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Abstract Landscape ecological modelling provides a vital
means for understanding the interactions between geographi-
cal, climatic, and socio-economic drivers of land-use and the
dynamics of ecological systems. This growing field is playing
an increasing role in informing landscape spatial planning and
management. Here, we review the key modelling approaches
that are used in landscape modelling and in ecological model-
ling. We identify an emerging theme of increasingly detailed
representation of process in both landscape and ecological
modelling, with complementary suites of modelling ap-
proaches ranging from correlative, through aggregated pro-
cess based approaches to models with much greater structural
realism that often represent behaviours at the level of agents or
individuals. We provide examples of the considerable

progress that has been made at the intersection of landscape
modelling and ecological modelling, while also highlighting
that the majority of this work has to date exploited a relatively
small number of the possible combinations of model types
from each discipline. We use this review to identify key gaps
in existing landscape ecological modelling effort and highlight
emerging opportunities, in particular for future work to prog-
ress in novel directions by combining classes of landscape
models and ecological models that have rarely been used
together.
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Introduction

Landscapes are the result of numerous processes that operate
and interact across different spatial and temporal scales.
Physical, biogeochemical, and anthropogenic factors are ma-
jor determinants of landscape structure, and one of the primary
goals in landscape ecology is to illuminate the relationships
between this structure (or pattern) and ecological processes
occurring on the land surface [1–3]. However, clear causal
relationships between process and pattern are rare, not least
because the two are interlinked, with patterns being formed by
processes in the landscape and these patterns then influencing
those processes in turn. For example, low-level disturbance
patterns in conifer forests may be propagated by bark beetle
populations; the interaction between pattern and process can
lead to large scale population outbreaks and the acceleration of
forest successional trajectories [4].

This complex dynamism between process and pattern pre-
sents significant difficulties for many aspects of landscape
science, and modelling can provide a useful tool for meeting
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these challenges. It can be prohibitively challenging and ex-
pensive to mount field experiments at appropriately large spa-
tial and temporal scales, or to establish experimental controls
and replications. These difficulties are compounded where
mobile organisms are studied, with data collection on process-
es being especially time-consuming and difficult if species
need to be tracked, captured, or monitored. Furthermore, sub-
stantial portions of studied populations will generally be un-
detectable, and bias in sampling methods or results make it
difficult to translate findings up to population level patterns
[5]. As a result, field experiments often produce highly case-
specific and non-generalisable results. For example, many
studies have identified that habitat corridors promote the key
ecological processes of movement and dispersal of particular
species between habitat patches, but few have shown an in-
crease in the patterns in which we are most interested, such as
population size and species diversity [6]. For these reasons,
modelling—and especially simulation modelling—has be-
come an important research tool in landscape ecology [7].
This approach allows "virtual" experiments to be run repeat-
edly, generating many data and exploring effects that would
be impossible to investigate empirically. Findings can be com-
pared to observations to validate or extend inference and fur-
ther studies targeted at processes or factors that appear espe-
cially important (e.g. [8–11]).

Simulationmodelling has already proved extremely valuable
in landscape ecology. Notable advances have beenmade across
landscape ecologyandwider land systems science, andmethods
and findings continue to improve in sophistication and insight
[12–14]. One of the greatest contributions of landscape ecolog-
icalmodellinghasbeen informing spatial planning for conserva-
tion,where it has offered an important complementary approach
to classical metapopulation theory by explicitly incorporating
the contributionof thematrix (the environmentbetween thehab-
itat patches) [15–19]. However, this computational approach is
not free of challenges. As is always the case in modelling, it can
be easy to misapply or misinterpret models, and hard to ground
them in reality [20]. Uncertainties and errors can go
unrecognised, interact and propagate, and produce biased or er-
roneous results [21, 22]. In addition, assumptions must still be
made inorder todefineaboundedand tractablesystem,andthese
assumptions can have important effects on model outcomes—
for instance where they cause an influential process to be
neglected or impose inappropriate spatial resolutions, scales, or
structures [23, 24]. For example, the use of regular geometries to
represent landscapes can introduce directional bias [23], and the
use of an inappropriate spatial resolution can substantially bias
estimatesof the rate atwhich species expand their biogeographic
ranges [25].Nevertheless, the role of simulationmethods is like-
ly to continue to grow as it becomes increasingly necessary to
understand the integrated dynamics of land systems and their
responses to global change, an objective that is clearly beyond
the scope of empirical studies alone.

The diversity of applications for landscape simulation has
driven rapid methodological development, and it is important
periodically to take stock and assess whether simulation tech-
niques are achieving their potential in contributing to our under-
standing andmanagement of landscape ecological dynamics, or
whether opportunities to exploit emergingmethodologies are, in
some areas, being neglected [26]. Earlier reviews have focused
on the use of neutral landscape models (NLMs) in landscape
ecology [27], modelling methods in relation to environmental
change [28], and the shared methodologies between complex
systemsscienceand landscapeecology [20].However,weknow
of no existing reviews that span the partially divergent fields of
modelling landscapes and their development (including human
land-use) and modelling the dynamics of ecological systems in
those landscapes.We undertake a review of this kind here, with
the intentionnotonlyofpromotingamore integratedapproachto
landscape ecological modelling but also of identifying the most
valuable existing and potential links between models that focus
on distinct landscape components.We first give a broad context
by providing background across a diverse range of approaches
used in landscape and ecological simulation modelling,
discussing how the fields have developed, providing our
thoughts on where there exist significant gaps, and thus impor-
tant opportunities for future work, and highlighting likely future
trends within the landscape ecological modelling field.

