopies, or result from canopy movement, com-
mon in kelp systems, where wave activity shifts edges over
very short timescales. Similarly, shellfish beds and coral reefs
may not have a distinct edge, particularly in natural reefs/beds
where edges may be surrounded by shell debris fields or in-
termittently covered by shifting sediments. Non-seagrass bio-
genic habitats are often tidally exposed and bounded by other
complex habitats (i.e., marshes and oysters), which could
complicate the interpretation of edge-related patterns. In addi-
tion, the structural complexity of some of these habitats can
potentially confound results; while seagrasses extend upwards
into the water column, the structure and rugosity of oyster
reefs are much more complex and difficult to standardize
when comparing among or between study sites. Regardless
of the underlying motivation, it is clear that seagrass habitats
are preferentially selected by investigators and so dominate
the seascape and edge effects literature. To address this issue,
we recommend expanded focus on other biogenic habitats and
a clearer examination of edge effects related to both the habitat
forming species themselves and their associated communities.

(2) Are the spatial scales relevant?

Appropriate scaling remains one of the central issues in
ecological studies [22]. Our review indicates that, for most
studies, edge sizes have not been selected with deference to
the size, trophic level, or level of mobility of focal organisms.
For example, a 1 m distance has been used to describe the
edge habitat for studies of organisms ranging from bacteria
[23] to seagrass and mangrove propagules [24•, 25•] to low-
mobility invertebrates such as scallops [6] or to high-mobility
animals such as fishes [26••]. Meanwhile, within groups of
similar size, mobility, and trophic level, such as gastropods,
the distance of the edge habitat can range from 0.1 to 15 m
[27–29]. In general, edge distances used were relatively small
(< 2 m) which may be appropriate for bacteria and sessile
organisms that experience differences in flow, dissolved oxy-
gen, predation, etc., at those scales, but may not be relevant for
larger organisms such as crustaceans or fish. Mobility, paired

with organism size, is therefore a key factor in defining an
edge that is appropriate from an ecological and biological
standpoint.

Beyond scaling to organism size, investigators should care-
fully consider the causal process being studied and attempt to
scale their study appropriately. There are few examples within
the literature where studies have established an edge boundary
by first measuring environmental gradients (flow, tempera-
ture, turbidity etc.) to dictate the definition of edge size. For
example, Jurgens and Gaylord [30••] identified patterns in
mussel distribution, while Nicastro et al. [31] examined mus-
sel behavior across temperature stress gradients which oc-
curred at a very short spatial scale (12 cm and 15 cm, respec-
tively). Mussel responses were observed over discernable gra-
dients in temperature, indicating that the studies used the ap-
propriate, albeit small, scale of the response. Predation on
mussels in oyster habitat may also vary over extremely small
spatial scales (3–12.5 cm) in mesocosm studies [19].
Alternatively, on oyster reefs in the field, differences in mussel
abundance between the edge and interior were not found until
sampling beyond 5m [32•]. Other responses and processes are
likely occurring at either smaller or larger scales than those
arbitrarily chosen (1–2 m) in most edge effect studies.
Frequent discrepancy between the scales of action (mecha-
nism or focal organisms) and observation may contribute to
the high number of studies finding equivocal edge effects.
Lastly, the large number of studies that continuously sampled
perpendicular to habitat boundaries represents a glaring
missed opportunity to estimate the size of marine ecotones.
Unfortunately, most of these studies merely sought an effect
and made no attempt to quantify the width of edge habitats.
Progress in our delineation of ecotonal habitat could be made
by leveraging the data from regression-based sampling
schemes.

At present, too many researchers select an arbitrary edge
distance (i.e., 1 m) that may not be applicable to either the
species or response being examined. In the future, when ex-
amining edge responses or processes, we make three recom-
mendations. First, select the scale relevant to the organism,
which includes considerations for organism size, life stage,
mobility, and behavior. Second, select the scale relevant to
the process/response, which would require examining chang-
es in both physical environment and ecological interactions
across edge-interior gradients. Third, we suggest that future
studies clearly define the edge and interior habitats based on
actual measurements of variables between the two areas (flow,
temperature, resources, etc.), rather than differences implied
from the literature. In this way, we should take advantage of
research that continuously samples transects from the habitat
boundary to help distinguish the ‘edge’ from the ‘core.’

