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Abstract This paper is the first study to examine the effectiveness of the Shanghai

Fuel Oil Futures Contract (SHF) in risk reduction on the Chinese energy oil market.

We find that the SHF contract can help investors reduce risk by approximately

45 %, lower than empirical evidence in developed markets, when weekly data are

applied. In contrast, when using daily data, SHF contract can only help reduce risk

by approximately 9 %. However, the Tokyo Oil Futures Contract performs two

times better and reduces risk by about 17 %. The empirical results are robust when

variance complicated bivariate GARCH and bivariate distributions are used. Our

results imply that the energy oil futures market in China is not well-established and

more policies are needed to improve market efficiency.
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1 Introduction

As oil prices continue soaring and fluctuating, hedging price risks in the energy

commodity market are popular among both practitioners and academics. Oil futures

contract is the most widely used instrument, through which investors can hedge

risks by taking an opposite position in the futures market.

This paper provides evidence on how to hedge risks on the Chinese energy oil

market. The principal purpose is to investigate the optimal hedging strategies for

investors. China is the world’s second largest energy oil importer, which makes it

vulnerable to international energy market shocks. Thus, diversification risk

exposures are essentially important to market practitioners.

There are many studies on optimal hedging strategies in empirical finance

literature which try to provide the most accurate optimal hedging ratio (OHR,

hereafter). Conventional studies estimate this by performing an ordinary least square

(OLS) regression of the spot returns on the futures returns to obtain a constant OHR.

However, the OLS regression misspecified the model because (1) the changes in the

spot and futures price are not independent and correlated, (2) the unconditional

distributions of spot and futures prices and returns are found to be asymmetric or

skewed and fat-tailed, and (4) it is now well recognized that the spot and futures

prices are cointegrated.

Recent works attempt to address the problems by utilizing various types of

bivariate generalized autoregressive conditional heteroskedasticity models

(BGARCH) to compute time-varying OHR. Under the convenient assumptions

that the conditional density of the price changes is bivariate normal and the

conditional variances follow a GARCH (1, 1) process, the so-called constant

conditional correlation bivariate generalized autoregressive conditional heteroske-

dasticity (CCC-BGARCH) model is very simple to compute. A considerable

number of researchers used this model to estimate time-varying hedge ratios and

achieved high variance reductions as opposed to the use of the OLS hedge ratios

(see e.g. Baillie and Myers 1991; Kroner and Sultan 1993; Chakraborty and

Barkoulas 1999; Tse and Tsui 2002). However, the correlations and volatilities are

changeable over time; this means that the OHR needs adjustment to account for the

most recent information. This violates the constant conditional correlation

assumption of the CCC-BGARCH model. Several other types of BGARCH models

are recommended to capture the time-varying feature in conditional correlations of

spot and futures prices (see e.g. Engle and Kroner 1995; Engle 2002). However,

recent studies report that incorporating time-varying conditional cannot necessarily

ensure better hedging performance.

In this paper, the OHR is based on both the CCC-BGARCH and dynamic

conditional correlation bivariate generalized autoregressive conditional heteroske-

dasticity (DCC-BGARCH) models. Although the framework is standard, to the best

of our knowledge, its application is unique to China’s futures energy market. The

rest of the paper follows the following format: the econometrics model is defined

and data are described in Sects. 2, 3 contains the main results and Sect. 4 concludes

the paper.
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2 Econometric methodology and data

Assume the investor has a long fixed position of one unit in the spot market and a

short position of -ht-1 units in the futures market. The random return to a hedged

portfolio at time t, R
p
t , is

Rp
t ¼ Rs

t � ht�1Rf
t ; ð1Þ

where Rs
t ¼ Ps

t � Ps
t�1 and R

f
t ¼ P

f
t � P

f
t�1 are the changes in the spot and futures

prices, respectively. Rt
s and Rt

f are the returns of spot and futures prices, where Pt
s

and Pt
f are the logarithms of spot and futures prices. The standard mean–variance