Background to Landscape, Ecological,
and Landscape Ecological Modelling

The overall objective of our paper is to provide some future
perspectives for landscape ecological modelling. To arrive at
this point we first provide key background. Some of this is of
work that has been at the intersect between landscape model-
ling and ecological modelling (i.e. landscape ecological
modelling), but some is focussed on progress in one field that
has not yet been applied in the other (of which there is a
substantial amount, despite the somewhat artificial nature of
the distinction) (see Table 1). Modelling methods (landscape
modelling, ecological modelling, and landscape ecological
modelling) can be broadly categorised into either pattern- or
process-based approaches [30, 74]. Pattern-based approaches
identify existing patterns in the landscape or ecological system
(for example, species distribution), and aim to replicate or
extrapolate those patterns without considering the generative
processes. On the other hand, process-based approaches focus
on representing the underlying processes that formed ob-
served landscape or ecological patterns (see Fig. 1 for an il-
lustration of some of the deployment of pattern and process
based models in these fields; see Table 2 for some common
applications of different modelling approaches). We will first
discuss models of landscape and land-use dynamics before
moving on to spatial ecological models.
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Pattern-Based and Process-Based Models of Landscapes
and Land-Use Dynamics

Pattern-Based Models

Neutral Landscape Models Neutral landscape models
(NLMs) are a set of approaches intended to create partially
realistic landscape patterns, whilst remaining neutral with re-
spect to the processes that formed them. The motivation for

using NLMs is that they provide a framework for landscape
replication whilst controlling certain features of landscape
configuration [75]; this allows for robust statistical analyses
in relation to spatial structure [76, 77]. The first NLMs gener-
ated entirely random patterns using percolation theory [78].
Since then, hierarchical and fractal NLMs have been devel-
oped to improve the representation of patterns that are found
in real landscapes—in particular, spatial autocorrelation, and
repeated patterns across scales [79, 80]. Neutral landscapes
have been shown to be statistically similar to real landscapes,
but are unable to reproduce all landscape features [76, 81].
Thus, there are continuing developments to NLM methods
to improve the representation of real landscape features such
as patterns of land-ownership [82] and agricultural fields [83].
In addition to extensions of NLM models to incorporate in-
creasing numbers of features, progress has also been made on
developing the algorithms such that they are more efficient
and free of some undesirable artefacts present in earlier ver-
sions [77].

NLMs are the landscape modelling approach that has been
used the most in an ecological context. They have been used
to investigate the ability of landscape indices and metrics to
measure habitat fragmentation, spatial structure, and ecologi-
cal processes [84–86] and to analyse methods for rescaling
landscape data [87]. NLMs have also frequently been com-
bined with population and movement models, for example to
study how best to measure functional connectivity under vary-
ing levels of habitat fragmentation [88], to study the conse-
quences of representing habitat as a binary as opposed to a
continuous surface [89], to study the influence of habitat frag-
mentation on species persistence [90] and population size
[91], and to study the importance of spatial scale when
projecting species’ range expansion dynamics [25]. They have
also been used in the emerging field of eco-evolutionary dy-
namics, for example to demonstrate the potential for short and
long distance dispersal strategies to evolve separately accord-
ing to landscape configuration [92]. NLMs can also be used as
null models when testing the ability of process-based models
to recreate observed patterns (such as predictions of old-
growth woodland distribution from a model of fire and land-
form influences [93], or comparisons of fire spread algorithms
[94]). NLMs are even used to guide the spatial planning of
real-world experiments, as in the planting of experimental
garden plots to study the importance of plant community spa-
tial patterning for invasion resistance [95].

Statistical Landscape Models Aside from NLMs, there are
a number of other approaches available from the field of
landscape modelling that aim to generate anthropogenic
landscape or land-use patterns without direct representa-
tion of the underlying processes. This class of model is
typically termed either top-down (e.g. [96]) or pattern-
based (e.g. [97]), due to the reductionist encapsulation of

Table 1 Broad categorisation of landscape simulation modelling
methods. Grouped into separate landscape and ecology methods, with
references to examples and review or comparison papers where available

Type Example(s) Review(s)

Landscape

Neutral landscape models QRULE [29] [27]

Process-based
anthropogenic
disturbance models

G-Raffe [30]

Biogeochemical models RHESSys [31] [32]

Process-based land-use
models

CRAFTY [33]
LUCITA [34]
SWISSland [35]

[36, 37]

Ecology

Species distribution
models

MaxEnt [38]
DOMAIN [39]
BIOCLIM [40]
Other statistical approaches

not originally created for
SDMs:

Random Forests [41]
GAMs [42]

[43, 44]

Forest landscape
dynamics, succession
and disturbance

iLand [45]
LANDIS [46]
SORTIE [47]

[48]

Dynamic global
vegetation model
(integrated
biogeochemical and
vegetation models)

CESM [49]
ORCHIDEE [50]
LPJ-GUESS [51]

[52]

Hybrid species
distribution models

[53–55] [56]

Meta-population
(patch occupancy) or
meta-community
models

RAMAS Metapop [57]
M-SET [58]
[59, 60]

[61]

Cellular automata [62] [63]

Population abundance
models

MIGRATE [64]
Integrodifference equation

models [65, 66]
Individual-based models RangeShifter [67]

HexSim [68]
[69]

Integrated models

Integrated human
decision making and
biophysical models

PALM [70]
IMSHED [71]

[36]

Integrated
socio-ecological models

[60, 72, 73]
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observed system dynamics in general equations or algo-
rithms based on statistically derived relationships. Here
we refer to this group of landscape models as pattern-
based. To date, these modelling approaches have been little
used in an ecological context. Amongst the first landscape
models was a highly influential application in urban stud-
ies (e.g. [98]) that used differential equations to model
population growth. Subsequently, similar approaches were
adopted in agricultural land-use change (e.g. [99–101]).
Such models have become more and more sophisticated,
incorporating a wide range of factors (e.g. [102]).
Regression models and transition probability models are
often used to project historical patterns of land-use and
land-cover change into the future (e.g. [103–105]), and to
study related effects such as patterns of air pollution (e.g.
[106–108]). Such models have been developed to include
demands for different land uses, allowing alternative future
scenarios to be investigated [109]. There now exist very
sophisticated and widely used models of land-use change
that project future development of the land system on the

basis of systemic equations describing relationships be-
tween specific drivers and observed changes [96,
110–113]. These form the basis of the scenario-based cli-
mate change projections of the Intergovernmental Panel on
Climate Change [114]. These types of models have rarely
been coupled with ecological models, but see for example
[96] in which land-use dynamics are represented by a
large-scale pattern-based model and coupled with a
process-based model of vegetation dynamics.

