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Abstract Landscape structure and biotic interactions are closely
linked. We identify five aspects of landscape structure that con-
tribute to the co-occurrence of species and restrict or enable dif-
ferent types of biotic interactions: patch size and habitat amount,
isolation of patches, barriers to dispersal and movement, persis-
tence of landscape structure, and landscape complexity. In addi-
tion, these aspects of landscape structure influence the strength
and outcome of biotic interactions. Whereas most research fo-
cuses on the effects of the abiotic environment on species and
their biotic interactions, research on foundation species and eco-
system engineers demonstrates the important influence of biotic
interactions on landscape structure itself, including effects on
landscape complexity, extent of habitat, and the structure of land-
scape features. In this review, we describe ecological theories that
lay the foundation for interplay between landscape structure and
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biotic interactions, and summarize these connections across an
array of interacting species in freshwater, marine, and terrestrial
systems. We end with suggestions for integrating the fields of
landscape ecology and community ecology to better understand
the connections between landscape structure and biotic interac-
tions and better predict their dynamics in light of global change.

Keywords Biotic interactions - Dispersal - Extent - Habitat -
Isolation - Metacommunity

Introduction

Biotic interactions are inherently coupled with the structure of
landscapes. “Landscape structure” encompasses the
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composition and spatial arrangement of natural and anthropo-
genic features over time. Components of landscape struc-
ture—patch size and habitat amount, isolation of patches, bar-
riers to dispersal and movement, persistence of landscape
structure, and landscape complexity—interact with ecosystem
components. The resultant interactions directly affect species’
habitat quality and species—habitat relationships, as well as
species co-occurrence. Consequently, landscape structure in-
fluences whether species can interact with one another, and
thus affects species abundances and traits, which affect the
strength of biotic interactions. In turn, biotic interactions also
influence landscape structure [1]. Interactions involving eco-
system engineers and foundation species change landscape
structure and function in both space and time [2, 3]. At the
same time, the dynamic nature of these landscapes is influ-
enced by abiotic and anthropogenic forces [4, 5]. Depending
on spatial and temporal scales, landscape structure can affect
the occurrence, importance, and outcomes of biotic interac-
tions differently [6—8], and biotic interactions can have vary-
ing influence on landscape structure [3, 5, 9].

Here we use “landscape” to encompass terrestrial, marine,
and freshwater “scapes” on earth. The movement of organ-
isms, energy, and matter within and among ecosystems of all
types is highly dependent on the structure of a landscape. Such
structure is often used to define aspects of species—habitat
relationships including range sizes and associated physiolog-
ical limits to occurrence, habitat patch size and species-
specific connectivity, and physical barriers to dispersal. For
fauna and flora, landscape structure affects aspects of move-
ment that are fundamental to species’ fitness and survival,
including dispersal, migration, and mobility.

We present a synthesis of the connections between land-
scape structure and biotic interactions, with a focus on studies
from the last 10 years. We begin with a discussion of relevant
theory and then discuss how landscape structure affects biotic
interactions, and how biotic interactions can reciprocally af-
fect landscape structure. We end with recommendations to
advance understanding of this interplay, and promote synergy
of community ecology and landscape ecology.

Theory

Several theories provide important context for understanding
the connections between landscape structure and biotic inter-
actions. We discuss three theories that have especially ad-
vanced understanding of this interplay: niche theory, the the-
ory of island biogeography, and metacommunity theory.

One of the first examples of the interplay between land-
scape structure and biotic interactions is found in niche theory.
The Grinnellian and Eltonian niche concepts describe the ef-
fect of the environment on a species occurrence [10], and the
effect of a species on its environment [11]. The niche concept

was further defined in terms of biotic interactions and land-
scape structure in Hutchinson’s realized niche (see [12] where
“biotop space” refers to landscape structure). Hutchinson’s
realized niche represents the conditions for the occurrence
and positive population growth rate of a species as a function
of its habitat (including landscape structure) and biotic inter-
actions [12, 13]. Originally, the realized niche was described
as a function of competition reducing the occurrence of a
species to its realized niche from its fundamental niche, but
now other types of interactions (positive interactions) are also
recognized as affecting the realized niche [14] and could even
expand it beyond the fundamental niche [15]. Today, niche
theory is widely applied in species distribution modeling
[16, 17], yet such models focus largely on abiotic drivers
and rarely explicitly model pairwise or multi-species interac-
tion relationships [18-20].

Another classic foundational theory that incorporates land-
scape structure and biotic interactions and largely stimulated
the fields of landscape and spatial ecology is the theory of
island biogeography [21]. The theory of island biogeography
explores colonization and extinction dynamics of island com-
munities as a function of island size and distance from main-
land. The theory was first tested in mangrove islets [22] and
has since been applied to “islands™ in a broad sense to under-
stand the assembly, maintenance, and disassembly of ecolog-
ical communities in naturally patchy habitat islands (e.g.,
[23]), habitat islands created through fragmentation (e.g.,
[24]) and habitat loss [25], and preserves that can be consid-
ered islands in a sea of unconserved land [26].

The theory of island biogeography is a neutral theory that
does not explicitly consider biotic interactions. Biological
rates of birth, death, and migration are assumed to be identical
across species and thus are influenced equally by interactions
with other species. Initial consideration of trophic interactions
in an island biogeographical context [27] and recent exten-
sions of the theory of island biogeography that include trophic
interactions [28, 29] have led to a better fit of the island bio-
geography model to empirical data. A trophic analysis of a
classic island biogeography experiment on recolonization fol-
lowing defaunation [22] showed that generalist species tend to
colonize first whereas specialists arrive later in the assembly
process [30]. Including both mutualistic and competitive in-
teractions in island biogeography models will likely yield
more insight into the processes structuring ecological commu-
nities. The improved predictions resulting from the inclusion
of biotic interactions into the theory of island biogeography
signal the importance of biotic interactions at the landscape
scale.

