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Abstract This paper looks into the robustness of implied volatility against the

backward looking volatility of S&P CNX Nifty index option in India by considering

both ‘in the sample’ and ‘out of the sample’ framework. The backward looking

volatility is measured by employing Moving Average (MA), Exponential Weighted

Moving Average (EWMA), Generalized Auto Regressive Conditional

Heteroskedisticity (GARCH) and Exponential Generalized Auto Regressive Con-

ditional Heteroskedisticity (EGARCH) model with Generalized Error Distribution

(GED). The study computed the realized volatility of S&P CNX Nifty by using the

overlapping database to match with the expiration of the corresponding option

contract. This leads to the problem of minimizing the standard error of the estimator

as per the OLS method. This problem has been resolved by employing Generalized

Methods of Moments (GMM). The study period of the analysis is spanning over the

period from 4th June 2001 to 23rd June 2011. The determinations of the study

suggest that Conditional Volatility gives a superior forecast of realized volatility

than forward looking volatility and other backward looking volatility. At the same

time the analysis shows that implied volatilities are biased and inefficient estimates

over the remaining life of the option contract. In ‘out of the sample analysis’, the

family of ARCH models outperformed all other forecasting models with respect to

predicting 30 days ahead volatility.

Keywords Implied volatility � Call and put option � Forecasting � Conditional

volatility � Generalized error distribution � Error in variables � EWMA

& Alok Kumar Mishra

misalok@gmail.com

1 School of Economics, University of Hyderabad, Prof. C.R. Road, Gachibowli,

Hyderabad 500046, Telangana, India

2 NMIMS University, Mumbai, India

123

Eurasian Econ Rev (2016) 6:67–96

DOI 10.1007/s40822-015-0031-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s40822-015-0031-8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40822-015-0031-8&amp;domain=pdf


JEL Classifications C22 � G14

1 Introduction

Forecasting volatility is fundamental to the risk management operation in order to

price derivatives, devise hedging strategies and estimate the financial risk of firm’s

portfolio positions. There are several methods to predict the future volatility.

Nevertheless, generally, we can split volatility models into two parts: historical

volatility and implied volatility. Historical volatility models use time series of past

market prices while implied volatility depends on a particular model of the

relationship between trading option prices and volatility. A theoretical option

pricing model, such as Black–Scholes, will pass the theoretical price for an option as

a function of implicit parameters such as strike price, risk free rate of interest, spot

price, volatility, and time to maturity. Amongst all except volatility, all other

parameters are either given or realized in the market. The implied volatility of an

option is the volatility in which the Black–Scholes theoretical price equals to the

market price. Implied volatilities are used to device market’s expectation about

future volatility. Thus, we can state that historical volatility is backward looking

while implied volatility is a forward looking measure of volatility. Precisely

measures and proper assessments of volatility are important for understanding the

operation of the financial market. However, estimated volatilities vary based on the

methodology, time period chosen and time horizon considered etc.

In the light of the above discussion the objective of this paper is to look into the

predictive power of implied volatility against the backward looking volatility of

S&P CNX Nifty index option in India. The present study differs from previous

study in four perspectives—firstly, it has considered volatility data, sampled over a

longer period (sample size 2513) than in previous studies which increases statistical

power and allows for evolution of efficiency of the market dealing with S&P CNX

Nifty index option that was presented in 2001. Secondly, the study shows the

predictability of both call and put implied volatility. Thirdly, the study deals with

overlapping (telescoping) data. Fourthly, in order to assess the validity of all the

applied volatility measurement models, we compare them in an out of sample

framework.

The major findings of the study propose that the conditional volatility measures

provide a superior forecast of realized volatility than forward looking as well as

other backward looking measures of volatility. The implied volatilities are biased

and inefficient estimates over the remaining life of the option contract. The ARCH

school of models outperformed all other prediction models with respect to

predicting 1 month ahead volatility in the ‘out of the sample’ framework. The rest

of this paper is structured as follows. Section 2 deals with the review of literature. In

Sect. 3, we have presented the data and sampling process. The methodology for

analysis that describes how volatility series are constructed is explained in Sect. 4.

The empirical results are confronted in the Sect. 5 followed by the concluding

remarks of the paper in Sect. 6.
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2 Literature review

Volatilities implied in option prices are believed to be ‘‘the market’s forecast’’ of future

volatility during the option’s remaining life. Early studies of the information content of

ISDs (Implied Standard Deviations) show that implied volatility contains substantial

information for future volatility. A few studies found that options contain volatility

forecasts that are more accurate than historical measures of volatility by regressing

future volatility on the weighted implied volatility across a broad sample of Chicago

Board Options Exchange (CBOE) stocks (Latane and Redeleman 1976; Chiras and

Manaster 1978; Beckers 1981). However, these studies performed shortly after the 1973

beginning of the CBOE option market, could only use a relatively short time span and,

therefore, focused on cross sections rather than time series predictions. These studies

essentially supported that stocks with higher implied volatilities also have higher ex-post

realized volatility. Hull and White (1987) show that when volatility is constant, the

Black–Scholes implied volatility of an ATM (at-the-money) option approximately

equals to the expected future realized volatility during the option life.

Scott and Tucker (1989) reported some predictive ability in ISDs (Implied Standard

Deviations) measured from PHLX currency options, but their methodology did not

allow formal tests of theory. They ran OLS (Ordinary Least Square) regression with 5

currencies, 3 maturities, and 13 different dates. However, due to high correlations

among observations, the usual OLS standard errors were severely biased, thereby

invalidating the hypothesis test. Day and Lewis (1992) analyzed options on the S&P 100

index from 1983 to 1989, and found that the ISD (Implied Standard Deviation) contains

significant information content for weekly volatility, although not necessarily higher

than that of time series models. This approach, however, shortsighted the term structure

of volatility since the return horizon did not match with the life of the option. Lamoureux

and Lastrapes (1993), studied options on ten stocks with expirations from 1982 to 1984,

found that implied volatility is biased and inefficient. Both of these studies used

overlapping sample and additionally, are characterized by a ‘maturity mismatch’

problem. However, Lamoureux and Lastrapes examine a one-day-ahead and Day and

Lewis examined one-week-ahead predictive power of implied volatilities computed

from options that have a much longer remaining life. Thus, the results are not easy to

interpret. To address this problem, Canina and Figlewisk (1993) regressed the volatility

over the remaining contract life against the implied volatility of S&P 100 index options

over 1983 to 1986. They found that implied volatility of S&P 100 index option contains

no information about future volatility.

Empirical research conducted on currency options, on the other hand, in general

concludes that the implied volatility on short maturity contracts performs better in

predicting future volatility and contains information that is not present in historical

volatility. Jorion (1995) investigated the information content of implied volatility from

currency options traded on the Chicago Mercantile Exchange and found that statistical

time series models are outperformed by the volatility implied in short-term options,

although implied volatility appears to be a biased forecast. While utilizing the data on

options traded in the ‘over-the-counter’ market, Galati and Tsatasaronic (1996)

evaluated the predictive power of volatility implied in currency options. They conclude
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that the implied volatility of short-maturity options performs well in forecasting future

volatility although it is a biased estimator. For longer horizons they found that neither

historical nor implied volatility provides a good forecast of future volatility.

Christensen and Prabhala (1998) tested the prognostic power of implied volatility

on S&P 100 index options. In contrast to previous studies, they found that implied

volatility outperforms historical volatility in forecasting future volatility. The survey

concluded that the deviation in their results compared to those of Canina and

Figlewisk was a consequence of using longer time series and non-overlapping data.

Fleming (1998), investigated whether the biasness that arises in the option market is

purely due to measurement error and model misspecification, or whether the bias

was also apparent in option market prices. His analysis also revealed that the bias is

too large to be explained by skewness preference, but that it might be the result of

market imperfections (e.g., transaction costs) and/or a premium demanded for

volatility risk. He too found that the bias apparent through the trading strategies

emerged only after the 1987 stock market crash.