Cellular Automata Cellular automata (CA) models represent
a middle ground between process- and pattern-based ap-
proaches. They have also been used to study land-use transi-
tions [115] and residential dynamics [116] among other appli-
cations. CAs consist of a grid of cells which each exist in one
of a finite set of states, with the future state of each cell deter-
mined by its previous state and that of its neighbours [117].
These models do not generally model the underlying process-
es directly, but rather the outcome of those processes. CA
models can be suitable for systems in which neighbourhood

PATTERN
Landscape

Moving from simple correla�ve 
models to inclusion of processes 

e.g. movement

Individual-level stochas�c models 
including demography, dispersal, 

gene�cs

Ecology

Pa�ern-based 
approaches

e.g. NLMs

Agent-based 
models

Moving from random binary 
to realis�c con�nuous

PROCESS

Correla�ve studies
e.g. SDMs

Popula�on-based 
approaches

e.g. IDEs, coupled la�ce

Individual-based 
models

Inclusion of demography, dispersal and 
matrix impacts on movement

Process-based 
approaches

e.g. CA

Patch-based 
approaches
e.g. IFMs, CA

Fig. 1 The suite of approaches available for landscape and ecological
modelling. Both fields have developed a range of approaches from
relatively simple correlative and neutral modelling approaches through
to complex agent or individual-based approaches. In both disciplines,
there is increasing complementary use of approaches from different
points along the complexity spectrum to address common problems
(indicated by blue arrows). The red arrows highlight particular
combinations of landscape and ecological model types that we believe
offer major novel opportunities for landscape ecology. For instance, using
emerging evolutionary, genetic, and epigenetic individual-based models
together with NLMs may allow development of new theories of eco-
evolutionary dynamics. There are great opportunities for providing

large spatial extent forecasts of how sets of species will respond to
environmental changes (including land-use change) by using process-
based land-use models together with population level ecological models
such as IDEs, while combining process-based land-use models with
IBMs has substantial promise for spatial planning questions in
conservation at local and regional scales. Finally, we identify dynamic
coupling of agent-based land-use models and individual based ecological
models as a key future area where there is enormous scope to develop
understanding of the dynamic of interacting socio-economic and
ecological systems. (NLM neutral landscape model; CA cellular
automata; SDM species distribution model; IFM incidence function
model; IDE integrodifference equation)
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association is important, but can struggle to incorporate more
complex behaviour such as human decision making, at least
without deviating substantially from the typical CA approach
[118]. CAs have generally been applied with either a land-
scape or an ecological focus, however they have also been
applied in landscape ecology studies, for example to evaluate
conservation interventions in a human-dominated tropical
landscape [119].

Overall, landscape modelling approaches that focus on the
replication of observed patterns may help to identify the prob-
abilities of different landscape or land-use transitions and to
make conditional predictions, but they leave the identities of
the underlying causative mechanisms open to interpretation
[120]. Links between spatial patterns and ecological or
socio-economic conditions have frequently been shown to
be informative in some circumstances, but potentially

Table 2 Some common applications of landscape simulation modelling methods and potential data requirements when using such models

Type Common applications Basic data requirements

Landscape

Neutral landscape models • To generate artificial landscape patterns with predefined
characteristics.

• To verify other models, i.e. to investigate effects of landscape
structure on model results.

• To study effects of landscape structure on processes – social,
ecological, biogeochemical, biophysical.

• None

Process-based anthropogenic
disturbance models

• To explore the potential effects of specific processes.
• To generate artificial landscape patterns with predefined

characteristics.
• To identify whether modelled processes can generate observed

landscape patterns.

• None

Biogeochemical models • To study hydrological and nutrient flows. • Soil, vegetation and climate data.

Process-based land-use models • To study the role of individual behaviours in determining
land-use patterns and dynamics.

• Data to parameterise land-use
decision-making.

• To explore alternative behaviours under different economic,
policy or environmental pressures.

• Economic, policy or environmental data
to drive the decision making.

Ecology

Species distribution models • To spatially or temporally extrapolate a known pattern of
species habitat or climate associations.

• Species observation data
(presence-absence or abundance data).

• Associated habitat and/or climate data.

Forest landscape dynamics,
succession
and disturbance

• To study processes and dynamics of vegetation at local to
landscape scales.

• Plant life-history data.
• Disturbance data e.g. fire, pest-species.

Dynamic global vegetation model
(integrated biogeochemical and
vegetation models)

• To study vegetation cover at continental to global scales,
incorporating biogeochemical and hydrological processes.

• Plant life-history data.
• Climate data.

Hybrid species distribution models • To study species’ habitat suitability whilst incorporating a
representation of population dynamics, i.e. to move the
patterns from pure Bfundamental niche^ towards the
Brealised niche^.

• Species observation data
(presence-absence or abundance data).

• Associated habitat and/or climate data.
• Population demographics data.

Meta-population (patch occupancy)
or meta-community models

• To study the viability of species populations.
• To review potential habitat or population management options.

• Population demographics data.

Cellular automata • For studies in which each location can be represented by one
of a number of states, and where state transitions are determined
by neighbourhood interactions.

• Data on potential system states.
• Data on how neighbourhood

interactions drive transitions.

Population abundance models • To study population spread rates. • Population demographics data.
• Dispersal or spread rate data.

Individual-based models • To study the influence of individual behaviours and
inter-individual variability on population dynamics.

• To study the viability of species populations.
• To review potential habitat or population management options.

• Species life-history data.

Integrated models

Integrated human decision making
and biophysical models

• To study the interaction between humans and finite
(often dynamic) environmental resources.

• Dependent on the component models
(as above).