A more recent theory that has strongly influenced how
ecologists think about diversity at the landscape scale is
metacommunity theory [6]. Metacommunity theory explores
the roles that biotic interactions, local-scale environmental
conditions, and regional-scale dispersal play in determining
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community structure. Whereas the majority of theoretical and
empirical studies on metacommunities focus on competition
as the biotic interaction of interest [31], trophic interactions
(e.g., [32-34]) and mutualistic interactions (e.g., [35]) have
also been explored. By considering both local and regional
scale processes, metacommunity theory implicitly incorpo-
rates landscape structure.

To understand the connection between landscape structure
and biotic interactions in a metacommunity framework, it is
first necessary to understand the underlying metacommunity
dynamics appropriate for the system under study. In general,
metacommunities can be separated into four general models
that describe the processes underlying spatial patterns in di-
versity and community assembly: the patch-dynamics, spe-
cies-sorting, mass effects, and neutral models [6].

The patch-dynamics model assumes that (1) all patches are
intrinsically equal and capable of maintaining populations of
any species in the regional species pool (i.e., no environmental
filter), (2) there is a trade-off between dispersal and competi-
tive abilities, and (3) local population dynamics (i.e., births
and deaths) occur at a faster time scale than regional dynamics
(i.e., dispersal) [6]. The key metacommunity processes struc-
turing local communities under the patch-dynamics model are
dispersal and biotic interactions. Species that are poor at es-
tablishing (e.g., inferior competitors, vulnerable prey) have
higher dispersal rates than their competitive dominants and
predators allowing them to colonize “open” patches, thus
maintaining biodiversity across the landscape. This trade-off
between competitive ability or vulnerability to predation (i.e.,
biotic interactions) and dispersal is central to this perspective
(the competition—colonization trade-off) [6]. Any landscape
factor (i.e., fragmentation, barriers, isolation) that alters this
trade-off can drastically change biodiversity patterns at the
landscape level (e.g., [36-39]).

The species-sorting model assumes that (1) habitat patches
are different, (2) different species do well in different types of
patches, and (3) local population dynamics occur on a shorter
time scale than dispersal dynamics. Environmental filtering
plays an important role in structuring communities under the
species-sorting model by favoring certain species in the out-
come of biotic interactions in certain habitat patches [40].
However, another stipulation of the species-sorting model is
that dispersal is frequent enough for species to make it to
patches where they are favored. Thus, any alteration of land-
scape structure that hampers dispersal may preclude species
from reaching habitat patches where they can establish, reduc-
ing occupancy of such species and potentially leading to their
extirpation from the landscape. As in the patch-dynamics
model, landscape-induced dispersal limitation of dominant
competitors or predators may allow for the establishment of
inferior competitors or vulnerable prey.

The mass effects model is similar to species-sorting in that (1)
patches are different and (2) different species do well in different
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types of patches. However, the important difference between
mass effects and species-sorting is that dispersal occurs at a faster
time scale than local population dynamics under the mass effects
model. Dispersal is the most important process in the mass ef-
fects model. Under mass effects, species that are poor competi-
tors or vulnerable prey in a given habitat patch can establish in
less hospitable patches owing to rescue effects—the rescue of a
sink population by individuals emigrating from a source popu-
lation [41]. Since dispersal rate is the key difference between
species-sorting and mass effects [31], landscape structure may
be a key modifier in tipping metacommunity dynamics towards
one or other model by either inhibiting or facilitating dispersal.

Under a neutral model [42, 43] all species are equivalent in
their dispersal and competitive abilities, and in their birth and
death rates. Community composition results from stochastic
population processes and dispersal limitation. Landscape
structure does not influence biotic interactions, simply be-
cause biotic interactions are considered unimportant.
Although spatial structure is still a major factor limiting dis-
persal and hence influencing community composition, alter-
ing landscape structure will not cascade into influencing the
interactions between species.

Until recently, empirical studies of metacommunites have
not considered landscape structure explicitly [44, 45]. Yet var-
iation in dispersal rate among species in a metacommunity—a
key component of metacommunity dynamics—can result
from species’ traits or structural aspects of the landscape
(e.g., distance between patches, matrix structure, and arrange-
ment of patches) [46]. Whereas metacommunity models in-
clude general variation in dispersal, few investigations (e.g.,
[47]) explore how dispersal is affected by both functional
connectivity, i.e., the role of species traits and their interaction
with the landscape, and structural connectivity, i.e., spatial
configuration of landscape features [48]. As functional con-
nectivity is a species-specific concept [49], considering it as
such will likely better represent dispersal dynamics in
metacommunities [45].

Another gap in integrating landscape structure into
metacommunity theory is the absence of an underlying struc-
tural landscape model [47]. Explicit landscape models are
necessary because dispersal through different landscape types
[50] and the directionality of dispersal [51], which can be
affected by landscape structure, can alter metacommunity
structure and dynamics. Furthermore, the arrangement of
quality patches [52, 53] or patch type—the environmental
component of metacommunities—can also influence
metacommunity dynamics. The arrangement of patch type
may especially come into play when considering predator—
prey interactions where predators require larger ranges with
multiple habitat types and prey items occur only in a few of
those habitat types.

Metacommunity studies also show that competitive inter-
actions can be affected by landscape structure [45]. In
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simulation studies of metacommunities, increasing the num-
ber of suitable and available habitat patches, landscape hetero-
geneity, and the size of a metacommunity can all enable more
chances for colonization events and lead to greater community
monopolization [54]—the ability of a species to arrive to a
new patch, establish, and evolve to monopolize resources
and strongly compete with any conspecific immigrant [55].
Whereas these simulations were based on Tetragnatha spiders
of Hawaii, the findings are applicable to other discrete, patchy
communities [54]. Explicitly incorporating landscape struc-
ture into current metacommunity models provides an oppor-
tunity to create clear links between biotic interactions and
landscape structure.

Metacommunity dynamics do not typically consider evolu-
tionary responses of species to landscape structure. However, it
is clear that the potential for local selection (e.g., for character
displacement that may reduce competition [56]) will depend on
gene flow and hence on landscape structure. Incorporating nat-
ural selection into models of metacommunity dynamics is a
promising research direction that may further elucidate the effect
of landscape structure on biotic interactions.