(3) Has the experimental approach to marine edge effects
studies matured over time?
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The cause of edge effects across biogenic habitats is driven
by several processes that are complex and interactive, and yet,
very few studies directly measure the variables or examine the
processes thought to be associated with the edge effect pat-
terns. Predation is often invoked as an explanation for many
observed or expected edge responses (n = 23 studies); yet,
predation was only quantified in nine studies. Similarly, larval
settlement/recruitment and food availability are cited as poten-
tial mechanisms for edge responses about twice as often as
they are experimentally assessed in the literature. Published
studies continue to be dominated by survey data and rarely test
causal hypotheses. Thus, many studies are still exploring
whether edge effects occur (responses) and not why they oc-
cur (processes).

There are few examples in the literature that take a more
holistic approach to understanding edge effects. In a seagrass
edge effect study which examined both responses and pro-
cesses, Carroll et al. [16] were able to demonstrate that the
‘neutral’ edge effect on scallop abundance was actually driven
by two component processes—larval recruitment and post-
settlement survival—which operate in opposite directions
across a patch edge, effectively counteracting each other.
Likewise, Tuya et al. [28] made similar observations on gas-
tropods, with species-specific patterns in predation and re-
cruitment at the edge driving snail abundance patterns. A
few other studies have actively tried to disentangle habitat
complexity from edge effects using a manipulative approach
[17, 26••]. Macreadie et al. [19] were able to demonstrate that
edge effects on prey survival in mesocosm experiments were
dependent upon both patch configuration and the presence of
top predators. In perhaps the most complete study of marine
edge effects, Macreadie et al. [33] used a hierarchical ap-
proach to demonstrate that pipefish positively respond to
seagrass patch edges and this response was driven by food
(zooplankton) abundance. While this type of explicit,
hypothesis-testing approach should be commonplace in edge
effects literature, it remains the exception. Importantly, this
study, too, began with a blind survey of potential edge respon-
sive species, ultimately selecting one with strong spatial pat-
terns for follow-up hypothesis testing. As a microcosm of the
subdiscipline, we argue that this sequence could offer a path-
way for progress by future investigators. Therefore, we echo
Boström et al. [8] that more explicit hypothesis-driven re-
search should be conducted along habitat edges which com-
bine both mensurative and manipulative approaches.

(4) What variables confound our ability to detect edge
effects?

The detection of marine edge effects has been largely
equivocal, with responses varying across studies, habitats,
and species. We conclude that much of this variability results
from complex factors overlooked by researchers. For

example, we identified over a dozen variables that are capable
of obscuring edge effects, which fall into four broad catego-
ries—(1) temporal, (2) patch, (3) landscape, and (4) organis-
mal attributes (Fig. 2).

First, and perhaps most importantly, temporal scales of ob-
servation vary considerably across studies, contributing to
variable findings regarding edge effects. Response patterns
have been shown to vary over relatively short (diel [34, 35];
tidal [36•]) to long (season [37]; years [6]) time scales.
However, half of the studies we reviewed addressed their re-
sponses using a single synoptic sampling of no more than a
few days [29, 38•, 39], which may not be sufficient to fully
examine edge responses. For example, sampling season alters
responses in fish [40] and crab [37] abundance along man-
grove edges. The pattern of increased scallop growth at
seagrass patch edges disappears in low growth years, while
resource distribution (phytoplankton) varies across months
within a growing season [6]. Long-term (6-month) patterns
in probability of seagrass survival do not reflect short-term
(6-day) patterns of grazing by fishes [41]. Therefore, selecting
the wrong temporal scale could obscure the magnitude and
direction of observed responses; temporal variability needs
to be considered when designing edge effects experiments.