Integrated socio-ecological models • To study interactions between humans and species populations. • Dependent on the component models
(as above).
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misleading in others (e.g. [85, 121, 122]), especially where
spatial or temporal dynamics are neglected (e.g. [123, 124]).
Furthermore, in encoding previously observed relationships in-
to algorithms or equations, models of this kind become unsuit-
able for projecting changes in systems in which underlying
mechanisms are not constant (as in socio-ecological systems
subject to the varied and unpredictable forces of human behav-
iour; see e.g. [125]). Therefore, while neutral and pattern-based
models have substantial roles to play, deeper understanding or
exploration of system dynamics requires additional models that
explicitly account for underlying processes and prioritise accu-
rate description of the processes over pattern replication [126].

Process-Based Models Process-based landscape models are
becoming increasingly used, with inclusion of progressively
more detailed representations of the key behaviours and dy-
namics that drive landscape patterns. The application of such
models inevitably involves a choice of processes to represent,
as well as a choice of technical modelling approach to make
the given processes tractable. Awide array of approaches exist
for many different purposes and at different scales of detail
and application. A number of highly focussed artificial land-
scape generators have been developed, which simulate a spe-
cific process to replicate real-world patterns. Many of these
are concerned with human impacts on landscape, for example
models of road development [127], and of the conversion of
forests to arable land by the processes of road and field crea-
tion [30]. A substantial focus of modelling of this kind has
been on urban growth [128–130]. Equivalent approaches are
taken to discrete processes in natural systems. For instance,
watershed models (e.g. [131]), which have been applied to
study wetlands and riparian systems [132]. Hydrological
models have also been integrated with nitrogen dynamics
models to study the effect of the spatial distribution of agri-
cultural practices [133].

Agent-Based Models Process-based models are also increas-
ingly being applied in circumstances where the processes
themselves are unclear or incompletely understood. In these
cases, models are more exploratory than predictive in purpose
(initially, at least), being used as Bvirtual laboratories^ in
which the effects of particular processes can be investigated
and related to real-world observations [134, 135]. In landscape
science, this is especially true of models of land-use change,
where process-based approaches such as agent-based model-
ling (ABM) are used to increase model accuracy but also to
explore alternative accounts of human decision-making under
socio-economic or environmental pressures [136]. Process-
based models are both relevant and problematic in this context
because of the crucial role of complex individual, social, and
institutional behaviours in determining the nature of land-use
change. Such explorations are not possible without incorpo-
rating additional processes and interactions into our models,

even though appropriate limits on model complexity may be
hard to identify.

Because of the complexity of the modelled system, land-
use ABMs initially focused on carefully constrained systems
and behaviours, covering small geographical extents, and spe-
cific land-uses (e.g. [137–140]). While these models generally
retain a relatively narrow focus, they have expanded in scope
in a number of ways over recent years. For instance, consid-
erable attention has been paid to Bupscaling^ methodologies
to allow model application at regional to global scales (e.g.
[33, 35, 141, 142]). Thematic extension has also occurred,
particularly through linkages between models of land-use
and natural systems, with behavioural responses to environ-
mental change often being prioritised [143, 144]. Additional
detail has also been incorporated within the land-use system,
with several recent models investigating the interactions of
individual and institutional entities [33, 145, 146] (Fig. 2).
This latter development is particularly notable because it
makes such models ideal for testing the (potentially unexpect-
ed) outcomes of policy interventions [148–150].
Incorporating some of the complexity of these interactions
into models can lead to the identification of unexpected non-
linear behaviours and regime shifts [60, 151].

Notwithstanding their increasing contribution to knowl-
edge about the land-use system and its links with other sys-
tems, process-based models of land-use change face several
substantial difficulties. They require very many specific data
on the characteristics and decision-making of individual actors
when applied to the real world, and these data are not widely
available. They are also difficult to validate robustly or to use
predictively [152]. Perhaps most fundamentally, true
(cognitive) process accuracy is hard to achieve [153, 154].
While process-based landscape models cannot yet achieve
the same generality, efficiency or transparency as pattern-
based models (and have, therefore, largely been used in a
more targeted and complementary role), further refinement
of the process-based approach does represent the best means
of projecting land-use into future socio-economic conditions
that are very different to those experienced to date. Although
there are currently few examples of process-based landscape
models being used in an ecological context (but see [60, 73]),
these process-based landscape modelling approaches are now
maturing sufficiently that they provide excellent opportunities
to be used in conjunction with ecological models to address
key questions in landscape ecology.

Pattern-Based and Process Based Models in Spatial
Ecology

Pattern-Based Models

As in landscape modelling, pattern-based modelling ap-
proaches have been and continue to be widely used in
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ecological studies. A key class of these pattern-based models
includes species distribution models (SDM) or environmental
niche models. These models use statistical methods to corre-
late patterns of species presence or occurrence with environ-
mental factors [155, 156]. Many different approaches exist, all
of which have underlying uncertainties related to the algo-
rithm, variable selection, and biotic factors [157–161].
However, a fundamental assumption of these approaches is
that the environmental factors can be measured throughout
the landscape and that their relationship with species
presence/occurrence remains constant in space and time
[162]. This can be particularly problematic when studying
invasive species [163]. Despite the limitations, SDM ap-
proaches have been used for species delimitation [164], to
study the past distributions of species [165], to identify poten-
tial new areas of occurrence [166], and to project environmen-
tal niches into future conditions [167]. Whilst SDMs can pre-
dict areas where environmental conditions are broadly suitable
there is now broad recognition that their application is limited,
especially for making projections under rapidly changing con-
ditions, by the lack of incorporation of ecological processes
including intraspecific competition, dispersal, and interactions
with other species [56, 168–170]. Further, under rapidly

changing conditions and especially at the physiological limits
of a species’ tolerance, we may expect to see evolution occur-
ring on an ecological timescale. Thus, to improve our ability
to project biodiversity futures, it will be important that we
develop process based distribution models [170–172].