Different models have been used to describe the relationships
between species and their habitat patches. At one end of the
spectrum, the pattern-oriented, patch-corridor-matrix model of
landscape structure [57] draws on the theory of island biogeog-
raphy theory and emphasizes the importance of high quality
patches (in contrast to surrounding matrix) for maintaining spe-
cies. The model assumes that multiple species respond in the
same way to landscape change [58, 59]. At the other end of
the spectrum, a species-oriented approach—the continuum mod-
el of landscape structure [60, 61]—posits that gradients better
describe the boundaries between patches, corridors, and matrix.
The continuum model of landscape structure assumes that spe-
cies have individualistic responses to habitat fragmentation or
habitat loss because species are distributed in space according
to their specific requirements [58, 59]. An alternative “integrated
community concept” [62] is more akin to the metacommunity
concept because it recognizes the interdependence among spe-
cies in their responses to habitat fragmentation [59].

The set of theories described above link landscape ecology
and community ecology, yet there are still important theoret-
ical connections to be made. Advancing theory that integrates
these subfields of ecology could be achieved via simulation
modeling [45], meta-analyses (e.g., [63]), and landscape-scale
experiments (e.g., [64]).

Recent Examples of How Landscape Structure
Affects Biotic Interactions

Here we outline five main aspects of landscape structure and
describe their effects on biotic interactions. These aspects in-
clude patch size and habitat amount, isolation of patches,

barriers to dispersal and movement, persistence of landscape
structure, and landscape complexity (Fig. 1). Our review fo-
cuses on papers across freshwater, marine, and terrestrial sys-
tems within the last 10 years that incorporate biotic interac-
tions in a landscape structure context. In July 2016, we
searched Scopus for landscape structure terms that occurred
in keywords, titles, and abstracts since 2005 (see Appendix).
We then further selected papers within this set that had to
contain one of the terms representing biotic interactions and/
or community ecology, in keywords, titles, and abstracts (see
Appendix). From the resulting papers, we selected studies that
would represent an array of ecosystem types and address each
of the aspects of landscape structure. We include a condensed
summary of paper findings across different ecosystems in
Table 1.

Patch Size and Habitat Amount

Patch size, defined as the amount of habitat available for spe-
cies in a single patch, and habitat amount, defined as the total
amount of habitat available for species across all patches [97],
can influence the type, frequency, and intensity of biotic inter-
actions. For instance, interspecific competition among birds in
tropical forests was most intense in small forest patches, but
also varied in intensity depending on trophic specialization
[98]. Interactions can also weaken with decreasing patch size.
For example, in the tributaries of the upper Waimakariri River
basin in New Zealand, a decrease in the amount of stream
habitat aligned with a decline in the ratio of predator taxa to
prey taxa, suggesting a weakening of predator control over
prey [66]. In the South Fork Eel River in California, USA,
interactions between aquatic invertebrate grazers and algae
increased with drainage area, which represented complex fac-
tors such as resource availability, canopy cover, water temper-
ature, stream size, and primary productivity [65]. In smaller
drainages, invertebrates were unable to control algal growth,
whereas invertebrates suppressed algae in larger drainages in
part or all of the summer, reflecting greater top-down control
by more diverse functional feeding groups in warmer, larger
streams [65].

The relative amount of different habitat types can also af-
fect biotic interactions. Burgett and Chase [38] found that the
ratio of aquatic to terrestrial pond habitats can have different
effects on the population sizes of amphibians that vary in life
history strategies. Amphibian species with long-lived adults,
which are more limited by demographic rates in terrestrial life
stages, had lower within-pond population densities in the
ponds with a higher aquatic to terrestrial ratio. As the larvae
of one of the long-lived species (Ambystoma maculatum) are
important predators in ponds, a change in their densities influ-
enced community structure through changing predation
intensity.
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Fig. 1 Five major types of
landscape structures that interplay
with biotic interactions. In each
schematic, the dark gray and light

gray shapes are distinct elements
of landscape structure that interact
with biotic interactions. For
instance, the light gray habitat
patches in (b) indicate that
patches that are relatively close
together will have frequent
dispersal between them (solid

(@) size: Patch
size or habitat
amount

arrows), while isolated patches
(dark gray) will only receive
infrequent dispersal (dashed
arrows), which can affect a
number of important ecological
interactions. The dashed lines in

interactions

(c) indicate habitats that only
persist for short periods of time
(e.g., ephemeral habitats), in
contrast to more permanent
habitats (dark gray)

(e) Barriers:
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and duration of
barriers to
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movement
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Although patch size and habitat proportions can affect bi-
otic interaction strength, the total amount of habitat for some
species may not affect the influence of biotic interactions on
species’ distributions. In a modeling study across the cotermi-
nous USA with woodpeckers and interacting birds, increasing
the extent of habitat did not change the influence of biotic
interactions on the distribution of woodpeckers, even though
it changed the resolution of investigation [7].

In other studies, the effect of patch size on biotic interac-
tions is often mediated by an aspect of community composi-
tion. In bromeliads in Central and South America, the rela-
tionship between predator to prey biomass ratios and patch
size was dependent on the presence of the highly mobile odo-
nates (i.e., predators), implying that species identity and traits
can greatly influence species interactions [99]. In coral reefs,
patch size can have different effects on biotic interactions and
community composition. In French Polynesia’s Moorea
Island, there was no interaction between predators and patch
size on measures of alpha- and beta-diversity for coral reef fish
communities, suggesting that patch characteristics and top-
down effects independently structure those coral reef fish as-
semblages [67]. In contrast, on the Shiraho Reef in Japan, the
overall abundance of the four dominant and territorial herbiv-
orous damselfish increased nearly linearly with reef patch log
area, aligning with the species—area relationship [68].
However, although the damselfish density did not increase
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with reef patch area, it was higher on the largest reef patches;
this was in contrast to the other 20 fish species whose density
was inversely proportional to patch reef area. These findings
suggest that herbivory and competition among territorial her-
bivorous damselfish may be stronger on larger reef patches,
and that both territorial herbivores and patch reef area can
structure reef community composition [68].