hedging model assumes the investor has a quadratic expected utility function

E½UðRp
t Þ� ¼ EðRp

t Þ � cVarðRp
t Þ; ð2Þ

where c[ 0 is the risk aversion coefficient. E(Rt
p) is the expected value of the

portfolio return and Var(Rt
p) is the variance of the portfolio return. The investor

solves the expected utility maximization problem (or the variance minimization

problem) with respect to the hedge position ht-1. By assuming the futures price Pt
f

follows a martingale process (i.e., E(Pt
f) = Pt-1

f ), the standard optimal hedging ratio

(OHR) ht-1
* for solving this problem is given by Eqs. 3 and 4:

h�t�1 ¼
rsf ; t

r2
f ; t

: ð3Þ

h� ¼ CovðDSt;DFtÞ
VarðDFtÞ

¼ rsf

r2
f

¼ q
rs

rf

ð4Þ

where q is the correlation coefficient between DSt and DFt, and rs and rf are

standard deviations of DSt and DFt, respectively.

2.1 Model specification

In the model below, let Rt ¼ ðRs
t ;R

f
t Þ
0

denote the 2 9 1 time-series vector of the

returns of spot and futures prices with time varying conditional covariance matrix

Ht, the Bollerslev (1990) constant conditional correlation (CCC)-BGARCH model

is

Rt ¼lð1Þ þ et;

etjXt�1�Fð0; HtÞ;
ð5Þ

where lð1Þ ¼ ðls; lf Þ
0

is the vector of conditional mean functions, 1 ¼ ð1s; 1f Þ
0

is a

finite vector of parameters, et ¼ ðest; eftÞ
0

is the vector of unexpected returns, Xt-1

denotes the r field generated by all the available information up through time t-1,

F represents a certain form of bivariate distribution, and Ht is a 2 9 2 positive

definite matrix, i.e.,
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Ht ¼
hss; t hsf ; t

hsf ; t hff ; t

� �
¼

ffiffiffiffiffiffiffiffi
hss; t

p
0

0
ffiffiffiffiffiffiffiffi
hff ; t

p
� �

1 qsf

qsf 1

� � ffiffiffiffiffiffiffiffi
hss; t

p
0

0
ffiffiffiffiffiffiffiffi
hff ; t

p
� �

; ð6Þ

where qsf is the constant conditional correlation coefficient, because the conditional

correlations are assumed to be constant through time. Also, hss,t and hff,t denote the

individual variances and are assumed to have a GARCH(p, q) structure, as,

hss; t ¼cs þ
Xp

j¼1

asje
2
st�j þ

Xq

j¼1

bsjhss; t�j;

hff ; t ¼cf þ
Xp

j¼1

afje
2
ft�j þ

Xq

j¼1

bfjhff ; t�j;

ð7Þ

where p and q are lag orders, j = 1, 2,…, p (or q).

In order to deal with potential skewness, on the spot and futures returns in the

process of estimation, we introduced a more flexible bivariate skewed-t distribution

proposed by Bauwens and Laurent (2005). It is defined as

gðzjn; vÞ ¼ 2ffiffiffi
p
p
� �2 Y2

i¼1

nisi

1þ n2
i

 !
Cððvþ kÞ=2Þ

Cðv=2Þ pðv� 2Þ½ �k=2
1þ z�

0
z�

v� 2

� ��ðkþvÞ=2

; ð8Þ

where

z� ¼ðz�1; z�2Þ
0
;

z�i ¼ðsizi þ miÞnIi

i ;

mi ¼
Cððv� 1Þ=2Þ

ffiffiffiffiffiffiffiffiffiffiffi
v� 2
p

ffiffiffi
p
p

Cðv=2Þ ðni �
1

ni

Þ;

s2
i ¼ n2

i þ
1

n2
i

� 1

 !
� m2

i ;

ð9Þ

and

Ii ¼
�1if zi � �mi

si

1 if zi� � mi

si
;