Process-Based Models

Metapopulation Models A shift of interest from pattern to
process, and the need for spatial context in ecological models,
led to the development of Levins-style metapopulationmodels
[173, 174]. These models are also referred to as patch-
occupancy models since they typically represent populations
as either present or absent in each habitat patch, and do not
model the number of individuals in different elements of the
landscape. Metapopulation models are widely used for popu-
lation viability analysis, to identify threatened populations and
potential management options [175–177]. One such example
is the incidence function model (IFM), which is derived from
a first-order linear Markov chain of the presence or absence of
a species in a habitat patch [178] and assumes constant, but
patch-specific probabilities of colonisation and extinction. In
the IFM, the probability of extinction is dependent on

Fig. 2 Process-based land-use models are being developed rapidly and
offer considerable promise for projecting land-use into the future. There is
considerable potential to link these emerging models with ecological
models, including integrodifference and individual-based models, to
project biodiversity and ecosystem service futures. This example shows
output from the agent-based model CRAFTY [33] of land-use scenarios
in Xishuangbanna, China. Note: these are just a few of many scenarios,
and should not be considered as predictive. aModel of land-use in 2010;

b projection for 2030 with increasing demand for rubber; c projection for
2030with increasing demand for rubber, and institutional support for new
niche crops and rubber inter-cropping. An ecological model, such as
RangeShifter [67], could be used to assess population viability or
potential for species range shifting on these future landscapes, while
ecosystem modelling tools, such as InVest [147], could be used to
project future ecosystem service provision under alternative future land-
use scenarios
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population size (which is in turn dependent on patch area), and
probability of colonisation is dependent on the distance to
existing populations, and the areas of those patches and the
patch being colonised. The IFM has been applied extensively,
demonstrating that such models can be used to assess the
potential of networks of habitat patches to support viable
metapopulations of given species [178, 179]. While these
metapopulation approaches are spatially explicit in that they
incorporate the distances between patches they are not, in this
standard form at least, landscape ecological models, as they do
not account for what is between the patches, i.e. the matrix.
However, extensions to the classical approach do now account
for the matrix, most often by assuming that different matrix
environments are more or less readily moved through by a
dispersing organisms, and then calculating the least cost paths
between patches and using these in place of the Euclidean
distances [180–182].

Coupled Map Lattices To incorporate population dynamical
realism that cannot be captured in classical metapopulation
models, researchers have made use of a range of approaches
that model population densities or abundances across either
continuous or discretized, patchy modelled environments. A
coupled map lattice is the technical name for a broad group of
models that represent the environment as a grid of cells, each
of which potentially supports a population. In these models,
local dynamics in each patch are simulated and the patches are
linked by dispersal. The local dynamics are modelled using
one of a range of well-used population dynamic models that
can incorporate differing degrees of complexity (for example
they assume non-overlapping generations using the Ricker
model [183] or similar, or they may include stage structure
using a matrix-based formulation). Similarly dispersal can be
incorporated in differing degrees of complexity/realism, most
often being based on either nearest neighbour movements or a
dispersal kernel approach [184, 185]. Coupled map lattices
have been used to address a broad range of ecological, and
eco-evolutionary questions. For example, they have been used
to simulate the range expansion of species responding to cli-
mate change over a complex landscape [64].

Integrodifference EquationsAnother important class of spa-
tial population models are integrodifference equations (IDEs),
which are often used to predict species spread over landscapes
[66, 186, 187]. As with coupled map lattices, these models
explicitly represent local demography and dispersal.
However, they typically assume space to be continuous (but
see [188]). This means that estimates of population spread in
homogeneous landscapes are possible via analytical tech-
niques [65, 189], rather than based on costly simulation tech-
niques, thus making parameter sensitivity analysis straightfor-
ward. Notable recent progress has been made on extending
these approaches to work on heterogeneous landscapes,

although analytical expressions for spreading speeds have on-
ly been found for landscapes where the structure is a regular
repeating pattern [190–192]. Because of the challenges in-
volved in developing these analytical techniques and a lack
of computational resources, few mechanistic IDE models
have used large complex mapped heterogeneous landscapes
to model spreading species. However, with increasing com-
puting capacity and efficient algorithms (e.g. [193, 194]) it is
now possible to predict species spread over realistic 2D land-
scapes. In Fig. 3, we plot the spread of spruce (Picea) trees in
Glacier Bay, Alaska, using an IDE model. This area
underwent a period of deglaciation which left fertile soil be-
hind in the thawed terrain. Using land cover data [196], we
created a landscape suitability map, which we relate to tree
fecundity in the IDE model. The resulting model predicts the
spread of spruce trees over the landscape, giving a spread rate
that is commensurate with empirical estimates [197].

Individual-Based Models When researchers make use of
models that aggregate individuals into populations they are,
at least implicitly, making the strong assumption that individ-
uals behave identically [198, 199]. Individual-based models
(IBMs) (the ecological equivalent of land-use ABMs) are now
widely used to study ecological processes, with their major
strength being that they account for inter-individual, as well as
spatio-temporal variation in individual behaviour. IBMs also
make it more straightforward to relax assumptions that are
frequently made in density-based models related to the omni-
science of organisms, and their perfect adherence to optimal
strategies [69]. In reality, organisms only have bounded ratio-
nality, and make mistakes in strategy selection—models that
aggregate up to groups of populations will miss the
stochasticity that arises from this effect. IBMs are particularly
useful for constructing plausible hypotheses about how
aggregate-level patterns emerge from individual behaviour,
the impact of heterogeneity on system outcomes and for iden-
tifying the consequences of management decisions [120].