Studies of mutualistic relationships between plants and ani-
mals have yielded increasingly complex findings with regard to
patch size and habitat amount. Sugiura [69] examined interac-
tions of both native and exotic plants and ants on Japanese
islands and found that the number of interactions increased
significantly with increasing island area when all species were
considered. However, network connectance (the proportion of
possible interactions between species that are realized) and
nestedness (a proxy of asymmetric specialization, where gener-
alists interact with each other and specialists interact only with
generalists) both decreased with island area [69]. Similar results
were observed in a meta-analysis of plant—pollinator networks,
where increasing study area size (i.e., habitat amount) positively
correlated with the number of interactions, but negatively cor-
related with nestedness [70]. In plant—pollinator networks, a
non-random loss of interactions with decreasing patch size
was hypothesized to be related to how frequently the interaction
was observed across the entire range and how often generalist
species were involved in the interaction [100]. Experiments
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attribute

Diekotter et al. 2007 [93]

Increased interactions

Insects & plants

Terrestrial

In maple: reduced interactions (caterpillar-maple); in aspen: reduced Wood et al. 2010 [94], Roland 1993

Tent caterpillars & sugar maple; tent

Terrestrial

[95], Roland and Kaupp 1995 [96]

interactions (caterpillar-virus), and intensified interactions

(caterpillar-aspen)

caterpillars & virus & aspen

Outcomes include no change (no novel, or lost interactions, no change in interaction strength); lost interactions (interactions that no longer exist); novel interactions (interactions between species that have
not occurred in a particular location before); and reduced or increased interaction strength or interaction duration. The method for defining the direction of the effect varies by study, but generally includes a

pre- vs. post-treatment, or comparison between different levels of the landscape attribute. Further examples are included within the main text. When applicable, earlier references are included as well

have also shown that matrix structure of plant composition can
mediate how habitat amount affects plant-insect pollinator in-
teractions [93].

In general, these aforementioned findings suggest that
patch size or habitat amount alone cannot determine the oc-
currence or strength of biotic interactions because additional
factors such as habitat or trophic specialization, territoriality,
life history strategy, or matrix composition often mediate the
biotic interactions. More studies addressing these mediating
factors are needed to fully characterize the relationship be-
tween biotic interaction strength and patch size or habitat
amount. However, collectively the findings to date suggest
that habitat loss or deterioration that results in reduced patch
size and habitat amount would disrupt biotic interactions,
leading to changes in community structure and ecosystem
function.

Isolation of Patches

Spatial isolation of patches can result from natural pro-
cesses (e.g., forest fire, drought, tectonics) or anthropo-
genic processes (e.g., deforestation, ocean trawling).
Whereas the theory of island biogeography explains
many patterns of diversity as a function of isolation,
the effect of isolation on biotic interactions has received
less attention. Marine systems provide instructive exam-
ples for how patch isolation affects biotic interactions.
For example, coral reefs can be composed of continuous
reef tracks, isolated reef patches, and a variety of inter-
mediate forms. The reef context, i.e., the spatial pattern
of surrounding habitat patches, was found to be a major
predictor of fish abundance and diversity [101].
Ecological processes on isolated reefs may differ from
those on continuous reefs. Lower predation [73] and
lower emigration [102] have been associated with in-
creased distance from other reefs, which can lead to
lower community predictability [103]. Similar patterns
are found over large spatial scales [104].

Predation pressure may vary with reef spacing and between
isolated and continuous reefs potentially leading to dissimilar
fish distributions (e.g., [73, 105, 106]). For example,
Belmaker et al. [74] found that even when predation pressure
does not vary spatially, its effect on damselfish adult distribu-
tion pattern may depend on patch spacing. This is because of
coral-size-dependent predation on recruits and variability in
the importance of direct recruitment to replenish fish popula-
tions between habitats [74].

Fragmentation often results in increased patch isolation
[97]. Studies in fragmented landscapes often measure the ef-
fect of isolation on biotic interactions. Several studies show
decreased consumption of plants and their seeds in more iso-
lated fragments or patches. For example, seed dispersal for an
endemic, mammal-dispersed tree (Duckeodendron cestroides)
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was far lower in forest fragments, with just approximately 5%
of the number of seeds being dispersed further than 10 m away
from parent trees than in intact forests [107]. Leaf herbivory in
the Amazon can also be reduced in isolated fragments, possi-
bly because of lower immigration of insect herbivores [108].
Similar relationships were found in a landscape-scale frag-
mentation experiment of understory plants in a longleaf pine
savanna that controlled for potential confounding effects of
isolation, the ratio of edge to area, and edge proximity through
its arrangement of landscape structure [64]. Increased patch
isolation associated with decreased levels of herbivory for two
of five plant species (the perennial bunchgrass Sorghastrum
secundum and the perennial forb Carphephorus bellidifolius).
However, there were no effects of isolation on pollination
rates or pre-dispersal seed predation.

Increasing isolation can stabilize predator—prey interac-
tions [36], but the differential responses to habitat isolation
between host species and their natural enemies can change
the strength of the interaction. For example, isolation of
woody habitats reduced species richness and abundance of
both parasitoids and their hosts, wasps and bees, in the
Swiss plateau [75]. However, the reduction for the parasitoids
was greater than that for the hosts, leading to a reduction in
parasitism rates. Isolation can also affect trophic levels differ-
ently, and thus change the structure and function of food webs
[109, 110]. For instance, more isolated headwater streams had
a higher diversity of predatory macroinvertebrates than more
highly connected mainstem streams, but this effect was re-
versed for herbivorous macroinvertebrates [71].
Additionally, shallow isolated lakes are frequently fishless:
the absence of these top predators allows plant, invertebrate,
amphibian, and bird communities to proliferate [72].