Giot (2002), assessed the efficiency, information, content and unbiasedness of

volatility forecasts based on the VIX/VXN implied volatility indices by employing

RiskMetrics methods and GARCH type models at the 5, 10, and 22-day time

horizon. His empirical application focused on the S&P100 and NASDAQ100

indices. He also deals with the information content of the competing volatility

forecasts in a market risk (VaR type) evaluation framework. The performance of the

models was evaluated using LR, independence, conditional coverage and density

forecast tests. His results showed that volatility forecasts based on the VIX/VXN

indices had the highest information content, both in the volatility forecasting and

market risk assessment frameworks. Holger Claessen and Mittnik (2002) examined

alternative strategies for predicting stock market volatility. In their analysis the out-

of-sample forecasting experiments and implied-volatility information are derived

from contemporaneously observed option prices or history-based volatility predic-

tors such as GARCH models to find out if they are more appropriate for predicting

future return volatility. Employing German DAX-index return data, they establish

that past returns do not contain useful information beyond the volatility expectations

already reflected in option prices. This supports the efficient market hypothesis for

the DAX-index options market.

Soczo (2003) stated that for measuring market risk, we need to estimate the future

behavior of financial instruments. For this purpose standard deviation and correlations

could be quite useful to characterize individual behavior of instruments and their

kinship. Then, he found two major concepts to estimate future volatility; one way was

the assessment of historical data, while the other concept utilized option pricing theory

to bring expected future volatility from option prices. His analysis revealed that the

implied volatility derived from option prices is less biased. According to him, for the

risk analysis of portfolios, correlation should also be calculated from past data alone.

In case of financial markets having different holiday schedules, correlation

calculations could be quite problematic with traditional methods unless the

incomplete cases are ruled out. This solution would provide quite inefficient

estimates; however, filling in missing data causes additional bias. Therefore, more

improvement is required to implement data filling methods for more realistic financial
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processes. Taylor et al. (2010) assess the volatility information content of S&P index

and 149 US firm stock options. They use ARCH and regression models to compare

volatility forecasts defined by historical stock returns, at-the-money implied

volatilities and model-free volatility expectations for 149 firms. According to them,

for 1-day-ahead estimation, a historical ARCH model outperforms both of the

volatility estimates extracted from option prices for 36 % of the firms, but the option

forecasts are nearly always more informative for those firms that have the most

actively traded options. When the prediction horizon extends until the expiry date of

the options, the option forecasts are more informative than the historical volatility of

85 % of the firms. However, at-the-money implied volatilities generally outperform

the model-free volatility expectations.

Lonesco (2011) compared the predictive power of implied volatility, historical

volatility, and exponential historical volatility, using monthly observations of S&P 500,

FTSE 100 and DAX for the period of 2004 to 2010. The result shows that implied

volatility is not only efficient estimator of future volatility, but also that its information

content is at least good, if not much better than historical volatility. Yang (2012) explores

the predictive ability of the volatility index (VIX) in emerging markets from December

2006 to March 2010. The study shows that the models including both the volatility

indicator and the option market information have a stronger predictive power. The

prognostic power of the models is improved by 88 % in explaining the future volatility

of stock markets, much more serious than that of other models merely considering the

volatility index. With respect to the trading information about different types of

investors in option markets, the trading information from the foreign institutional

investors in option markets demonstrates a significant positive relationship with the

stock market volatility. In addition, the results also reveal that the volatility index

(TVIX) of Taiwan stock index options is a strong indicator of future stock market

volatility. The TVIX outperforms the historical volatility and the GARCH volatility

forecast in assessing the activities of Taiwan’s stock market. Misra et al. (2006), show

that deeply in the money and out of the money options on CNX Nifty are having higher

volatility than at the money options; the implied volatility of out of the money call

options is more than in the money; implied volatility is higher for far the month contracts

than for near the month contracts; deeply in the money and out of the money options with

shorter maturity have higher volatility than those of with longer maturity; put options

have higher volatility than call options; and implied volatility of more liquid options is

more than that of less liquid options. Maheswaran and Ranjan (2005), study the ability of

implied volatility to predict the volatility realized over the life of the option in Asian

equity indices. They found that in Hong Kong and Taiwan, the implied volatility is an

unbiased predictor of future realized volatility, whereas in South Korea and India, the

implied volatility is a poor prognosticator. Panda et al. (2008) examined separately

information content of call and put options on the S&P CNX Nifty index by using

1 month at-the-money options from June 4, 2001 to October 28, 2004. The result shows

that call implied volatility is a better forecast than put implied volatility. According to

them there is an error in variable problems in implied volatility. To correct it, they have

used instrumental variable method. From both OLS and instrumental variables methods,

the result shows that historical volatility does not add any information beyond what is

already contained in the implied volatility. The results also confirm the theory that the
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implied volatility dominates historical volatility in forecasting realized volatility, i.e., all

the information contained in historical volatility is being contemplated by the implied

volatility, and the historical volatility has no incremental forecast ability. Therefore, they

concluded that volatility implied by 1 month (near month) at-the-money call option

price is efficient and slightly biased estimator of realized return volatility. This bias may

be due to the fact that the implied volatility does not contain all the market information.

Kumar (2008) investigates the information content of the implied volatility estimators

and the historical volatility in forecasting future realized volatility by using non-

overlapping near month option contracts of the S&P CNX Nifty Index with a time to

maturity of 30 calendar days during the period from January 2002 to December 2006. To

compare implied predictability power with historical volatility he uses regression

methods. The results show that implied volatility estimators have information about the

future volatility and implied volatility estimators dominate the historical volatility. The

study also found that the implied volatility extracted from call options is far better than

that computed from put options. Finally, he found that implied volatility estimators are

unbiased and efficient estimators of the future realized volatility.

Chen et al. (2013) explored the relationship between VHSI and the future

realized volatility of HSI, and predicts the future realized volatility of HSI with

Kalman filter. The empirical findings of their study suggest that VHSI is an unbiased

and efficient estimate of the future realized volatility and includes data about the

future realized volatility when employing monthly data. They too reasoned that the

predication performance of the Kalman filter is more serious than the linear

regression model. Chen et al. (2014) undertook to analyze whether the implied

volatility index can be predicted and the same can be used for option trading

performances by checking the Hang Seng Index Volatility. They found that Hang

Seng Index Volatility can be predicted more accurately when considering day-of-

week effect and spillover effect. Kim et al. (2015) studies the hedging performance

with mini gold futures traded on the Korean Exchange (KRX). They have

considered the daily prices of gold and mini gold futures from September 13, 2010

to May 31, 2013. By employing the OLS model, VECM as well as the bivariate

GJR-GARCH (1, 1) model, they conclude that the time varying GJR-GARCH (1, 1)

model yields better hedging performance than time-invariant OLS or VECM models

in the both in-sample and out-of sample periods.

In summary, most of the literatures offers clear evidence that option prices contain

information about future asset return volatility that cannot be pulled up from past returns

i.e., ‘Backward Looking’ volatilities. In this paper, we examine whether this conclusion

also applies to call and put options implied volatilities on the S&P CNX Nifty index in

the context of India, both in a ‘in-the-sample’ and ‘out-of-the sample’ framework or our

analysis will show implied volatility is a biased and inefficient forecaster.

3 Data and sampling procedure

The present study considers S&P CNX Nifty index options which set about trading

from June 4, 2001 under the National Stock Exchange, India. The index consists of 50

highly traded scripts drawn from diverse industries and marketplaces. The index
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options contracts have a uttermost of 3 months trading cycle (1st month-Near month,

2nd month-middle month and, 3rd month- Far month). New contracts are introduced

on the trading day following the expiry of the near month contract. The exchange

provides a minimum of seven strike prices for every option type (call and put) during

the trading month. Our empirical analysis focuses on S&P CNX Nifty index options.

The study is based on the daily closing prices of a net dividend of S&P CNX Nifty

index and associated options on S&P CNX Nifty, traded on the National Stock

Exchange (NSE) from May 31st, 2001 to Jun 30th, 2011 for the spot market.

Nevertheless, the study period for the option market is spanning over the period from

June 4th, 2001 to Jun 23rd, 2011. The daily spot returns are computed by differencing

the natural logarithm of the prices on successive trading days. The option prices used

are the nearest expiry call and put options in the near month with more than 6 days to

expiry in order to ward off the shock of the rollovers of the contracts. All implied

volatilities are calculated for the nearest-to-the money options. The one-month

MIBOR (Mumbai Interbank Offer Rate) was taken as the risk free interest rate.