Second, numerous patch-level attributes may affect our
ability to detect edge effects, such as patch size, shape, and
within-patch variations in habitat complexity. For example, a
number of studies scale the edge-core distances with patch
size [18••, 20, 32•, 42, 43], or otherwise sample at a number
of distances from the edge which inevitably increases with
patch size [44–47]. High variability in distance between edge
and core habitats can affect response detection. Habitat com-
plexity (i.e., shoot density, % cover, shell volume) of the focal
habitat might be the most important patch attribute, yet was
only explicitly tested in 11% of the edge effect studies exam-
ined. Habitat complexity may covary with distance from patch
edge (i.e., complexity declines with proximity to patch edges
[1•, 17, 18••, 32•, 48•, 49, 50•]), which can confound patterns
explored at patch edges. Faunal abundance across a sand-
seagrass ecotone may be strongly impacted by seagrass mor-
phology [44, 45], while the low complexity of oyster reef
edges may actually increase diversity of mobile nekton rela-
tive to the interior [32•]. In some instances, when habitat com-
plexity was considered as a variable, the overall effect was
stronger than the edge effect [26••, 43], whereas others have
demonstrated that edge effects were independent of structural
complexity [17, 51]. Limited effort to control for complexity
(i.e., artificial seagrass units [16]) may contribute to our poor
understanding of the interactive effects of habitat complexity
and edge effects.

Third, a number of landscape-level attributes likely hinder
our identification of edge effects. Habitat patch composition
and configuration can influence potential edge effects. Percent
seagrass cover had a stronger effect on seed production than
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edge-interior differences [24•], whereas mussel survival at
patch edges varied when oyster reef habitat was considered
continuous or patchy [19]. Presumably, patchy habitats have
more overall edge area in the surrounding seascape which can
obscure potential responses observed at any given edge loca-
tion within the seascape. In addition, edge location (i.e., which
side of the focal habitat the edge is sampled) can affect wheth-
er faunal responses are observed [52], perhaps driven by dif-
ferences in depth [43] or habitat complexity [25•, 53] at the
edges on either side of a given patch. The matrix habitat sur-
rounding the focal patch could also impact edge responses.
However, the vast majority of studies we examined still treat
edges in a binary context (habitat vs. no habitat, seagrass vs
sand); only 15 studies compared edges between two complex
habitats, and only 2 compared an edge between two high
complexity habitats to an edge between a high and low com-
plexity habitat. When two complex habitats make up the
edge/ecotone, the responses are often stronger at the high
complexity edge (i.e., seagrass-rocky reef; seagrass-man-
grove) compared to the low complexity edge (e.g., seagrass-
sand [27]; mangrove-sand [53]). Since a number of these com-
plex biogenic habitats are found bordering each other in the
same seascapes, more consideration should be given to exam-
ining transitions between complex focal and matrix habitats.

Fourth, there are numerous organism-level attributes that
can obscure edge responses. Organism size is an important
driver of their umwelt—that is smaller and/or sessile organ-
isms may perceive their surrounding habitat as continuous at a
different grain and over a smaller extent than larger and/or
more mobile organisms. Despite this, the distance into patches
considered the ‘edge habitat’ has remained relatively constant
across studied organisms (see above). The size of the focal
species can also play a role in whether edge responses are
observed [54]. Organismal responses to habitat edges may

also change with ontogeny, where different edge responses
are observed between juveniles and adults [36•, 40].
Behavior and species interactions can also affect our ability
to detect edge responses. Mussels can alter their behavior
(gaping, byssus production) near patch edges which can in-
crease their survival along environmental stress gradients
(temperature, flow; [1•, 31]). When top predators are present,
crab mesopredators may alter their behavior and reduce con-
sumption along habitat patch edges [19]. Differences in be-
havior between blue crabs and pinfish can alter their suscep-
tibility to predators in edge habitats [26••]. Furthermore, all
fauna are a potential prey resource at some point in their life
history, and their ability to respond to edge resources may be
affected by the relative risk they experience in those areas [41,
55, 56]. Observing edge effects becomes more difficult at the
community level. Multiple organismal attributes, such as life
stages, recruitment patterns, mobility, behavior, and diet, both
within and among species, should be considered and, where
possible, controlled for in future edge effects studies.

In addition to the presence of potentially confounding var-
iables, it is important to note that while we interpreted ‘neu-
tral’ or ‘no effect’ based on the conclusions of each manu-
script’s authors, an over-reliance on P-values within
frequentist statistics could also be impacting our interpreta-
tions of edge effects [57]. While mining data for a meta-
analysis was beyond the scope of our qualitative review, it is
possible that if studies reported effect sizes [58], or empha-
sized the difference between statistical and ecological/
biological significance [59•], it could impact our conclusions.
We used the investigator interpretation to determine whether
there was ‘no change’ or ‘no effect’ in each pattern or process
explored; however, ‘not significant’ does not necessarily
equate to ‘no effect,’ and likewise, ‘significant’ does not al-
ways equate to biologically or ecologically relevant or