Barriers to Dispersal and Movement

Whereas isolation is a multi-patch phenomenon that is dictat-
ed by the interaction of the patch and the matrix (e.g., patch-
corridor-matrix model of landscape structure; [57]), barriers to
movement (as presented in Fig. 1) are a within-patch phenom-
enon that physically restricts movements within or outside the
patch. Movement within a landscape can affect important in-
teractions among species including resource acquisition,
evading enemies (predators and competitors), and mutual-
isms. Hence the placement, size, and duration of barriers can
set the stage for enabling or deterring the occurrence of certain
species, making it difficult for certain interactions to occur,
while promoting others [111].

Both natural (e.g., waterfalls) and anthropogenic (e.g.,
dams) barriers can alter biotic interactions in freshwater sys-
tems. For example, populations of native salmonids in head-
water streams can be displaced by non-native salmonids via
competition and predation [76, 112]. This has led to some
debate about leaving barriers in place or even adding them

to the landscape to protect native fishes [76, 113]. In one case,
the removal of a dam in Wisconsin, USA, resulted in increased
competition and more intense predation from previously ab-
sent species in stream fish communities [77]. Given their im-
portance to fish distribution, barriers and network structure
should be explicitly included in models of fish community
structure to determine the best conservation value for taxo-
nomic, functional, and phylogenetic aspects of diversity
[114]. Models incorporating these aspects showed that most
watersheds ranked as being high conservation value were spa-
tially restricted, reflecting the lack of widespread connectivity
for mobile fishes [114]. If anthropogenic fragmentation is se-
vere, biotic interactions may have little impact on diversity. In
an assessment of streams in Kansas, USA, segment fragmen-
tation by roads yielded lower alpha fish species diversity and
higher beta fish species diversity compared with segments
maintaining high connectivity, regardless of hydrologic stabil-
ity [115].

Some barriers may reduce or omit biotic interactions if the
barrier has a similar effect on the interacting species. Although
barriers and boundaries in marine systems are not as visible as
in freshwater or terrestrial systems, they can still strongly me-
diate species’ occurrence [116]. For example, on the central
south coast of England, species boundaries occur because of
poor rock substrate, topography, and oceanographic condi-
tions that make it difficult for larval recruits to settle and sur-
vive [78]. A suspected interaction between two barnacles
(Chthamalus montagui and Semibalanus balanoides) [117]
is unlikely to be strong beyond the species boundary, because
neither species can successfully disperse in high enough num-
bers [78, 118]. On the other hand, some barriers may intensify
interactions. In coastal Antarctica, extensive sea ice or block-
age by icebergs during five consecutive years altered usual
migration patterns of Adelie penguin (Pygoscelis adeliae)
across colonies, and increased foraging intensity at the largest
colony as a result of increased competition among individuals
[79].

Species requiring large home ranges can be especially af-
fected by barriers to movement. For example, the decline of
caribou (Rangifer tarandus) in boreal forests has been linked
to the presence of road networks, seismic lines, and other
linear features that create barriers to movement and promote
predation [81]. Black bears (Ursus americanus) prey on cari-
bou and use seismic lines in boreal forests more frequently
than the forest interior [82], suggesting that there are interac-
tions between human-created barriers and predator—prey
interactions.

Barriers can be ameliorated through several processes, in-
cluding human-aided transport as with invasive species or
assisted migration. In addition, the combination of thermal
range limits and the range of interacting species can form
barriers to species occurrence. Climate change is shifting
those barriers [119-121]. For example, climate warming has
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enabled the mountain pine beetle (Dendroctonus ponderosae)
to expand its range into new areas where temperatures are now
suitable. This range expansion has also resulted in higher bee-
tle reproductive rates on lodgepole pine (Pinus contorta) that
previously had little beetle attack [122], and even attack of a
novel host species—jack pine (P. banksiana) [123]. Warming
and shifts in host plant abundance have also expanded the
range of the Brown Argus butterfly (Aricia agestis) in
Britain [124], and led to a concurrent decline in parasitism in
its new range, consistent with the enemy-release hypothesis
[80]. This reduction in parasitism occurred despite the exis-
tence of the parasite association with an alternate host, the
Common Blue butterfly (Polyommatus icarus).

Persistence of Landscape Structure

Landscape structure can change through time and thus affect
the occurrence of interacting species and their community
composition. A number of freshwater ponds and streams are
ephemeral or intermittent, which alters connectivity and hab-
itat size, with consequences for species with varying reliance
on water (e.g., amphibians, invertebrates) [125, 126]. For in-
stance, severe drought extirpated top predators in desert
streams in Arizona, USA, allowing mesopredators to increase
through release from competition [83]. Drought also had
strong effects on fish assemblages in the Verde River in
Arizona, with a decoupling of interactions between native
and non-native species [84]. Species diversity can also be
affected jointly by the stability of habitat and biotic interac-
tions; in periods of hydrologic stability (stream permanence),
predation is expected to be more important than environmen-
tal factors in structuring the community composition [127].
Long-term perspectives on human land-use illustrate how
modifications of landscape structure can influence the occur-
rence of interacting species. For instance, the New England
landscape in the northeastern USA experienced drastic chang-
es over the past 400 years as it transitioned from largely for-
ested prior to European settlement to deforested at the height
of agriculture in the region (1830-1885) to largely reforested
in the 1950s following the abandonment of agriculture [128].
These changes in New England’s landscape structure over
time impacted bird assemblages with increases in open-land
species through the peak of agriculture followed by their de-
cline with reforestation (e.g., grassland bird species: meadow-
lark (Sturnella magna) and bobolink (Dolichonyx oryzivorus))
[87]. Changes in large mammal abundances also coincided
with changes in landscape structure in New England over this
period, but given changes in attitudes towards hunting and
trapping over time it is more difficult to disentangle effects
of landscape structure alone [87]. After a more than 200-year
absence, Alces alces (moose) have returned to southern New
England and increased in abundance as forests in the region
have regenerated and matured [129]. At Harvard Forest in
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Massachusetts in hardwood and eastern hemlock (Tsuga
canadensis) stands disturbed by logging and an invasive in-
sect (i.e., hemlock woolly adelgid, Adelges tsugae), additive
effects of deer and moose browsing, compared to deer brows-
ing alone, resulted in delayed recruitment of trees and a greater
abundance of disturbance-specialist herbs 47 years post-
disturbance [130].