4 Methodology

4.1 Backward looking measure of volatility

4.1.1 Moving average method

One of the simplest approaches to calculate volatility involves estimating a

historical moving average. To get a moving average estimate of volatility, the

average is taken over a rolling window of historical volatility data. The order ‘m’ of

a moving average process is characterized by the duration of the window that is

chosen; hence processes are denoted by MA (m). A longer rolling window implies a

moving average process that essentially retains a longer memory of past

information. Here in this study of moving average process, we consider a 20-day

rolling window. The daily calculation of volatility would be the variance of daily

returns over the most recent 20 days. Assuming a zero mean daily return, the

moving average volatility over a window of the last 20 days is calculated as follows:

r2
t;MAð20Þ ¼

1

20

X20

i¼1

R2
t�iþ1 � 252 ð1Þ

Wherert, MA (20) is the daily estimate of forecasted annualized volatility, expressed as

a standard deviation in period t. Because moving-average volatility is calculated using

equal weights for all observations in the historical time series, the computations are very

bare. The result, however, is a smoothing effect that causes sharp changes in volatility to

appear as plateaus over longer periods of time, failing to capture dramatic changes in

volatility. This smoothing effect becomes more serious as the rolling window gets

longer. A more advanced way of computing a moving average approximation is the

Exponentially Weighted Moving average (EWMA) approach. This method has been

invented by the Risk Metrics in calculating Value at Risk measurements.
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4.1.2 Exponentially weighted moving average method (EWMA)

EWMA is essentially a simple extension of historical average volatility measure,

which allows more recent observation to have a stronger impact on the forecast of

volatility than older data points. Risk Metrics use EWMA to forecast variances and

covariances (volatilities and correlations) of the multivariate normal distribution.

An attractive feature of the exponentially weighted estimator is that it can be

written in recursive form which, in turn, will be utilized as a base for making

volatility forecasts. In order to derive the recursive form, it is assumed that infinite

amounts of information are usable. For instance, presuming again that the sample

mean is zero, we can deduce the period t ? 1 variance forecast, given data available

at time t (single day earlier) as

r2
t;EWMA ¼ k r

2
t�1 þð1 � kÞR2

t � 252 ð2Þ

where r2
t;EWMA is the estimate of the variance for period t, which also becomes the

forecast of future volatility for all period t, and k (0\k\ 1) is the ‘decay factor’,

which determine how much weight is given to recent versus older observation. This

parameter, k determines the relative weights that are applied to the observations Rt

(returns) and the effective amount of data used in estimating volatility. The decay

factor could be estimated, but in many studies is set at 0.94 as recommended by

RiskMetrics, producers of popular risk measurement software. It also assumed in

risk metrics and many academic papers that mean of the return series is zero. For

data that is of daily frequency or higher, this is not an unreasonable assumption, and

is likely to lead to negligible loss of accuracy since it will typically be very small.

4.1.3 Generalized ARCH (GARCH) models

Observing the natural prolongation of the ARMA process as parsimonious

representations of a higher order AR process, Bollerslev (1986) continued the

work of Engle to the Generalized ARCH or GARCH process. The GARCH (p, q)

process defined as

r2
t ¼ xþ a1u

2
t�1 þ a2u

2
t�2 þ � � � þ aqu

2
t�q þ b1r

2
t�1 þ b2r

2
t�2 þ � � � þ bpr

2
t�p ð3Þ

r2
t ¼ xþ

Xq

i¼1

aiu
2
t�i þ

Xp

j¼1

bjr
2
t�j ð4Þ

where, x[ 0; ai � 0; bj � 0:

The conditional variance is a linear function of q lags of the squares of the error

terms u2
t or the ARCH terms (also referred to as the news from the past) and p lags

of the past values of the conditional variance (r2
t ) or the GARCH terms, and

constant x. The inequality restrictions are imposed to assure a positive conditional

variance, most certainly. The most elementary form of GARCH (1, 1) is as follows:

r2
t ¼ xþ a1u

2
t�1 þ b1r

2
t�1 ð5Þ
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4.1.4 Exponential GARCH (EGARCH) model

The GARCH process fails to explain the then called ‘‘leverage effects’’ often

mentioned in financial time series. The concept of leverage effects, first noted by

Black (1976), refers to the tendency for changes in the livestock prices to be

negatively correlated with changes in the stock volatility. In other words, the effect

of a shock on the volatility is asymmetric, or to put it differently, the impact of a

‘‘good news’’ (positively lagged residuals) is different from the impact of the ‘‘bad

news’’ (negative lagged residuals). A model that accounts for an asymmetric

reaction to a shock was credited to Nelson (1991) and is called an exponential

GARCH or EGARCH model.

ln r2
t ¼ xþ

Xp

j¼1

bj ln r2
t�j þ

Xq

i¼1

ai zt�ij j þ
Xq

i¼1

hizt�i: ð6Þ

Where, zt ¼ ut
rt

. Note that the left-hand side of the Eq. (6) is the natural logarithm

(Ln) of the conditional variance. The Ln form of the EGARCH (p, q) model ensures the

non-negative of the conditional variance without the need to constrain the coefficients

of the model. The asymmetric effect of positive and negative shocks is represented by

the inclusion of the term zt-i. If hi [ 0, volatility tends to rise (fall) when the lagged

standardized shock, zt�i ¼ ut�i

rt�i
, is positive (negative). The persistence of shocks to the

conditional variance is given by
Pp

j¼1 bj. Since negative coefficients are not ruled out,

the EGARCH models allow for the possibility of cyclical behavior in volatility. The

most elementary form of EGARCH (1, 1) is as follows:

ln r2
t ¼ xþ b1 ln r2

t�1 þ a1 zt�1j j þ h1zt�1 ð7Þ

4.2 Forward looking measure of volatility

The implied volatility of an option is defined as the expected future volatility of the

underlying asset over the remaining lifetime of the option that compares the average

value of the option implied by a particular model to the option’s actual market cost.

The former studies in this line concluded that measures of option implied volatility

are, indeed, the best predictor of future volatility.

Unlike time series measures of volatility that are completely backward-looking,

option implied volatility is ‘‘backed-out’’ of actual option prices—which, in turn, are

based on actual transactions and expectations of market participants—and, therefore,

is inherently forward-looking. This measurement incorporates the most current

market information and, therefore, it should reflect market expectations better than the

historical measure.1 Properly interpreted, implied volatility of an option, provides

information about what market participants expect to happen with future asset returns.

Black and Scholes (1973) derived the value of a European call and put option on

a non-dividend-paying-stock as a function of current stock price, the time to

1 See Fama (1971, 1990).
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expiration, the exercise price, the risk free rate of interest, and the volatility of the

underlying stock.

For a European option, the current price of the call and put on a common stock or

index is just

C ¼ S0Nðd1Þ � Ke�rtNðd2Þ ð8Þ

P ¼ Ke�rtNð�d2Þ � S0Nð�d1Þ ð9Þ

where C denotes the price of the call price, P denotes the put price N (d) denotes the

cumulative normal distribution evaluated at d, S0 is the Current asset price, T is the

time to maturity of the option, K is the strike price, and r is the riskless interest rate,

for this we have used the one month MIBOR (Mumbai Interbank Offer Rate).

d1 ¼ lnðS0=kÞ þ ðr þ r2=2ÞT
r

ffiffiffiffi
T

p

d2 ¼ lnðS0=kÞ þ ðr � r2=2ÞT
r

ffiffiffiffi
T

p ¼ d1 � r
ffiffiffiffi
T

p

where, r is the volatility of the underlying asset.

Options on assets, paying a constant dividend yield can be priced using a

modified form of Black–Scholes model.

In the Black–Scholes model, the one unobserved parameter is the volatility of the

underlying stock. Theoretically, the proper volatility input in the Black–Scholes

model is the instantaneous variance of asset returns, which means the variance of

underlying asset’s return over an infinitesimal time increment. Robert Merton

(1973) concluded that under this interpretation, the volatility implied by the Black–

Scholes model can be interpreted as the expected future instantaneous variance of

the underlying asset’s return over the remaining life of the option.