Individual-based models have seen substantial use in land-
scape ecology. They have been used to address questions at a
range of spatial and temporal scales varying from models of
home range dynamics and daily movements [200, 201] to
multi-decadal models of species range shifting [19]. IBMs
have also been used extensively to study landscape connec-
tivity: identifying threats to populations [202] and testing the
impacts of future scenarios [203, 204]. Notably a stochastic
IBM approach has recently been demonstrated to provide bet-
ter estimates of inter-patch connectivity (in terms of correla-
tion with genetic estimates) than least-cost path and circuit
theory approaches [205]. Most applications of IBMs for land-
scape connectivity have focussed on the process of dispersal,
while the ability of the focal organism to form home ranges is
rarely explicitly modelled. Recent work suggests that a focus
on dispersal (to the point of ignoring home range movements)
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may lead to an overestimation of functional connectivity
[206]. However, it remains a challenge to identify the mecha-
nisms by which stable home ranges can emerge from un-
bounded movement paths, with a number of alternative
modelling approaches in use [207]. In many of the existing
IBMs of movement processes across complex landscapes the
key questions being addressed have related to connectivity
[208–210], emergent dispersal mortality [211, 212], and home
range formation [206, 213, 214], but in many cases these
individual-based movement models have not been linked to
models of population dynamics. When such links are made, it
is possible to gain important new insights into the dynamics of
species living on complex landscapes and into potential con-
sequences of alternative management interventions [215]. In
one recent example, [216] used RangeShifter to combine a
stochastic IBM for movement with a spatially explicit popu-
lation model to explore alternative plausible management sce-
narios for birds in the Taita Hills in Kenya, a biodiversity
hotspot. The results demonstrated that while adding new hab-
itat patches boosted overall population abundance, potential

risks exist of placing them in certain locations that may repre-
sent Bdisperser sinks^, effectively halting dispersers that
would otherwise have immigrated into other existing patches
and, therefore, reducing abundance in those existing patches.

Integrated ModelsWith a growing recognition of the impor-
tance of ecosystem services, there is increased understanding
of the need to understand the interactions between human
decision making, our environment and ecological processes.
A number of modelling approaches now integrate human be-
haviour with biogeochemical processes, for example linking
human decision making to hydrological processes [217–220]
and soil nutrient flow [70, 221–223]. There have also been
studies on interactions between human decision making and
ecology (habitat/land cover), for example in timber harvesting
[224], and the impact of human activities on habitat metrics
[225, 226]. Interactions between farmer decision making and
ecological processes have perhaps received the greatest focus,
with farm-based ABMs integrated with CA [72] and spatial
stochastic simulation [73] to model pest species, and with

Fig. 3 Emerging mathematical approaches for simulating population
spread across heterogeneous landscapes offer substantial potential for
landscape ecology, making possible highly computationally efficient
projection of species range dynamics over large spatial scales. This is
an example where the spread of spruce (Picea) trees at Glacier Bay,
Alaska, is simulated. We simulate a 2D IDE using the adaptive mesh
refinement algorithm from [193]. We assume a piecewise-linear growth
function where the landscape-dependent population growth rate, r0(x), is
constant below the carrying capacity, K (assumed, without loss of
generality, to be 1). That is f(Nt(x)) =min(r0(x)Nt(x), K), where Nt(x) is

the population density at generation t and location x, and r0(x) is
15 years−1 on fertile land [195] and zero elsewhere. We also assume a
2D exponential kernel with a mean dispersal distance of 85 m. The
landscape suitability map was calculated from the National Land Cover
Database 2011 [196]. The figure shows areas of water, hostile, and fertile
land. The contours depict predicted annual maximal spread of the spruce
trees from the initial location. For the given parameters, the IDE gives a
spread rate of 367 m year−1, which closely matches empirical estimates
[197]
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metacommunity models to study the impact of agri-
environmental incentive schemes on biodiversity [60].

Model Verification and Validation

The choice of modelling approach is complicated by the dif-
ficulties and implications of verifying, validating, or otherwise
evaluating model performance. Verification and validation
can be conducted in a number of ways dependent on the type
of model being used. A number of previous studies have
highlighted confusion in the literature about the meaning of
validation for simulation models [227, 228]. BValidation^ is
often used as a catch-all term incorporating concepts of veri-
fication, evaluation, analysis, and validation [228]. For
pattern-based approaches, the approaches to verification and
validation are relatively clear: if there is a pattern that the
model aims to match, then the model is verified and calibrated
to a subset of this pattern/data, and once the model has been
verified as suitable, it is validated against the remaining
pattern/data (i.e. to test the model’s predictive accuracy on
independent data). This approach of course assumes that the
purpose of the study is to match an existing pattern, but many
studies aim to predict patterns in new geographic or climatic
space. For such studies validation of final predictions is clearly
not possible; instead the model must be verified and validated
for current patterns. Predictions can then only be accepted if
the relationship between the independent and dependent var-
iables is expected to remain constant. Methods for assessing
accuracy include the area under the curve of the receiver op-
erating characteristic (AUC) for binary data (e.g. species pres-
ence-absence), and the Pearson correlation coefficient (r2) for
count data (e.g. species abundance). In land-use studies, a
number of methods are commonly used to compare categori-
cal maps [229, 230], although recent work has exposed poten-
tial weaknesses in some of these methods (Kappa indices)
[231, 232]. Across fields, the practice of model verification
and validation varies widely, often to the detriment of inter-
pretability [228, 233–235].

Process-based models face particular difficulties because
they are often required to incorporate processes that are not
fully understood, or at least difficult to validate; the quest for
process accuracy makes errors of omission harder to justify,
but errors of commission more likely to occur. In ecological
applications it may be reasonable to validate process represen-
tations on the basis of the patterns they produce, assuming that
those processes are stable through time (e.g. breeding rates,
dispersal characteristics). However, models involving more
dynamic processes, especially those related to human behav-
iour, may only be able to achieve reasonable, as opposed to
fully Bvalid^, representations [236]. In such cases, model
transparency becomes crucial, along with verification of inter-
mediate simulation outputs through modular testing [237],

and rigorous exploration of model behaviour through experi-
ments or sensitivity and uncertainty analyses [238].

Nevertheless, models of complex natural and human sys-
tems can never be entirely accurate. The simplification inher-
ent in the modelling process inevitably reduces accuracy, es-
pecially in its requirement for artificial systems boundaries
[239]. Furthermore, the parallel testing of processes and
resulting patterns is likely to require unsafe assumptions about
unique causal relationships. Fundamentally, model verifica-
tion and validation requires the same careful judgement as
model design and use, with various analytical techniques use-
ful for increasing understanding of model performance, but
unable to demonstrate complete validity.