(
; i ¼ 1; 2; ð10Þ

where the scalar mi(ni, v) and si(ni, v) represent the unconditional mean and the

standard deviations of z. The bivariate skewed-t is denoted by SKST(0, I2, n, v). v is

the degrees of freedom. n is a 2 9 1 vector of asymmetry parameters ni. If ni = 1,

the SKST (0, I2, n, v) becomes the symmetry student t density. If ni [ 1, the third-

order moment is positive and the density is skewed to the right; if ni \ 1, the third-

order moment is negative and the density is skewed to the left.
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2.2 Data description

Daily and weekly Chinese Yuan-based data on the SHF and TKF are used for the

time period between 24 August, 2004 and 27 January, 2011; all data were obtained

from the Bloomberg Terminal. The futures rates are closing prices based on the

futures contracts underlying those currencies traded on the Shanghai Futures

Exchange and the Tokyo Commodity Exchange. There are four outstanding futures

contracts following the March–June–September–December cycle at any given time.

The successive futures prices are collected based on the following procedures.

Firstly, the futures rates of the nearest contract were collected until the contract

reached the first week of the expiration month. Secondly, we rolled over to the next

nearest contract. Thirdly, we repeated the two procedures. To keep tractability with

literature, the weekly spot and futures prices are defined as the natural logarithms of

Thursday’s spot and futures prices.1

All the data for the spot and futures prices were obtained from the Bloomberg

Terminal. Transformed data are to be used in the empirical specifications below the

percent spot returns (Rt
s = 100 (Pt

s - Pt-1
s ), where Pt

s are the logarithms of the spot

prices) and the percent futures returns (Rt
f = 100 (Pt

f - Pt-1
f ), where Pt

f are the

logarithms of the futures prices). The starting point for each of the series is

determined by the availability of its corresponding futures prices.

Table 1 reports summary statistics for the in-sample spot and futures returns of

the spot and futures return series. The heteroskedastic and autocorrelation consistent

standard errors for the mean, standard deviation, skewness, and excess kurtosis were

also reported. They were computed as described by West and Cho (1995). The

results in Table 1 show that the means of all spot and futures returns are very close

to zero. For the Shanghai Futures Market, the standard deviation of the futures

returns is larger than that of the spot returns. This is consistent with the conclusions

in the well-established literature that the futures market is more volatile than the

spot market (Chan et al. 1991; Brown-Hruska and Kuserk 1995; Faff and Mckenzie

2002; Illueca and Lafuente 2003). In addition, the results indicate that all returns

exhibit a certain degree of skewness. In addition, the values in the column of excess

kurtosis suggest that all returns have positive excess kurtosis (or leptokurtic). All the

Jarque–Bera test statistics strongly reject the null hypothesis that the return series

are normally distributed. The Ljung–Box test statistics at lags 20, Q(20) show

significant evidence of autocorrelation for the series. Furthermore, the non-normal

distributional properties of the return series provide support for basing estimation

and inference on more suitable distributions, like conditional symmetric t and

skewed t distribution, than the multivariate normal distribution to avoid

misspecification.

Table 2 presents the results for the Augmented Dickey–Fuller (ADF) and the

Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests of each oil return series. For all

the price series, the ADF test rejects the null hypothesis of unit root and the KPSS

test fails to reject the null hypothesis of non-stationary. This indicates that all return

1 Previous studies usually collect the data for the nearby futures contract until the contract reaches either

the first day of the delivery month or its expiry date.
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series are stationary which is consistent with literature (see Lien et al. 2002; Lien

2009; Park and Jie 2009). In general, the results of the unit root tests indicate that

each return series is stationary. Other more powerful unit root tests can be used in

future studies (See Lau et al. 2012 and Lau 2009 for details).

3 Empirical results

Here, the in-sample estimation and out-of-sample forecasting results of the CCC-

GARCH models are reported. In addition, a check was done for the robustness of

the results by changing model specification, data frequency, as well as futures

contracts. The in-sample estimation results for the SHF and TKF are reported in

Table 3. The estimates of the distribution parameters ns, and nf are significant for

the skewed-t model at 5 percent significance level. The coefficient v
_

, representing

the degree of freedom coefficient is 5.183 which shows the dominant feature of the

fourth-order moment in the Shanghai spot and futures series. The coefficients ns \ 1

and nf \ 1 indicate that the standardized residuals of the Shanghai spot and futures

equations are relatively negative-skewed, respectively.