To value an option using the Black–Scholes model, we just substitute values of

observed parameters and volatility into the Black–Scholes equation, which provides

an exact link between the inputs to the model and the theoretical option price. To

find out the implied volatility of European call and put option, with a given market

price of the option, current stock price, strike price, time to maturity and interest

rate, the value of volatility is derived by substituting those observed values into the

Black–Scholes model. The resulting value of ‘r’ is called the Black–Scoles implied

volatility,2 because that number represents the volatility of the underlying asset that

is implied by quoted option price and the Black–Scholes model.

4.3 Realized volatility

In the last section we have explained the way to calculate both backward and

forward looking volatilities. But now the question arises how to find out which one

among them is the best, for that firstly we have to calculate the actual future

volatility or realized volatility. Then we use this actual realized volatility as a

2 Implied volatility for both call and put options.
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dependent variable in the predictability regression. Since it is assumed that

underlying prices are log normally distributed, the returns are calculated according

to their log differences in prices and are hence continuously compounded.

Therefore, a one-day behind return is calculated as

Rt�1;t ¼ ln Stð Þ�ln St�1ð Þ ð10Þ

where, St denotes the closing price at time t. Similarly, the one-day ahead return is

calculated as Rt,t?1. Both of these daily return series, then squared to serve as a basis for

either input in a measurement technique or as a measure of volatility for the analysis.

These series are also multiplied into square root of 252 assuming 252 trading days in a

year, to make it annualized like the other measures of forecasting volatilities that are

used in the analysis of our study. The resulting volatilities are expressed as standard

deviations. Furthermore, it is always assumed that the mean of the return series is equal

to zero, so that the daily variance is explained simply by the squared returns. The one-

day behind return series was used to calculate all of the historical or backward looking

measures of volatility such as MA (20), EWMA, GARCH and EGARCH. In the

GARCH application, as demonstrated in the previous section, both the previous day’s

return and variance are regressors in determining the conditional volatility whereas the

moving average processes are simply a function of the one-day behind annualized

squared returns. All of the historical estimates were arrived at in the manner described

in the previous section. It is important to note, however, that the available data in each

final historical volatility series were truncated by the order of the moving average

processes and the GARCH specifications.

The return series Eq. (10) is used to calculate the realized volatility and used as

the dependent variable in the predictability regressions. The procedure for

calculating this process was more complicated in that it was necessary to keep

track of the lifetime of the option.

r2
t;T ¼ 1

ðT � tÞ
XT�t

i¼1

R
2
tþi �252 ð11Þ

Where, rt,T is the realized volatility, and (T - t) are days to expiry the option

contract. So, for example, if there are 22 days remaining in the lifetime of an option,

the volatility of the futures contract is determined by averaging the squared returns

over those 22 days. The square root of this average multiplied by the square root of

252 yields the actual realized volatility on an annualized basis. On the next day, the

previous day’s return would be dropped from the measurement since only 21 days

remain to expiration and the procedure for calculating the volatility was repeated.

This is the method is adopted from Jorion (1995).

4.4 Predictability regressions

To compare the abilities of several methods of estimated measures of volatility in

determining the future volatility over the remaining life of the option we used

simple OLS regression. In order to do so, a time series of future volatility had to be
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created. This was done by calculating the average daily return over the remaining

life of the option, as described in Sect. 4.3. This daily future volatility series is

denoted by t, T where t represents the current date and T represents the future date

of option expiration. A typical predictability regression is an ordinary least squares

regression that may be expressed as:

rt;T ¼ aþ br̂t;i þ et;T ð12Þ

where the rt.,T is the realized volatility and estimated volatility forecast, r̂t;i may

again include the implied volatility (i.e., rt,IV)
3 from option prices both for call and

put, Moving average (rt,MA(20)), Exponentially weighted moving average method

(rt,EWMA), Generalized autoregressive conditional heteroskedasticity (rt,GARCH) or

the Exponential Generalized autoregressive conditional heteroskedasticity model

(rt,EGARCH). If r̂t contains some information about future volatility then b should be

nonzero. Second, if it is an unbiased forecast of realized volatility, then a = 0 and

b = 1. Finally, if implied volatility is efficient, the residuals et should be white noise

and uncorrelated with any variables in the market information set. Two types of

predictability regression will run. In the first type we run all six individual fore-

casted volatility separately in a different regression with same dependent variable

i.e., the realized volatility which we have already discussed. In the second step we

will use different combinations of forecasted volatility as the independent variables.

In this multiple regressions the implied volatility is the one of the independent

variables as our objective is to know the predictability of implied volatility is more

than the other backward looking volatility. The multiple regression to know the

relative predictive power of alternative forecasts are as follows:

rt;T ¼ aþ b1rt;CIV þ b2r̂t;i þ et;T ð13Þ

rt;T ¼ aþ b1rt;PIV þ b2r̂t;i þ et;T ð14Þ

rt;T ¼ aþ b1rt;CIV þ b2rt;PIV þ et;T ð15Þ

where, rt,T is the average realized volatility of the remaining life of the option and,

rt,CIV is the call implied volatility, rt,PIV is the put implied volatility and r̂t are,

respectively, the forecasted volatility from MA, EWMA, GARCH and EGARCH

model at the period t. If implied volatility (both call and put) and other forecasted

volatility contain independent information that is useful for predicting future

volatility, the estimated b1 and b2 should both be nonzero. Alternatively, if the

information in one forecast is a subset of the information contain in the other

forecast, the estimated coefficient of the former forecast should be nonzero.

The above series does have a high serial correlation.4 Serial correlation will not

affect the unbiasedness or consistency of OLS estimators, but it affects its

efficiency. It arrives by using overlapping observations rather than restricting the

analysis to independent observations. Since the possibility of measurement errors in

3 rt,CIV for call implied volatility and rt,PIV for Put implied volatility.
4 Serial correlation occurs in time series studies when the error associated with a given time period carry

over into future time periods.
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independent variables could be seen in these types of series, Fleming (1998) used

GMM estimation in order to deal with some error in variables. We have also

performed GMM estimation, using lagged independent variables as instruments.

Residual autocorrelation could also be seen because of using overlapping

observations rather than restricting the analysis to independent observations, we

would not have this problem. This could result in inefficient slope estimates and

spurious explanatory power. We correct this by employing GMM of Hansen (1982)

along with Newey and West (1987) approach to estimate hetroskedasticity and

autocorrelation consistent variance–covariance matrix.

4.5 Out of sample methodology

In the last section we have discussed the methodology deals with the in the sample

performances of the forecasting models. For measuring the predictability of the

estimators, it is better for the analyzer to analyze both ‘in the sample’ and ‘out of the

sample’ performances of the estimators. The focus of this section is on the

forecasting accuracy of ‘h’ day’s ahead implied volatility compare to other

backward looking volatility in an out of sample framework. Here ‘h’ period is

approximately 30 days or in other words a month. For the analysis we have taken

the data from 1st June 2001 to 30th June 2011. We divided the entire sample (1st

June 2001 to 30th June 2011) into two parts. The first part covers the data set from

1st June 2001 to 31st May 2006 and the second part covers data set from 1st June

2006 to 30th June 2011. First part of the data set is used to estimate the model

parameters of GARCH and EGARCH model, which are used to construct an out of

sample ‘h’ day ahead volatility data set. By this procedure, we get 61 average

forecasted values of GARCH and EGARCH. We have already discussed six

alternative models of volatility forecasting. All competing models generate a set of

‘h’ step ahead volatility forecast. All that is needed now is a method to compare all

with realized volatility. Four error statistics are applied to assess the predictive

ability of six different models.

4.6 Error statistics

MSE (mean square error):

1

N

XN

T¼1

ðrRVT � rfTÞ
2 ð16Þ

MAE (mean absolute error):

1

N

XN

T¼1

rRVT � rfT

���
��� ð17Þ

RMSE (root mean square error):
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

T¼1

rRVT � rfT
� �2

vuut ð18Þ

MAPE (mean absolute percentage error):

1

N

XN

T¼1

rRVT � rfT
rRVT

�����

����� � 100 ð19Þ

In the above expression rRVT is the realized volatility and rfT forecasted models, it

may include call implied volatility rCIVT , put implied volatility rPIVT , Moving average

volatility rMA
T , GARCH(1, 1) volatility rGARCHT or EGARCH (1, 1) volatility

rEGARCHT . N denotes the number of forecast model using each method. The MSE is

taking the square of the mean error and averaging it. The MAE treats large and

small deviations equally while RMSE criteria penalized large deviations more

severely and MAPE taking MA into a percentage value of realized volatility. Note

that an optimal forecast will not have MAE = RMSE = 0 because realized

volatility is only a point estimate of the index price volatility which is unobservable.