As the climate changes, so too will the structure of land-
scapes. This can lead to spatial mismatches and new matches
between species (i.e., no-analog communities sensu [120]).
Quaternary paleoecological records provide ample evidence
of historical no-analog fossil communities across taxa (e.g.,
plants, mammals, coleopterans, mollusks, foraminifera;
reviewed by Williams and Jackson [120]). Novel and lost
interactions were commonplace during past changes in cli-
mate and resulted in the reshuffling of community composi-
tion [131]. Looking forward, as individual species respond to
changing climate and landscape structure, rare interactions
could become more common, and completely novel interac-
tions are likely to emerge.

The Arctic is the fastest-warming region of the planet [132,
133], and associated changes in the timing and duration of
landscape structure are already affecting biotic interactions.
For example, migrating caribou (Rangifer tarandus) in
Greenland are not keeping pace with early-onset spring and
are often unable to reach their calving grounds in time to catch
the earlier peak forage; this trophic mismatch leads to a de-
cline in fecundity and an increase in calf mortality [88].
Associated field experimental results show a destabilization
and decreased diversity when these large herbivores are re-
moved under warming conditions [134]. In addition, warming
conditions and melting sea ice are associated with polar bears
(Ursus maritimus) spending less time on ice hunting ringed
seals (Pusa hispida), and more reliance on land-based snow
geese (Chen caerulescens) eggs ([85] and references therein).
The earlier onset of sea ice breakup is also expected to shorten
the 2-month time frame between peak ice-dependent algal
blooms that are essential for fueling key Arctic grazer’s repro-
duction and peak open-ocean phytoplankton blooms that are
essential for the grazer’s offspring development [86].
Shortening the time frame between these two peaks could lead
to mismatch between essential food resources and the repro-
ductive cycle of key Arctic grazers [86].

Landscape Complexity

Landscape complexity, including the number of different hab-
itat types, the prevalence of edge habitat, and the configuration
of habitat, can affect the number and strength of interactions in
different ways. Some studies find that increasing complexity
yields either more interactions or stronger interactions, while
other studies find that increasing complexity yields reduced
interactions or no change. For example, in an experiment
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manipulating seafloor habitat complexity, in habitat with more
substrate heterogeneity and more physical structure, survival
of red king crab (Paralithodes camtschaticus) increased and
attack rates by predatory Pacific halibut (Hippoglossus
stenolepis) decreased [135]. In contrast, in Florida Key coral
reefs with more habitat complexity, risk of predators had a
stronger negative effect on fish herbivory and also altered their
size structure [91]. In a predation experiment with lobsters off
the Rhode Island coast, those in or closest to cobble refuge
patches had the highest survival in the short term, whereas this
relationship switched later on in the experiment for some sites,
potentially as a result of the use of adjacent refuge in seagrass
beds [136]. Distance to edge can also have little or no effect on
biotic interactions. For example, in a predator caging experi-
ment that manipulated distance from patch edge and complex-
ity of eelgrass (Zostera marina) bed structure, closer proxim-
ity to edge habitat yielded higher epifauna (prey) abundances
as a whole, regardless of bed complexity, even though some
amphipods were more abundant in interiors [92]. However,
there was no evidence that predation was also higher closer to
the habitat edge, and no difference in predator diet from edge
to interior.

The structural complexity of freshwater ecosystems can
significantly influence biotic interactions. In particular, river
systems resemble dendritic branching networks, which can
affect species dispersal, energy flow, population dynamics,
and community diversity [137]. Increasing dendritic spatial
complexity using fractal models resulted in reduced interac-
tion rates, reproduction, and predation in a predator—prey
model [138]; predators can get stuck in branches with depleted
resources, highlighting the influence of geometry and com-
plexity. Tributary junctions can serve as biological hotspots
for abundance and richness ([139—-141], but see [142]).
Increasing spatial complexity in a riverine floodplain in
Washington, USA, resulted in decreased interaction strength
between predators and prey because the prey could find refuge
in the more complex landscape [90]. Similarly, it is likely that
complexity within an experimental dendritic network enabled
protists to avoid competition by dispersing through the net-
work, which resulted in increased community evenness [143].
Differences in lake connectivity at landscape scales can also
affect biotic interactions. Lake regions comprise a combina-
tion of isolated seepage lakes and more connected drainage
lakes. Fish community composition in lake regions can be
strongly influenced by landscape structure: in Arctic Alaska,
the dominant competitor, lake trout (Salvelinus namaycush),
only naturally occurs in well-connected lakes. It is likely that
arctic char (Salvelinus alpinus) have been able to dominate in
some isolated lakes because they are landlocked, relict popu-
lations that are inaccessible to competitive lake trout [89].

Habitat edges in particular can influence biotic interactions
in multiple ways [144]. Edges may form a barrier to species
movement and dispersal and thus affect biotic interactions as

discussed earlier (see “Barriers to Dispersal and Movement”).
Edges may also have differential influences on species’ pop-
ulations, and thus change the intensity of outcomes of biotic
interactions. For example, microclimates may vary greatly
across edges and the microclimatic difference can change rel-
ative competitiveness of different species and even alter suc-
cessional patterns in fragmented rain forests by differentially
influencing species’ mortality [145]. Similarly, increased UV
radiation at forest edges in Ontario, Canada likely caused
higher mortality of the nuclear polyhedrosis virus, a natural
enemy of tent caterpillars (Malacosoma disstria). Therefore, a
longer duration of tent caterpillar outbreaks is associated with
increased edge density in aspen poplar (Populus tremuloides)-
dominated North American forest landscapes [95, 96].
However, this relationship does not hold across all portions
of the caterpillar’s range and may differ by host tree species.
Studies in sugar maple (Acer saccharum)-dominated forests in
the northeastern USA revealed the opposite effect, where for-
ests with increasing forest cover and decreasing forest edge
had longer outbreak duration [94].