Table 1 Summary statistics of spot and futures returns

Shanghai Tokyo

Spot Futures Futures

Mean 0.040 0.027 0.000

Standard deviation 1.011 1.875 1.020

Skewness -1.092 -1.784 -0.859

Excess kurtosis 13.637 24.381 13.245

J-B 8,379.680 [0.000] 26,638.600 [0.000] 12,560.200 [0.000]

Q(20) 451.076 [0.000] 50.771 [0.000] 65.614 [0.000]

The spot and futures returns are defined as 100 times the log-difference of weekly spot and futures

exchange rates. J-B is the Jarque–Bera test for the null hypothesis of normality. Q(20) is the Ljung–Box

test of the null hypothesis that the first 20 autocorrelations are zero. P values are given in brackets

Table 2 Unit-root and stationary test

Shanghai Tokyo

Spot Futures Futures

ADF -8.427 -13.716 -11.772

KPSS 0.171 0.106 0.141

CERR -12.62 -14.32 -12.42

ADF corresponds to statistic of Augmented Dickey–Fuller test of the null hypothesis that the return series

has unit root. KPSS is Kwiatkowski–Phillips–Schmidt–Shin statistic for the null hypothesis that the return

series has unit root. The critical values at 5 and 1 % for KPSS test are 0.739 and 0.463, respectively. The

critical values for the ADF test are -3.435 and -2.864, respectively. In addition, we also conduct a

nonlinear panel unit root test of Cerrato et al. (2011) for robustness check, as denoted by CERR
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In addition, the log-likelihood value of the bivariate normal model and the bivariate

student-t model MC2 are -2,373.767 and -2,267.385, respectively. That is, the

bivariate Student density increases the log-likelihood value by about 100 for

incorporating an excess kurtosis parameter. The lower values of both AIC and SIC also

support this argument. We can do a similar comparison between the CCC-BGARCH

with bivariate student-t model and the bivariate skewed-t model. The increment in the

log-likelihood value of the bivariate skewed-t density from that of the bivariate

student-t density model is about 90. The increment in log-likelihood value can be

attributed to adding the two asymmetric distribution parameters, i.e., the skewness

parameters: ns and nf. To further evaluate the significance of the asymmetry in the

bivariate distribution, we conducted the Likelihood Ratio (LR) test of the null

hypothesis of symmetry, i.e. H0 : ns = nf = 0. The computed test statistic is 48.6

which asymptotically follows the X2 (2) distribution, rejects the symmetry assumption

and favors the bivariate skewed-t distribution related CCC-BGARCH model. Both

information based model selection criteria, AIC and SIC choose the bivariate skewed-t

model which also provide support for the asymmetry distribution assumption. Further

comparison among the three models shows that the CCC-BGARCH with bivariate

skewed-t model have the lowest AIC, and SIC are more attractive than the CCC-

BGARCH with bivariate normal and student-t models. However, for the SHF, the

CCC-BGARCH with bivariate student t models is the best.

3.1 Hedging performance of the daily shanghai fuel oil contracts

In order to evaluate the hedging performance of various hedging strategies, we

constructed a hedged portfolio based on the two types of OHRs estimated under

various distributions. The hedged portfolio at time t is defined in Eq. (1). We

computed and compared the reduction in variance of each portfolio return (VR)

relative to the no hedging position.

VR ¼ 1� VarðRp
t Þ

VarðRS
t Þ
; ð11Þ

Tables 4 and 5 report the in-sample and out-of-sample performances of the

optimal hedge ratios. Both tables report results for daily results only to save space.