5 Empirical analysis

For calculating MA(20), EWMA and ARCH family of models, the data are

converted into a continuously compounded rate of return (Rt) by taking the first

difference of the log prices, i.e. Rt = 100�Ln (St/St-1). The estimation procedure of

MA (20) and EWMA has already explained in Sects. 4.1.1 and 4.1.2. Now, the

volatility models we are going to estimate in this section are intended to capture the

conditional variance of the stochastic components of the returns. This paper uses

two widely accepted models in this sphere, viz, GARCH and EGARCH models.

For calculating ARCH family of models we have computed the descriptive

statistics of the spot market return. The summary statistics are presented in the Table 1.

It can be seen from the Table 1, that both the closing price and its return are

skewed and non-normal. Specifically, closing price, annualized return is negatively

skewed, whereas closing price is positively skewed. The J-B test has rejected the

null hypothesis of the normal distribution for index return with high level of

statistical significance. The histogram for the return also confirms this from the

Fig. 3 in ‘‘Appendix’’.

Therefore, the actual distribution of daily annualized returns for the S&P CNX

Nifty index has a fat tail (and a narrow waist) compared to a fitted normal distribution.

The kurtosis value of daily return is 11.834 demonstrating the presence of fat tails.

When we calculate GARCH and EGARCH model, instead of the assumption of a

normal distributed innovations, we use the Generalized Error Distribution GED

(Taylor 1994) for maximizing the likelihood function, from which the normal

distribution is a special case.
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To start with, the study fits an Auto Regressive (AR) model of order one. This is

carried out primarily to eliminate the first degree auto correlation among the returns,

which makes the data amenable for further analysis. After fitting the AR (1) model, we

have tested for the presence of autocorrelation among the residuals as well as squared

residuals from the fitted model. The results from Ljung Box ‘Q’ statistics, which are

used to test the null hypothesis of ‘No Autocorrelation’ against the alternative of the

existence of autocorrelation, are reported in Table 2 (Mishra et al. 2007).

From the Table 2 results, it is inferred that the null hypothesis is strongly rejected

in the case of residual and squared residuals. Prima facie, this creates the case to

apply GARCH models (Mishra et al. 2007). In order to confirm the presence of

ARCH effect in the data, we go for a LaGrange Multiplier (LM) Test, and, the result

shows that the null hypothesis of ‘No ARCH Effect’ is strongly rejected in the

annualized index return.

In Tables 3 and 4, we present the estimation results of AR (1)-GARCH (1, 1) and

that AR (1)-EGARCH (1, 1) models. It may be pointed out that the study uses the

GARCH and EGARCH models of order (1, 1) because this order has been found to

provide the most parsimonious representation of ARCH class of models, and, at the

same time empirically the acceptance of the order has been strongly proved. To test

the degree of persistence in GARCH (1, 1) model we are using the Wald test in

which the null hypothesis, aþ b ¼ 1 (alternatively known as, ‘the variance is

integrated’ or non-stationarity of the variance) is tested against the alternative

aþ b\1, using the estimated a; b coefficients of the variance equation. It can be

seen from the Wald statistic value that the null hypothesis is rejected in favor of the

alternative with a high degree of confidence interval. Thus, the test confirmed the

stationary of the variance and since aþ b ¼ 0:90 which is less than unity, the

Table 1 Basic statistics of closing price and its return

Variable Mean Max Min SD Skewness Kurtosis J-B

Closing price 3115.912 6312.45 854.2 1685.55 0.2134 1.6232 217.4557 (0.01)

Closing price

return

0.000603 0.1633 -0.13053 0.0165 -0.284 11.834 8205.78a (0.01)

a Indicates the rejection of the null hypothesis of normal distribution in the J-B test

Table 2 Estimated test statistics for ARCH effect (Ljung-Box ‘Q’ Statistics)

Estimated

variable

Q (5) Q (10) Q (20) Q2 (5) Q2 (10) Q2 (20) LM (4)

ut 8.505

(0.05)

22.421

(0.01)

46.796

(0.01)

354.0

(0.00)

524.1

(0.00)

696.38

(0.00)

211.854

(0.01)

Return 19.108

(0.00)

33.712

(0.00)

58.279

(0.00)

(Return)2 331.76

(0.000)

499.13

(0.000)

659.07

(0.000)

Q and Q2 are the LB Q statistics for the residuals and square residuals respectively. Figures in the

parentheses () are respective lag lengths
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volatility may decay rapidly and revert to its mean. The Tables 3 and 4 also includes

the Lagrange multiplier (LM) test values for squared residuals. This shows that, the

null hypothesis of ‘No ARCH Effect’ is strongly accepted both in GARCH (1, 1)

and EGARCH (1, 1) model.

The descriptive statistics of all forecasting methods are present in Table 5.

Before performing regression analysis, the study exercised a unit root test of all the

series, because if volatility series possess a unit root, regressions specified as above

are spurious. The Unit root test is carried out through Dickey-Fuller (DF),

Augmented Dickey Fuller (ADF) and Phillips-Perron (PP) tests. The results of unit

root tests given in the Table 6 suggest that all the variables are stationary at level.

Table 3 Parameter estimates of

the GARCH (1, 1) model

LM (4) represents LaGrange

Multiplier statistics to test the

presence of additional ARCH

effect in the residuals from AR

(1)-GARCH (1, 1)

Mean Equation AR(1)

Coefficient z-statistics P value

a 0.0013 5.222 0.01

Rt - 1 0.07357 3.4792 0.01

Variance equation GARCH (1, 1)

x 0.000 4.839 0.01

u2
t�1

0.1352 8.431 0.01

r2
t�1

0.8408 49.278 0.01

GED parameter 1.444 34.839 0.01

Log likelihood 7209.556

AIC -5.735

SC -5.721

DW 1.99

LM (4) 2.859 0.58

Table 4 Parameter estimates of

the EGARCH (1, 1) model

LM (4) represents LaGrange

Multiplier statistics to test the

presence of additional ARCH

effect in the residuals from AR

(1)—EGARCH (1, 1) models

Mean equation AR(1)

Coefficient z-statistics P-value

a 0.0009 3.9145 0.01

Rt-1 0.0894 4.1994 0.01

Variance equation EGARCH (1, 1)

x -0.594 -8.339 0.01

Ln r2
t�1

0.954 133.800 0.01

zt�1j j 0.261 9.663 0.01

zt�1 -0.118 -7.2428 0.01

GED parameter 1.464 35.776 0.01

Log likelihood 282.255

AIC -5.748

SC -5.732

DW 2.03

LM (4) 2.350 0.67
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5.1 Simple predictability regressions

This section will analyze the results of simple predictability regression. For testing

the null hypothesis of unbiasedness (a = 0 and b = 1) in the regression, we have

used a Wald test. Because of the overlapping in the dependent variable we have

used GMM estimation in our analysis. Table 7 part-I, displays the results for six

simple regressions involving each of the volatility forecast models. Starting with the

regression involving the call implied volatility (CIV) as only independent variable,

the coefficient is significant at 1 % level with a value of 0.54. This coefficient value

is also higher than those which we arrived in the information content regression.

Here the R2 statistics is 0.19.