Proximity to edge and the associated influence of surround-
ing matrix can also affect the outcome of biotic interactions. In
a landscape-scale fragmentation experiment, Brudvig et al.
[64] found that decreased pre-dispersal seed predation only
associated with decreased edge proximity for one understory
bunchgrass (Anthaenantia villosa). On the other hand, polli-
nation rates on understory plants did not differ by patch and
matrix arrangement [64]. Simulation models showed that
proximity to the matrix edge can influence Allee effects and
rates of predation by matrix-sourced nest predators, but if bird
nest habitat patches are large enough, these effects can be
ameliorated [146]. Field experiments show that visitation by
pollinators is significantly higher in clover patches surrounded
by bare ground than in those surrounded by grass [93]. In
addition, the effect of matrix can propagate across trophic
levels. The higher pollinator visitation led to a higher seed
set of clover and in turn resulted in higher abundances of seed
predators and their parasitoids.

Effects of Biotic Interactions on Landscape Structure

Whereas most studies focus on the influence of landscape
structure on biotic interactions, biotic interactions can also
have profound effects on landscape structure [1], including
landscape complexity, extent of habitat, and the structure of
landscape features. Interactions involving foundation species
(i.e., single common species that control ecosystem processes
and community composition [2]) and ecosystem engineers
[147] provide particularly good examples of this interplay.
Biotic interactions that influence foundation species are
especially likely to alter landscape structure. In eastern forests
of the USA, eastern hemlock (7suga canadensis) is a founda-
tion species [2, 148]. The acidic litter and deep shade cast by
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hemlock creates a sparse forest understory with unique micro-
climatic conditions and soil biota relative to surrounding de-
ciduous hardwood forests [149, 150]. The hemlock woolly
adelgid (HWA; Adelges tsugae) is an aphid-like insect from
Asia that is invasive within the range of eastern hemlock, can
kill all age classes of hemlock trees [151], and is causing large-
scale mortality across much of the eastern USA [148]. With
the decline of hemlock in response to HWA infestation and the
conversion of hemlock stands into structurally different decid-
uous canopies (i.e., primarily black birch (Betula lenta) in the
northeast and rhododendron (Rhododendron maximum) in the
southeast [2]), eastern forests are becoming more homoge-
neous at the landscape scale as they shift from coniferous to
deciduous dominated, as conifer patches are lost.

Foundation species in coastal marine systems are vital to
the structure and function of coastal marine communities (as
reviewed by Angelini et al. [9]). Biotic interactions with foun-
dation species can further promote habitat availability or re-
duce it. Mangroves (e.g., Rhizophora spp.) form dense stands
in tropical coastal and estuarine environments acting as foun-
dation species capable of modulating intertidal foodwebs, de-
creasing soil acid sulfides, and supporting inshore fisheries
[2]. Mangroves cannot colonize an area if there is not already
a land formation on which to establish. Buildup of organic
sediment from other living organisms along with physical
processes provides the lateral land formation necessary for
mangroves to colonize upon [152]. Human interactions with
mangroves often result in loss of available habitat (e.g., clear-
ing of mangroves for shrimp farming and coastal development
[153]).

In many cases, invasive species alter the habitat structure of
other species through their dominance. For example, inva-
sions by Ammophila beach grass species in the US Pacific
Northwest removed important open-sand habitat, threatening
the Western snowy plover (Charadrius alexandrinus nivosus),
and causing declines in some native plants [ 154]. Macro-algae
(Caulerpa genus) invasion of native seagrass beds in the
Mediterranean Sea can affect different aspects of habitat qual-
ity for other species including reducing sediment quality
[155], and altering the hydrodynamics of the sea floor, ulti-
mately resulting in increased erosion during storms [156].

Ecosystem engineering species can alter landscape struc-
ture through their physical impact on the landscape. Beavers
are particularly adept at increasing habitat heterogeneity and
altering geomorphic and hydrologic templates of freshwater
systems and adjacent terrestrial systems through dam building
activity [157]. A recent study in restored streams in Scottish
pastures found that beaver-modified hydromorphological fea-
tures in streams increased nutrient availability and macroin-
vertebrate species diversity at the landscape scale, as com-
pared with unmodified sections of streams [158].
Macroinvertebrate feeding guilds also shifted from grazer/
scraper and filter feeder dominant in unmodified sections to
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shredder and collector-gatherer dominant in beaver-modified
sections [158], indicating a shift in the composition of those
consumer interactions. Similar positive effects of beaver-
modified habitat on biodiversity have been found for fish
[159] and amphibians [160].

Interactions between vegetation and sediment—especially
at the aquatic-terrestrial interface—can lead to varying land-
scape structures including coastal dunes, braided rivers, and
salt marshes [5]. Each sediment-binding plant species may
have a different potential to capture sediment and create land-
scape features. Interactions among these species ultimately
affect the composition of the plant community, and thus the
structure of landscape itself. In the US Pacific Northwest, the
introductions and subsequent invasions of two Ammophila
beach grasses caused landscape-scale transformations of
coastal dune shape [161]. This is surprising, given the domi-
nant influence of the physical environment on coastal geomor-
phology [162]. Experimental mesocosms and wind tunnel ex-
periments showed that A. arenaria has a superior ability to
capture sand and build tall dunes, whereas A. breviligulata is
an inferior dune builder [163]. However, stronger competition
and invasion potential by A. breviligulata [164] suggests that
in the future, foredunes are likely to be lower, offering less
coastal protection from sea level rise and increasing wave
heights [165].

Traditionally, ecologists have studied the effects of the abi-
otic environment (including landscape structure) on biota, in-
cluding biotic interactions. More studies are needed to char-
acterize how biotic interactions affect landscape structure, and
their associated feedbacks. Combined, these studies can quan-
tify the coupling and feedbacks between biotic interactions
and landscape structure.