Data used in the estimation procedure are from 24 August, 2004 to 27 January,

2011. For out-of sample performance, the results are based on last year’s data: the

last 252 days of data for the daily sample, and the last 52 weeks of data for the

weekly samples. Table 4 reports the in-sample and out-of-sample performances of

the optimal hedge ratios from the CCC-BGARCH models, OLS and naı̈ve hedging

strategies. For hedging with the SHF contract in Panel A, all the CCC-BGARCH

models produced higher variance reductions than the OLS and naı̈ve hedging

strategies. However, the magnitude of risk reductions of the models is very small,

ranging from 5.6 to 8.7 %; indicative of poor performance of the models. This can

be attributed to numerous factors, for instance, data frequency and model

misspecifications.
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The CCC-BGARCH model with multivariate student t distributions outper-

formed those with normal and skewed-t distributions in terms of variance

reductions. Here, a full sample data set (24 August, 2004 to 27 January, 2011)

was used for the estimation and calculation of reduction in variance of each

portfolio return (VR) relative to the no hedging position.

Panel B presents the results for the out-of-sample hedging performance in terms

of variance reduction for the SHF contracts. Among the three distribution

specifications, the CCC-BGARCH models with multivariate skewed-t distribution

produced the largest variance reduction, while the model with a normal distribution

had the lowest. The three CCC-BGARCH models outperformed the OLS and naı̈ve

strategies.

In general, the OHR under the CCC-BGARCH models outperformed the OLS

and naı̈ve strategies in all cases. However, the magnitude of risk reduction of the

models was very small, ranging from 5.6 to 8.7 %; indicative of poor performance

of the models. This can be attributed to numerous factors such as data frequency,

model misspecifications and so on. In the following subsections, the possible factors

will be analyzed.

3.2 Time-varying conditional correlations

The correlations and volatilities are changeable over time, thus the OHR should be

adjusted to account for the most recent information. However, the CCC-BGARCH

model assumes the constant conditional correlation between spot and futures

returns. This is a possible factor resulting in the poor performance of the CCC-

BGARCH models. To capture the time-varying feature in conditional correlations of

spot and futures prices, we improved on the simple version of Engle’s (2002)

Table 4 Hedge performance of SHF with CCC-BGARCH model

OLS Naı̈ve Normal Student Skewed-t

Panel A

In-sample -1.888 -2.095 0.0740 0.0865 0.0851

Panel B

Out-of-sample -2.989 -3.288 0.0568 0.0637 0.0673

The table reports the magnitude of variance reduction (VR) of each model

Table 5 Hedge performance of SHF with DCC-BGARCH model

OLS Naı̈ve Normal Student Skewed-t

Panel A

In-sample -1.888 -2.095 0.1102 0.0996 0.1244

Panel B

Out-of-sample -2.989 -3.288 0.0501 0.0609 0.05837

The table reports the magnitude of variance reduction (VR) of each model
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dynamic conditional correlation (DCC)-BGARCH model, which proves to outper-

form other peer models in estimating the dynamic OHR.

The DCC-BGARCH model differs from Bollerslev’s CCC-GARCH model in the

structure of conditional variance matrix Ht and is formulated as the following

specification:

Ht ¼DtCtDt;

Dt ¼diag
ffiffiffiffiffiffiffiffi
hss; t

p
;

ffiffiffiffiffiffiffiffi
hss; t

p� �
;

ut ¼D�1
t et;

Qt ¼ð1� u1 � u2ÞQþ u1ut�1u
0

t�1 þ u2Qt�1;

Ct ¼diag Qtf g�
1
2Qt diag Qtf g�

1
2;

ð12Þ

where et is the unexpected return and has the same definition as in Eq. (5). ut

represents the vector of standardized et. Qt is the 2 9 2 positive definite covariance

matrix with the parameters u1 C 0, u2 C 0 and u1 ? u2 \ 1. Q is the uncondi-

tional covariance matrix of ut.

Table 5 shows the results for the DCC-BGARCH models. For the in-sample

estimation, the DCC-BGARCH with skewed-t distribution produced the largest

variance reduction. The DCC-BGARCH with student t distribution performed best,

in terms of variance reduction for the out-of-sample forecasting. All the DCC-

BGARCH models performed better than the OLS and naı̈ve strategies. The out-of-

sample hedging performance of the DCC-BGARCH models is not sufficient,

although the in-sample performance is better than the CCC-BGARCH models, by

about 10–12.4 %. SHF contract, at least in daily data, cannot provide satisfactory

protection from risk exposure.