Table 5 Descriptive statistics

rt;T rt;CIV rt;PIV rt;GARCH rt;EGARCH rt;EWMA rt;MAð20Þ

Mean 0.228 0.2442 0.295 0.238 0.235 0.237 0.231

Max 0.188 0.200 0.255 0.202 0.2071 0.199 0.192

Min 1.075 1.639 2.056 0.987 1.023 0.762 0.840

Std. Dev. 0.042 0.039 0.0536 0.125 0.1060 0.104 0.078

Skewness 0.134 0.155 0.150 0.111 0.1043 0.114 0.125

Kurtosis 2.266 3.286 2.758 2.478 2.1460 1.7599 2.049

Jarque–Bera 9.814 20.076 18.917 11.411 10.051 6.4226 8.0262

Probability 7011.33 35042.07 29706.03 9979.55 7132.112 2522.986 4403.445

rt;T is realized volatility, rt;CIV as call implied volatility, rt;PIV as put implied volatility, rt;GARCH as

GARCH (1,1), rt;EGARCH as EGARCH (1, 1) volatility, and rt;EWMA as Exponential weighted Moving

Average Volatility and rt;MAð20Þ is the Moving average volatility

Table 6 Test of stationarity

Levels

Variables Without trend With trend and intercept

DF ADF PP DF ADF PP

rt;T -5.774a -6.324a (4) -6.319a (10) -5.841a -6.407a (4) -6.401a (8)

rt;CIV -20.492a -5.057a (13) -34.052a (35) -21.295a -5.269a (13) -35.476a (35)

rt;PIV -20.121a -4.563a (11) -34.112a (35) -20.586a -4.643a (5) -35.057a (35)

rt;GARCH -6.577a -7.040 (7)a -6.739a (13) -6.675a -7.155 (7)a -6.882a (12)

rt;EGARCH -7.994a -6.502a (13) -7.848a (14) -8.093a -6.609a (13) -7.969a (13)

rt;EWMA -3.272a -4.540a (10) -4.169a (14) -3.330b -4.625a (10) -4.255a (14)

rt;MAð20Þ -3.663a -3.969a (21) -5.221a (25) -3.668b -4.015a (21) -5.284a (25)

In PP test figures in the brackets are bandwidth selected using the Newey–West method
a Reject the null hypotheis of a unit root with 99 % confidence
b Reject the null hypotheis of a unit root with 95 % confidence Figures in the brackets aginst ADF

statistics are the numbers of lags used to obtain white noise residuals, and these lags are selected using

AIC
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Regression involving put implied volatility (PIV) as an independent variable has

shown a significant coefficient 0.53 at the 1 % level of significance. The value of R2

statistics is lower at 0.17 and it is also lower than the R2 of predictability regression

involving CIV. In both the cases the Wald test is rejecting the null hypothesis at a

1 % level of significance.

In the simple predictability regression MA (20) as an independent variable shows

coefficient value of 0.53. It is significant at the 1 % level, but its R2 statistic is high

in comparison to CIV and PIV. Regression involving EWMA comes under the same

Table 7 Predictability regressions

a Estimates of slope coefficient b

rt;CIV rt;PIV rt;MAð20Þ rt;EWMA rt;GARCH rt;EGARCH R2 Wald test

Part-I: Simple predictability regressions

Coefficient 0.10a 0.54a 0.19 30.157a

Statistics 5.338 6.348

Coefficient 0.071a 0.53a 0.17 109.342a

Statistics 3.569 6.796

Coefficient 0.105a 0.53a 0.25 60.191a

Statistics 7.757 8.018

Coefficient 0.080a 0.62a 0.29 35.246a

Statistics 5.831 9.484

Coefficient 0.073a 0.65a 0.29 18.880a

Statistics 4.130 8.026

Coefficient 0.063a 0.70a 0.29 13.799a

Statistics 3.518 8.621

Part-II: Multiple predictability regressions

Coefficient 0.084b 0.35b 0.25b 0.27 39.932b

Statistics 5.761 2.971 2.674

Coefficient 0.074b 0.28b 0.36b 0.30 44.475b

Statistics 5.316 2.268 3.289

Coefficient 0.066b 0.27b 0.40b 0.30 52.563b

Statistics 4.123 2.483 3.301

Coefficient 0.057b 0.28b 0.43b 0.31 58.011b

Statistics 3.449 2.716 3.656

Coefficient 0.068b 0.31b 0.29b 0.27 122.825b

Statistics 3.923 2.932 3.207

Coefficient 0.063b 0.22c 0.42b 0.30 129.675b

Statistics 3.770 1.966 3.917

Coefficient 0.053b 0.23b 0.44b 0.30 148.490b

Statistics 2.990 2.476 3.777

Coefficient 0.043c 0.26b 0.46b 0.31 52.365b

Statistics 2.315 2.897 3.907

84 Eurasian Econ Rev (2016) 6:67–96

123



track as with MA (20) with a high R2 statistic of 0.29. And its coefficient value is

higher than the above three methods at 0.38. Both the slope and coefficient are also

significant at the 1 % level.

Regression involving GARCH (1, 1) shows a higher coefficient value 0.65 than

CIV, PIV MA (20) and EWMA. This shows that it predicts the realized volatility

well than the implied volatilities and simple historical volatility forecasting models.

The coefficient is also significant at the level of 1 %.

Regression involving EGARCH (1, 1) has shown a significant coefficient value

0.70 at the 1 % level. It also shows that it is outperformed all other forecasting

volatility models. It has not only a high significant coefficient is higher than the

coefficient value, but it has a high R2 statistic of 0.29.

Now we can compare the coefficient of across all six of these regressions. First, it

is observed that the EGARCH volatility has a more explanatory power than other

volatility forecasting models. Second, among the ARCH family models EGARCH

(1, 1) has more explanatory power than simple GARCH (1, 1) model. Third, Call

implied volatility performed better than MA (20) and Put Implied volatility. Forth,

the MA (20) volatility and put implied volatility performance are least with a very

low coefficient value, 0.53.

As per the reported Wald test, all six regressions reject the null hypothesis of

unbiased ness at 1 % level.

An obvious candidate explanation for the apparent bias and inefficiency of

implied volatility is that implied volatility is measured with error. It is well known

that error in the independent variable creates downward bias; the estimated

coefficient is inconsistent, smaller in absolute value than the true coefficient. The

biasedness in the implied volatility arises because of the errors-in-variables and

because of that implied volatility’s failure to subsume other forecasts. There are

Table 7 continued

a Estimates of slope coefficient b

rt;CIV rt;PIV rt;MAð20Þ rt;EWMA rt;GARCH rt;EGARCH R2 Wald test

Part-III

Coefficient 0.077b 0.36b 0.21c 0.22 36.323b

Statistics 3.992 2.934 1.885

a 1 % level of Significance and the GMM estimation of Hansen (1982) along with Newey–West (1987)

variance and covariance estimation is used
b 1 % level of Significance
c 5 % level of Significance and the GMM estimation of Hansen (1982) along with Newey–West (1987)

variance and covariance estimation is used

Predictability of regressions

rt;T ¼ aþ br̂t;i þ et;T ð12Þ
rt;T ¼ aþ b1rt;CIV þ b2r̂t;i þ et;T ð13Þ
rt;T ¼ aþ b1rt;PIV þ b2r̂t;i þ et;T ð14Þ
rt;T ¼ aþ b1rt;CIV þ b2rt;PIV þ et;T ð15Þ
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three types of measurement error: specification error from using the wrong options

model, nonsynchronous trading, and a Jump in prices.5 First the Black–Scholes

formula in Eqs. (8) and (9) applies a European style call and put option on an asset

that doesn’t pay dividends and the transaction cost is zero prior to expiration.

Whereas in the actual Indian financial market the stocks associate with S&P CNX

Nifty pays dividends and there are a transaction costs. However, dividends do

reduce call values, so implied volatility computed via Eqs. (8) and (9) minimizes

true implied volatility. The difference should be roughly constant for all time

periods since dividends are relatively uniform for the Nifty. Thus, in regressions that

use implied volatility as an independent variable, estimates of the intercept term

should be biased.

Secondly, infrequent trading of the option may cause measurement errors in the

implied volatility series. For our analysis we use closing option prices and closing

price of the S&P CNX Nifty index. Both these markets are close at the same hour

and the methodology of calculation of closing prices is same, but the Nifty options

are not fluctuating as frequently as the cash market in our sample period. The option

closing price may stem from a trade taking place earlier during the day. The cash

markets do not suffer from the same liquidity problem as the option. When the new

information entering into the market, there is an interval of time effect. Suppose the

news is good. Then the recoded spot price will be higher than the price the option

price is based on, implying that the call and put implied volatility minimize

(maximize) the true volatility. The opposite occurs when the market declines. Since

good and bad news occurs randomly in the market, there is no reason to believe that

the implied volatility will deviate consistently from the true volatility. The main

reason for this problem is the multiple time series are not sampled simultaneously.