Conclusions

It is clear from the studies discussed herein that landscape
structure and biotic interactions are inherently linked.
Landscape structure mediates the outcomes of biotic interac-
tions, and even enables or prevents specific interactions from
occurring. Biotic interactions can also mediate landscape
structure. This is particularly evident with ecosystem engi-
neers. Together, landscape structure and biotic interactions
can affect population sizes, distributions of species, ecosystem
functioning, and species diversity.

Despite the degree to which landscape structure and biotic
interactions are linked and affect species’ distributions, popu-
lations, and ecosystem function, they are rarely considered
when predicting future changes to species geographic ranges
and populations, let alone the effects of climate change. Given
their high degree of linkage, it is imperative to include both
landscape structure and biotic interactions in predictive
modeling frameworks. Out of 90 studies on species
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distribution models that considered climate change, only 18
studies explicitly considered realistic dispersal rates or dis-
tances (partly as a function of landscape structure), and only
three studies considered biotic interactions [111]. Whereas
such models including biotic interactions and landscape fea-
tures may necessarily be more complex, they incorporate key
aspects of species occurrence.

This review points to a basic need to better integrate ecol-
ogy subfields of landscape ecology and community ecology.
The metacommunity framework is an excellent starting point,
yet metacommunity models and other multi-species models
could include landscape structure more explicitly than they
currently do. In addition, further emphasizing interactions oth-
er than competition (e.g., predation and mutualism) in the
metacommunity framework (e.g., [34]) would provide a more
holistic look at biotic interactions with a landscape perspec-
tive. One potentially innovative way to further integrate land-
scape ecology and community ecology is by exploring entire
ecological networks over large spatial scales (e.g., [166]).
Networks depict the flow of energy and biomass throughout
an ecosystem and thus can provide a link between ecosystem
functioning and landscape structure. Traditionally, ecological
networks have been studied at a given location to detail the
structure and dynamics of specific systems (e.g., [167-170]).
As a result, exploring variation in network structure has been
relegated to comparing vastly different networks, collected
with different methodology [171]. A relatively new approach
explores the network structure of multiple networks of the
same type over large spatial extents (e.g., [166, 172]). This
approach has potential for identifying drivers of change in
network structure, how species’ roles change within networks
over space and time [173], and the assembly of local networks
from networks at continental and regional scales (a.k.a.,
metawebs; [174]).

In relation to this need, we suggest that landscape-scale
experiments will help advance our understanding of commu-
nity ecology in the context of landscapes. Experiments that
manipulate landscape structure in the context of biotic inter-
actions provide important insights about their interplay (e.g.,
[64]). In addition, coordinated research networks of investiga-
tors working at different sites are integral for such landscape-
scale experiments [175, 176]. For instance, Nutrient Network
(i.e., NutNet) is a global research cooperative implementing a
large cross-site experiment (nearly 100 sites) to investigate
productivity—diversity relationships to ask under what condi-
tions grazers versus fertilization control plant productivity,
diversity, and biomass (www.nutnet.unm.edu). Networks
with long-term dedicated governmental funding (e.g.,
National Ecological Observatory Network (NEON; www.
neonscience.org), Long Term Ecological Research (LTER;
www.lternet.edu)) provide the types of long temporal and
large spatial data sets needed for addressing landscape-scale
questions in community ecology [177, 178].

We have demonstrated that studying the interplay between
landscape structure and biotic interactions yields significant in-
sight into the fundamental processes that structure populations,
communities, and ecosystems. In an era of rapid global change,
these interactions are important to incorporate into the conser-
vation and management of populations, communities, and eco-
systems. We anticipate that the next major advances in the field
will come from increasingly complex and coordinated
landscape-level experiments that focus on the interplay between
biotic interactions and landscape structure. Thus, a more cohe-
sive integration of landscape and community ecology is critical
to addressing the challenges of the twenty first century.
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Appendix

Code used in Scopus search to obtain a set of studies from the
last decade (2005—present) that focused on biotic interactions
and landscape structure. A total of 9391 documents were in-
cluded by the start of August 2016. The search was performed
such that Keyword AND Title AND Abstract each contained
one landscape structure term AND one biotic interaction term.
The search was limited to English language articles (94.2%),
reviews (2.9%), conference papers (1.4%), articles in press
(1.0%), and book chapters (0.4%). We also limited the search
to Environmental Sciences (59.1%) and Agriculture and
Biological Sciences (79.7%); some articles fit in both subject
areas. In general the number of papers per year increased
through time (2005: 571 studies), peaking in 2012 (968
studies).

(((((CABS (barrier OR biogeography OR “braided river*”
OR “coastal protection” OR confluence OR connectivity OR
corridor®* OR defragmentation OR dispers* OR “species dis-
tribution*” OR “environmental gradient*” OR fragment* OR
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“edge effect” OR “geographical gradient*” OR geometry OR
habitat* OR intermitten* OR “island biogeography” OR spe-
cies OR isolation OR “land building” OR landscape OR
“metapopulation dynamic*” OR network OR “patch dynam-
ic*” OR “prey refuge*” OR “refugia” OR “regional process*”
OR “shoreline protection” OR “space-use” OR “spatial ecol-
ogy” OR “spatial heterogeneity” OR “spatial scale*” OR
“spatial structure” OR “temporary-river” OR zonation OR
biomorphodynamic* OR ecogeomorph*))) AND ((ABS (as-
semblage* OR biodiversity OR “biological invasion*” OR
“biological control” OR “biotic interaction*” OR “biotic re-
sistance” OR coexistence OR communit* OR “community
composition” OR “community dynamic*” OR “community
ecology” OR “community stability”” OR competition OR con-
sumer* OR diversity OR “ecological network*” OR “ecosys-
tem engineer” OR “enemy release” OR facilitation OR “food
chain” OR “food web” OR “food-web” OR “food-web struc-
ture” OR “foundation species” OR herbivor* OR “interaction
strength” OR “interaction web” OR “interspecific competi-
tion” OR “interspecific interaction*” OR “keystone species”
OR “mass effects” OR “multitrophic interaction” OR mutual-
ism OR mutualist* OR “no-analog community*” OR “nurs-
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