Fig. 2 Conceptual diagram
showing the different variables
that may influence our ability to
observe edge effects, broken into
four main types of variables:
temporal, patch, seascape and
organismsal attributes. Number
(n) in each box is the number of
studies that at least measured/
examined this variable, even if it
was not used in subsequent
analysis
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important [59•]. While we cannot say how widespread this
issue might be in edge effects literature in seascapes, it is likely
that if studies include more informative statistics (e.g., effect
sizes, confidence intervals) coupled with traditional statistical
significance, independent interpretation of response patterns
(or lack thereof) to habitat edges would be improved.

In sum, the magnitude and direction of edge responses
result from a confluence of interacting variables that may op-
erate additively, synergistically and/or antagonistically, com-
plicating our abilities to detect edge responses in seascapes.
For future studies, researchers should use a more holistic re-
search approach that measures not only the patterns but the
processes, while considering the countervailing causal path-
ways. Studies should actuallymeasure the variables thought to
drive or explain potential edge effects rather than implying
from the literature post hoc. Further, seasonal variation of
biogenic habitat formers can alter complexity, patch size and
configuration at various temporal scales [60, 61], and tempo-
ral patterns in other organisms can affect their responses to
patch edges [62]. Beyond temporal considerations, habitat
complexity, the overall amount of edge, and contrast between
patch and matrix habitat can be quantified at multiple spatial
scales across seascapes and can potentially influence edge
responses. Future studies should focus not only on edge ef-
fects per se, but on the influence of patch and seascape metrics
at appropriate timescales with suitable replication, and use
hierarchical analytical approaches, such as structural equation
modeling [63•] or regression tree analysis [64], as well as
include information regarding effect sizes, which would allow
researchers to evaluate the relative importance of these vari-
ables and the causal networks responsible for edge responses.

Conclusions

Human encroachment into coastal systems has led to dra-
matic declines across many valuable biogenic habitats,
shrinking and fragmenting the seascape and increasing
overall edge habitat [29, 65, 66], while reducing habitat
complexity [67–69]. Appropriate management and resto-
ration require a more complete understanding of how spe-
cies and ecosystems respond to habitat edges and eco-
tones. Historically, all species are predicted to show pos-
itive, neutral, or negative responses to habitat edges, driv-
en by assumptions that differences in abiotic factors and
resource availability occur between edge and interior hab-
itats, as well as between focal and matrix habitat types.
However, gaps still exist in our understanding of the eco-
logical processes operating across habitat edges, resulting
in numerous equivocal, species-specific, and highly
context-dependent results. The magnitude and direction
of any observed edge effect is driven by the pattern/
process being examined, the timing of the study, the

organisms’ capacity to perceive and respond to the land-
scape, and a number of confounding variables. Further,
clearing up inconsistent definitions (what defines the
edge?), use of terms (core, interior, or center?), and ver-
biage (positive or negative response vs. increase or de-
crease in a metric) could help mitigate current ambiguity.
Based on our synthesis, we provide the following
conclusions:

& Increased exploration of habitats other than seagrasses is
still necessary

& Studies need to be appropriately scaled to (1) actual rather
than assumed environmental gradients (i.e., flow, re-
sources); (2) the biology and umwelt of organism being
studied (size, mobility, ontogeny); and/or (3) the causal
process being explored

& Studies should take a step-wise, hierarchical approach to
both experimental design—identify patterns and then de-
sign experiments to test causal processes—and analysis
(e.g., multivariate analysis, structural equation modeling,
regression tree analysis) for a better mechanistic under-
standing of observed responses

& Potential confounding variables should either be con-
trolled, measured, or incorporated using appropriate ana-
lytical techniques to determine their relative importance to
edge effects

We have begun to explore some of the poorly understood
aspects of animal biology (movement, behavior), which has
helped clarify some edge responses. However, our under-
standing of edge responses will likely remain uncertain until
we move beyond seagrasses, stop over-interpreting isolated
survey data, select suitable spatiotemporal scales, and consid-
er, control, or incorporate confounding variables in truly ma-
nipulative experiments. By acknowledging issues pervasive in
the marine edge effect literature, we can move toward a more
complete understanding of these transition zones and begin to
address their management implications.
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