Finally, we note that the Black–Scholes formula in Eqs. (8) and (9) assumes that

index levels follow a log-normal diffusion process with deterministic volatility. For

example, if there are jumps in the price of the underlying asset, the model dose not

price the options correctly. Consequently, the Black–Scholes implied volatilities can

be misspecified. This introduces a systematic bias in the implied volatilities. Even if

the Black–Scholes formula is correct, market microstructure effects may cause

additional measurement errors (Harvey and Whaley 1991). As we can see there the

measurement error of implied volatility has three parts: the true modeled implied

volatility, a systematic bias and an idiosyncratic measurement error. Here in the

empirical analysis, we are trying to control the idiosyncratic measurement error

implied volatility.

5.2 Multiple predictability regressions

Table 7 part-II, displays the results for the predictability regressions involving

multiple regressions.

In the regression involving CIV and MA (20) as independent variables shown

that, both the coefficients are significant. CIV has a high coefficient value of 0.35 at

5 Christensen and Prabhala (1998).
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the 1 % level. The MA (20) failed beat CIV and displays a very low coefficient

value 0.25. The R2 statistics established a high value in the simple predictability

regressions.

In the regression involving CIV and EWMA, the CIV is significant at the 1 %

level with a coefficient value of 0.28, which, means a 10 % increase in CIV implies

a 2.8 % increase in future volatility. The result also shows that the coefficient value

of EWMA is high, positive and significant

Regression involving CIV and GARCH (1, 1) model shows that GARCH (1, 1)

outperformed CIV model. The GARCH (1, 1) is significant at the 1 % level with a

coefficient value of 0.40 with t statistics 3.301 whereas, CIV has a low coefficient

value of 0.27. It has a positive value, but it is lower than the coefficient of GARCH

(1, 1) and the corresponding t-statistics are also very low.

In the regression involving CIV and EGARCH (1, 1), the CIV replicates the same

result, it has underperformed than that of EGARCH (1, 1). It shows a significant

coefficient value of 0.28 at the 1 % level. Whereas, EGARCH (1, 1) shows a highly

significant coefficient value 0.43. No doubt if we compare with MA (20), EWMA

and GARCH (1, 1) in the same format, EGARCH (1, 1) is the best in high

significant value of 0.43.

After comparing CIV, with different backward looking volatility forecasting

models, we are now going to compare PIV to different backward looking volatility

models.

While comparing PIV with MA (20) in a multiple regression, we found that PIV

shows a significant coefficient value of 0.31 at the 1 % level, whereas MA (20)

shows a low significant coefficient value of 0.29. Here the value of R2 is at 0.27.

However, in comparison with the EWMA model, we have found the same short

of result as in CIV. In this case also, the EWMA outperformed PIV. The coefficient

value of EWMA is at 0.42 at the 1 % level of significance. The only difference is

that here the PIV coefficient is significant at the 5 % level with a value of 0.22.

In comparison with GARCH (1, 1), the PIV performed inferior than GARCH (1,

1). It is significant at 1 % with a coefficient value 0.23. Whereas the coefficient of

GARCH (1, 1) shows a better magnitude than MA (20) and EWMA at the 1 % level

of significance, however, in comparison to information content regression, it has a

low coefficient value.

As we have already discussed information content regression shows the

EGARCH (1, 1) is the best model to explain 1 day ahead volatility and also the

best method to predict the future volatility in a simple predictability regression.

Now the question arises whether it is better in a multiple predictability regression.

Comparing EGARCH with PIV we found that PIV has a significant coefficient value

0.26 at the 1 % level. Nevertheless the coefficient value of EGARCH (1, 1) is higher

than PIV. It is significant at the 1 % level with a coefficient value of 0.46. It has a

high R2 statistic than the R2 of the multiple predictability regression taking MA

(20), EWMA and GARCH (1, 1) as one of the independent variable.
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In the light of the above discussion, we found that time series volatility is the

better forecasting models to predict the realized volatility in comparison to other

forward looking volatility models. Now the question arises among the forward

looking methods which one has more explanatory power.

Table 7, part-III, compare both implied volatilities as per the regression Eq. 15.

The result shows that CIV has more explanatory power than PIV. It also shows that

CIV has a significant coefficient value of 0.36 at the 1 % level where as PIV has a

lower coefficient value 0.21 at the significance level of 5 %.

As per the reported Wald test, in the three panels of the table, all six regressions

reject the null hypothesis of unbiased ness at 1 % level. The results show that the

implied volatility are biased downside and also inefficient compare to other

backward looking volatility methods.

5.3 Out of sampling forecasting model

We now consider the out of sample predictive power of the alternative forecasting

models described in Sect. 4.4. Here, the specific interest is to examine whether

implied volatility will show the same result as in the ‘in the sample’ framework.

Below we evaluate the forecasting performances for 30 days horizons. For each

horizon, we have constructed a series of non-overlapping forecasting window.

Average volatility of 30 days horizon is constructed from MA (20), EWMA, CIV

and PIV on the day where there are approximately 30 days left to expiry of the

option from 31st May 2006 to 30th June 2011. Using the in the sample data from 1st

June 2001 to 31st May 2006, the GARCH (1, 1) GED and EGARCH (1, 1) GED

models are estimated in order to compare out of sample forecasting performance

with MA (20), EWMA, CIV and PIV.

Table 8 Comparison of out of sample forecasts with realized volatility

Error rEWMA
T rMA

T rCIVT rGARCHT rEGARCHT rPIVT

MSE 0.01548 0.01746 0.03175 0.01495 0.01608 0.02659

MAE 0.09077 0.09726 0.10658 0.09274 0.08916 0.12169

RMSE 0.12441 0.13213 0.17820 0.12228 0.12682 0.16307

MAPE 35.85669 37.35442 48.59276 39.15527 35.84027 56.90867

rt;T is realized volatility, rCIVT as call implied volatility, rPIVT as put implied volatility, rGARCHT as GARCH

(1, 1), rEGARCHT as EGARCH (1,1) volatility, and rEWMA
T as Exponential weighted Moving Average

Volatility and rMA
T is the Moving average volatility in an out of sample framework. All the volatilities are

22 days ahead volatility

MSE mean square error, MAE mean absolute error, RMSE root mean square error, MAPE mean absolute

percentage error
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In out of sample, we have generated 61 one month forecasted value for each

specified model. On each forecast point, the update GARCH (1, 1) and EGARCH

(1, 1) forecast rGARCHT and rEGARCHT are constructed. Thus, by using the parameters

estimated over the previous 1255 trading days by adding the approximately latest 22

observations and deleting the approximately first 22 observations in the previous

sample each time. We are doing it for 61 times to get 61 forecasted values of

GARCH and EGARCH. Figure 11 plots the six forecasted volatility models against

realized volatility.

The result reported Table 8 presents the four error statistics for different models.

The Table 8 summarized that out of six forecasted models, the ARCH models are

clearly superior to other forecasting models in the case of all error statistics.

6 Conclusion

This paper investigates whether implied volatility predicts the future volatility

beyond the backward looking volatilities. To examine this, we are using OLS with

GMM techniques to overcome the overlapping data problem. For the analysis we

use the daily return of S&P CNX Nifty from 1st June, 2001 to 24th Jun 2011 and its

corresponding option markets spanning from the period 4th June, 2001 to 23rd June,

2011. There are several key conclusions that may draw from this analysis. First, in a

simple predictability regression EGARCH (1, 1) model outperformed all other

volatility forecasted models. Second, PIV is the worst performer in the predictability

regression analysis. Third, the multiple predictability regression results show that

both GARCH (1, 1) and EGARCH (1, 1) provide an informative forecast of future

volatility that are superior to those of simple historical volatility and implied

volatility. Fourth, among both implied volatilities CIV has more predictability

power to explain the future volatility in comparison to PIV. Fifth, implied volatility

are biased and inefficient estimator over the remaining life of the option. The

biasedness can be explained by two possible interpretations, firstly, the error in

variables problem, i.e., (1) specification error from using the options model with

constraints assumption, (2) nonsynchronous trading in option market in India, and

(3) Jump on index and option prices. Secondly the inefficiency in the Indian option

market, the underlying asset is the spot market, but when investors are hedging their

option positions then they use futures to hedge because there is a restriction on short

selling in India and there is no traded option on futures contract. In out of sample

analysis the family of ARCH models outperformed all other volatility forecast

models in respect to predicting 30 days ahead volatility.