Current Opportunities

It is apparent from our brief review that there are many exam-
ples of links between land-use models and ecological models
successfully providing increased understanding of how land-
scape ecological systems operate, making predictions or
informing management. Our view is that developing greater
linkages between land-use models and ecological models will
be vital in meeting the current challenge of developing im-
proved forecasts for biodiversity under environmental change
[240]. Some combinations of land-use modelling and ecolog-
ical modelling are particularly well represented. NLMs are the
best represented class of landscape model in an ecological
context, often being used in combination with metapopulation
models to provide generic theory on how well populations
persist in fragmented landscapes. NLMs are also increasingly
used in conjunction with density based models and IBMs. It is
clear that NLMs will continue to be an important part of land-
scape ecological modelling because of these combined
applications.

We do not suggest that model integration should be used in
all situations: many questions can and should be tackled with
simpler stand-alone models (as discussed above), and model
combinations may create as many problems as they solve.
However, there are also some major gaps where combinations
of landscape and ecological models have not been exploited to
their potential. This is particularly true for the landscape
models and ecological models that have only recently been
developed in their respective fields. Here, we highlight five
opportunities for combining landscape and ecological models
in new ways to address what we believe to be a set of inter-
esting and important questions. By no means is this intended
to be an exhaustive list, and it certainly reflects our particular
set of interests. We would encourage the reader to consider
how their own particular field may benefit from new combi-
nations of landscape and ecological model as we are certain
there are great opportunities to be gained by looking beyond
the approaches that we are each most accustomed to taking.
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While NLMs have already been much used in landscape
ecology, they certainly remain an important component in the
landscape ecologist’s toolbox and the first opportunity in our
list is for NLMs to be coupled with emerging eco-evolutionary
modelling approaches to tackle new questions. Our second
also makes use of NLMs, in this case to systematically assess
how model choices related to the spatial and temporal resolu-
tion of representing processes and/or patterns influences mod-
el outcomes—and to use these insights to guide best use of
pattern-based and ABM land-use models. Our third opportu-
nity provides one example of many that we believe exist for
making use of pattern-based landscape models together with
intermediate-complexity ecological models to make broad
scale projections for how ecological systems will respond to
environmental changes, including land-use change and cli-
mate change. Our fourth opportunity again includes pattern-
based land-use models, but this time together with IBMs in
order to inform future-proof spatial planning taken for conser-
vation at more local scales. The final opportunity that we
highlight is the dynamic coupling of complex, process-based
land-use (i.e. agent-based) and ecological (i.e. individual-
based) models to begin to develop theoretical insights into
the dynamic interplay and non-linear feedbacks that are a
key feature of socio-ecological systems.

Eco-Evolutionary Simulations on NLMs

There has been substantial recent interest in rapid evolutionary
dynamics that occur fast enough to be important for ecological
processes. These eco-evolutionary dynamics include, for ex-
ample, evolutionary rescue, whereby a population facing a
change in the environment would become extinct if not for
evolutionary change [241, 242] and the rapid evolution of
dispersal in fragmented landscapes [243–245] or during range
expansions [246–248] or range shifts. While an increasing
number of researchers are developing models to explore
eco-evolutionary dynamics, they have yet to be linked to stan-
dard methods in landscape ecology in order to answer ques-
tions such as BHow does the likelihood of evolutionary rescue
depend upon the spatial configuration of different habitat and
matrix elements^ or BHow do the movement rules adopted by
individuals during dispersal depend upon the amount and ar-
rangement of habitat^ (but see [245] for one example). We
also note that there are opportunities for novel work that takes
a landscape perspective for major emerging themes in evolu-
tionary biology. As two examples, we could begin to address
questions related to the role of epigenetics in conferring adap-
tation across spatially heterogeneous landscapes by extending
recent models that have focused on single populations [249,
250]. We could also ask how landscape properties influence
the role of sexual selection in driving trait evolution and how
this evolution then shapes the dynamics of species ranges by
extending individual-based models from evolutionary biology

[251, 252], or how different landscape structures may drive
the evolution of different mating systems, again by exploiting
the new and flexible IBMs [251, 253] that are now being
developed in the evolutionary field.

Use of NLMs for Systematic Assessment of Modelling
Decisions

NLMs can be (and are) used to determine optimal resolutions
and scales at which to provide landscape model output and/or
to model processes, and novel opportunities of this kind can
be expected as new models are introduced and tested. NLMs
provide an ideal method for addressing key issues that we
have discussed above, for example by investigating the effects
of model representation of scale and temporal dynamics on
model outputs [25, 254]. A major strength of the NLM ap-
proach is that it allows studies to focus on specific features of
landscape structure [27], often systematically varying one or a
few features while holding others constant. NLMs can provide
an important tool to determine the optimum design of pattern-
based and ABM landscape models such that they provide
unbiased projections when used in an ecological context.

Modelling Organism Spread Rates by Integrating
Population Density Ecological Models and Pattern-Based
Landscape Models

A critical current ecological question relates to the rate at
which species will be able shift their ranges in order to track
climate change. Currently, large scale projections for the rates
of spread of large numbers of organisms make extremely sim-
plifying assumptions regarding the ecology and the landscape.
For example, dispersal may be modelled as a negative expo-
nential function derived from average dispersal distance
[255], neglecting the influence of the intervening habitat ma-
trix. In recent work, [256] used both IDEs and RangeShifter
(an IBM) to estimate the potential spread rates of terrestrial
mammal species, making the prediction that almost 30 % of
terrestrial mammal species have spread rates slower than the
velocity of climate change. This approach was interesting as it
used a trait-based model to overcome data limitations.
However, it only estimated rates of spread across homogenous
landscapes. A major future challenge for landscape ecological
modelling is predicting how well species will track climate
change across complex, and temporally varying landscapes.
Using IDEs, refined as in Fig. 3 to work over complex land-
scapes, offers a great opportunity for rapid progress.