Appendix

See Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11.
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Fig. 1 Trends in index closing price

Fig. 2 Trends in return

90 Eurasian Econ Rev (2016) 6:67–96

123



0

100

200

300

400

500

600

700

800

900

-0.10 -0.05 0.00 0.05 0.10 0.15

F
re
qu

en
cy

Return

Fig. 3 Histogram showing the distribution of return series

Fig. 4 Trends in realized volatility
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Fig. 5 Trends in call implied volatility (CIV)

Fig. 6 Trends in put implied volatility (PIV)
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Fig. 7 Trends in MA(20) volatility

Fig. 8 Trends in EWMA volatility
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Fig. 9 Trends in GARCH (1, 1) volatility

Fig. 10 Trends in EGARCH (1, 1) volatility

94 Eurasian Econ Rev (2016) 6:67–96

123



References

Beckers, S., 1981. Standard deviations implied in options prices as predictors of future stock price

variability. Journal of Banking and Finance, 5, 363–381.

Black, F., & Scholes, M. (1973). The pricing of option and corporate liabilities. Journal of Political

Economy, 81, 637–659.

Black, F. (1976). The Pricing of Commodity Contracts. Journal of Financial Economics, 3, 167–179.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Economet-

rics, 31, 307–327.

Canina, L., & Figlewisk, S. (1993). The information content implied volatility. Review of Financial

Studies, 6, 659–681.

Chen, Y., & Lai, K. K. (2013). Examination on the relationship between VHSI, HSI and future realized

volatility with kalman filter. Eurasian Business Review, 3(2), 200–216.

Chen, Y., Lai, K. K., & Du, J. (2014). Modeling and forecasting hang seng index volatility with day-of-

week effect, spillover effect based on ARIMA and HAR. Eurasian Economic Review, 4(2),

113–132.

Chiras, D., & Manaster, S. (1978). The information content of option prices and a test of market

efficiency. Journal of Financial Economics, 10, 28–58.

Christensen, B. J., & Prabhala, N. R. (1998). The relation between implied and realized volatility. Journal

of Financial Economics, 50, 125–150.

Claessen, H., and Mittnik, S., 2002. Forecasting stock market volatility and the information content of

the DAX index option market. Available from: https://www.ifk-cfs.de/fileadmin/downloads/

publications/wp/02_04.pdf.

Day, T., & Lewis, C. (1992). Stock market volatility and informational content of stock index option.

Journal of Econometrics, 52, 267–287.

Fama, E. F. (1990). Efficient capital market: II. Journal of Finance, 46, 1575–1617.

Fleming, J. (1998). The quality of market forecasts implied by S&P 100 index option prices. Journal of

Empirical Finance, 5, 317–345.

Fig. 11 Comparison of out-of-sample forecast with realized volatility: a 1 month forecast

Eurasian Econ Rev (2016) 6:67–96 95

123

https://www.ifk-cfs.de/fileadmin/downloads/publications/wp/02_04.pdf
https://www.ifk-cfs.de/fileadmin/downloads/publications/wp/02_04.pdf


Galati, G. and Tsatasaronic, K., 1996. The information content of implied volatility from currency

options. Bank of International Settlement.

Giot, P., 2002. The information content of implied volatility in agricultural commodity markets.

Available from https://alfresco.uclouvain.be/alfresco/d/d/workspace/SpacesStore/cc2ccee4-d9a8-

4acc-aea4-f3e13a21c5b8/2002/coredp_2002_38.pdf.

Harvey, C., & Whaley, R. (1991). S&P index option volatility. Journal of Finance, 46, 1551–15561.

Hasen, L. (1982). A large sample properties of generalized method of moments. Estimator. Econometrica,

50, 1029–1054.

Hull, J., & White, A. (1987). The pricing of options on assets with stochastic volatilities. The Journal of

Finance, 42(2), 281–300.

Jorion, P. (1995). Predicting volatility in the foreign exchange market. Journal of Finance, 50, 507–528.

Kim, S., Park, C., & Yun, Y. (2015). Hedging with mini gold futures: evidence from Korea. Eurasian

Economic Review, 4(2), 163–176.

Kumar, S. S. S. (2008). Information content of option implied volatility: evidence from the Indian market.

Decision, 2, 1–16.

Lamoureux, D., & Lastrapes, W. (1993). Forecasting stock return variance: Towards an understanding of

stochastic implied volatility. Review of Financial Studies, 6, 293–326.

Latane, H., & Rendleman, R. (1976). Standard deviation of stock price ratios implied by option premia.

Journal of Finance, 31, 369–382.

Lonesco, V. M., 2011. The performance of implied volatility in forecasting future volatility: an analysis

of major equity indices from 2004 to 2010. Available from: http://dspace.mit.edu/bitstream/handle/

1721.1/65805/750045091.pdf?sequence=1.

Maheswaran, S. & Ranjan, N. 2005. Information content of implied volatility for Asian equity indices. In

Proceeding of the 16th annual conference on Pacific Basin Finance, Economics, Accounting and

Management.

Merton, R. C. (1973). Theory of rational option pricing. Bell Journal of Economics and Management

Science, 4, 141–183.

Mishra, A. K., Swain, N., & Malhotra, D. K. (2007). Volatility spillover between stock and foreign

exchange markets: Indian evidence. International Journal of Finance, 12(3), 343–359.

Misra, Dheeraj, Kannan, R., & Sangeeta, Misra D. (2006). Implied volatility surfaces: a study of NSE

NIFTY options. International Research Journal of Finance and Economics, 6, 7–21.

Nelson, Daniel. (1991). Conditional hetroscedasticity in asset returns; a new approach. Econometrica, 59,

347–370.

Newwy, W., & West, K. (1987). A simple positive semi-definite, hetroskedasticity and autocorrelation

consistent covariance matrix. Econometrica, 55, 703–708.

Panda, S. P., Swain, N., & Malhotra, D. K. (2008). Relationship between implied and realized volatility of

S&P CNX Nifty index in India. Frontiers in Finance and Economics, 5, 85–105.

Scott, E., & Tucker, A. L. (1989). Predicting currency return volatility. Journal of Banking & Finance,

13, 839–851.

Soczo, S. (2003). Estimation of future volatility. Periodica Polytechnica, 11, 201–214.

Taylor, S. J. (1994). Modeling stochastic volatility: a review and comparative study. Mathematical

Finance, 4, 183–204.

Taylor, S. J., Yadav, P. K., & Zhang, Y. (2010). The information content of implied volatilities and

model-free volatility expectations: evidence from options written on individual stocks. Journal of

Banking & Finance, 34, 871–881.

Yang, J. M. (2012). The forecasting power of the volatility index in emerging markets: evidence from the

Taiwan stock market. International Journal of Economics and Finance, 4(2), 217–231.

96 Eurasian Econ Rev (2016) 6:67–96

123

https://alfresco.uclouvain.be/alfresco/d/d/workspace/SpacesStore/cc2ccee4-d9a8-4acc-aea4-f3e13a21c5b8/2002/coredp_2002_38.pdf
https://alfresco.uclouvain.be/alfresco/d/d/workspace/SpacesStore/cc2ccee4-d9a8-4acc-aea4-f3e13a21c5b8/2002/coredp_2002_38.pdf
http://dspace.mit.edu/bitstream/handle/1721.1/65805/750045091.pdf?sequence=1
http://dspace.mit.edu/bitstream/handle/1721.1/65805/750045091.pdf?sequence=1

	Looking into the relationship between implied and realized volatility: a study on S&P CNX Nifty index option
	Abstract
	Introduction
	Literature review
	Data and sampling procedure
	Methodology
	Backward looking measure of volatility
	Moving average method
	Exponentially weighted moving average method (EWMA)
	Generalized ARCH (GARCH) models
	Exponential GARCH (EGARCH) model

	Forward looking measure of volatility
	Realized volatility
	Predictability regressions
	Out of sample methodology
	Error statistics

	Empirical analysis
	Simple predictability regressions
	Multiple predictability regressions
	Out of sampling forecasting model

	Conclusion
	Appendix
	References