Study Population Viability under Future Scenarios Using
IBMswith Output fromPattern-Based LandscapeModels

For large spatial extent modelling, targeting projections across
many species, combining IDEs with pattern-based landscape
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modelling is likely to offer the greatest rewards for re-
searchers. However, when our focus is on a smaller number
or focal species and at a smaller spatial extent, IBMs can be
coupled with pattern-based landscape models to make projec-
tions for informing management decisions. The advantage of
the IBM approach is that it allows for greater behavioural
complexity, for example in critical dispersal behaviour, to be
incorporated and can also allow for inter-individual heteroge-
neity in behaviours. For smaller numbers of species we can
reasonably expect to be able to acquire the data to
parameterise this extra complexity. Recent work has used
IBMs that incorporate current landscapes to inform the choice
between alternative options for landscape management
targeting birds in fragmented forests [216] to inform the de-
sign of reintroduction or assisted colonisation strategies [257]
and to determine how alternative possible management op-
tions for UK forests will facilitate the range shifting of species
[19]. However, there are a lack of studies that consider how
these conservation strategies will fare in the context of dynam-
ically changing landscapes and thus using the IBMs with
pattern-based models that provide spatio-temporal projections
of landscapes would be a particularly valuable direction to
pursue.

Dynamic Coupling of ABMs of Land-Use with IBMs
for Ecological Systems

There is potential to gain generic understanding of the poten-
tially complex interplay that human-environment or socio-
ecological systems are likely to exhibit, through dynamic cou-
pling of ABMs of land-use with IBMs for ecological systems.
For example, while we often model the impacts of land-use on
the distribution and abundance patterns of a species, we might
also expect that the local abundances of either pest species or
species of conservation concern may impact on the decisions
that a landowner makes on their use of their land. This decision
may be driven by straightforward economics (e.g. not planting
a particular crop when a disease or pest is known to be present)
or may be driven by regulation (e.g. not being allowed to dam-
age habitat of a protected species). There can, therefore, be a
dynamic interaction between land-use and ecological variables.
While there is an expectation for such coupled systems to pos-
sess nonlinear dynamics, feedback mechanisms, time lags, and
surprising behaviours [258, 259], the vast majority of existing
work has focused either on the social or on the environmental
issues, potentially neglecting crucial system interactions [37,
260]. Some studies have considered dynamic system interac-
tions and shown promising results (e.g. [71–73]), including
non-linear responses to agri-environmental biodiversity incen-
tive schemes [60]. However, in these existing efforts to link the
approaches, there have been fundamental differences between
the representation of social and ecological elements. In partic-
ular, whilst moderately complex ABMs have been used to

represent the social system, the ecological system has, in these
coupled modelling exercises, been represented through either
habitat metrics, CA, or metacommunity modelling. We agree
with [150] who suggested that an important future direction for
socio-ecological modelling is to represent both systems at an
individual level. Such an approach can be extremely valuable in
future landscape ecological modelling and should further aid
the identification of critical feedback mechanisms, and the ex-
ante assessment of potential environmental and land-use
policies.

Conclusions

We envisage that our research aims will increasingly require the
modelling of interacting social and ecological systems. This
will inevitably makemodel design and development more chal-
lenging. Integrated models may be substantially more complex
than discrete models, not least because effects that would pre-
viously have been isolated within subsystems may propagate
throughout the integrated system [261]. The development of
models to represent systems from multiple fields of study can
be a significant technical challenge, a task likely to require
multi-disciplinary collaborative work [150, 262].

Issues of scale and aggregation become particularly impor-
tant when linking landscape, land-use, biogeochemical, eco-
logical, and evolutionary processes. Whilst the issue of spatial
and temporal scale in landscape ecology has been widely
discussed [2, 24, 263–266], it is of particular importance when
integrating multiple system models [261, 267]. Across the
wide range of topics that encompass landscape ecology, dif-
ferent processes and systems operate at different spatial and
temporal scales and resolutions [268]. The level of aggrega-
tion of actors and processes can also be important for shaping
interactions. For example, land-use decision-making may oc-
cur quite differently under a global and regional economy
[269]. In both ecological IBMs and land-use ABMs, individ-
uals may be aggregated into cohorts or groups, or directed by
constraints and rules at a group level [270]. For example,
households may be modelled as single land-use agents
[271], and groups or nests may be modelled as an ecological
Bsuper-individual^ [272]. When the processes being studied
occur at group level, such aggregations are an important as-
pect of model design, maximising model simplicity while still
generating the patterns or behaviours of interest [273].

Whilst the issues of scale are well recognised (e.g. system-
atic bias when modelling animal movement [25], influence of
neighbourhood size on models forest fires [274]), few studies
have used quantitative methods to determine the most appro-
priate scale (but see [275–277]). The geometry of the land-
scape is another important, but rarely considered issue. Use of
regular grids introduces bias when studying connectivity and
animal movement, since patterns are formed based on the
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shape and orientation of the underlying grid structure [278].
The vast majority of landscape simulation studies use regular
square geometry. Some studies have used hexagonal geome-
try because it gives equal weight to neighbourhood interac-
tions [279–281]. Nevertheless, this does not remove the grid-
induced bias [278], but only changes the pattern of the bias
[282]. Irregular grids have been suggested as a solution [278,
283, 284], and have been used (for example in a CA of land-
use change [285]), but their wider application is still rare. In
light of this, [23] suggest the use of multiple landscape geom-
etries to account for this potential source of modelling bias.

Another important consideration for future landscape
ecological modelling is the temporal dynamics of the
study system. Whilst some landscape ecological studies
have incorporated the effect of temporal environmental
dynamics (e.g. [286–289]), such studies are rare and have
generally focussed on environmental variability over short
time periods. Where the longer term impacts of environ-
mental or landscape change on animal populations are
considered, studies rarely treat the landscape as a tempo-
rally dynamic system [262, 290], instead running separate
simulations with and without a prescribed landscape
change (e.g. [19, 204, 291]). We believe that the future
of landscape ecological modelling is in moving beyond
models of human-environment systems which commonly
consider only a unidirectional interaction, (i.e. humans are
either drivers or users of the environment, but rarely both
[267, 292]) towards representing human-environment in-
teractions as bi-directional, with dynamic feedbacks from
the human managed landscape to the ecological system
and vice versa. Fully dynamically coupled models will
provide the ideal environment to gain improved under-
standing and thus a capability to manage dynamic land-
scape ecological systems.
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