When the hedging performance between the CCC-BGARCH and DCC-

BGARCH models were compared, results show that the CCC-BGARH models

perform better for in-sample estimation, while the DCC-BGARCH is better for out-

of-sample forecasting.

3.3 Cross-hedging with the TKF contract

The out-of-sample hedging performance of the DCC-BGARCH models is not

sufficient, although the in-sample performance is better than the CCC-BGARCH

models, by about 10–12.4 %. Thus, the results in Sects. 3.1 and 3.2 imply that the

SHF contract, at least in the daily data, cannot provide satisfactory protection from

risk exposure. In this subsection, we proposed another futures contract, the TKF

contract, which can provide a better hedge against variance risk. The results are

presented in Table 6. Panels A and B display the results for CCC-BGARCH and

DCC-BGARCH models, respectively.

For the in-sample estimation, all the BGARCH specifications using the TKF

contract produced higher variance reductions than those using the SHF contract. To

be specific, the CCC-BGARCH models using the TKF data can achieve variance

reduction of 17–18 %, while those using the SHF achieved only about 5.6–8.7 %.
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Similarly, the DCC-BGARCH models using the TKF data produced variance

reduction of about 10.6–17.7 %, compared with 10–12.4 % when using the SHF

contract. In conclusion, the daily TKF contract is more favorable in terms of risk

reduction in comparison to the domestic SHF contract. We also ran the model using

other futures contracts, for example, Light Sweet Crude Oil (WTI) futures contracts

from NYEMEX, as well as heating and crude oil contracts from India futures

exchange were not able to hedge against fuel oil spot market in Shanghai;

unfortunately, and results can be provided upon request. This robustness checking

once confirmed that futures contracts, for example WTI from NYEMEX, as well as

heating and crude oil contracts from India futures exchange cannot be used as an

instrument to replace TKF contract, for improving the hedging performance in

China’s energy market. As indicated by Tanai and Lin (2013) time span maybe

relevant to the degree of financial market integration. They find no evidence of

significant contagion among Shanghai Cooperation Organization (SCO) countries in

the first half of sample periods. However, market integrations among SCO countries

are evident after 2005, which is the sample period of our contracts data under

investigation. Recently Lau et al. (2013) present an empirical finding that financial

asset price volatility maybe affected by the institutional factor of corruption.

Therefore one reason why the future oil contracts are not efficient in China may be

due to its informal institutional arrangement, under the influence of bribery.

3.4 Hedging with weekly data

Estimating hedging performance using daily data is fairly adopted for speculators in

futures market; however, it is too frequent for measuring behaviors of hedgers, such

as commodity holders, who aim to hedge risk exposure, instead of speculating in the

market. This argument is consistent with the findings of Moon et al. (2010). The

authors employed daily, weekly and monthly crude oil and gold futures traded at the

New York Mercantile Exchange (NYMEX) from March 1983 to November 2007.

Using various GARCH models, it became evident that there is more variance

reduction as the sample frequency declined from daily to weekly to monthly. This

result implies that a less frequent hedge trading would be more beneficial.

In this subsection, weekly data are used to analyze the hedging performance of

various models and the results are presented in Table 7. Panels A and B report

Table 6 Cross-Hedge performance of TKF

OLS Naı̈ve CCC-BGARCH DCC-BGARCH

Normal Student Skewed-t Normal Student Skewed-t

Panel A

In-sample -1.538 -1.734 0.1768 0.1768 0.1698 0.1768 0.1062 0.1698

Panel B

Out-of-sample -6.127 -6.73 0.1593 0.1593 0.1547 0.1593 0.1024 0.1431

The table reports the magnitude of variance reduction (VR) of each model
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results for the SHF and TKF contracts, respectively. For both the in-sample

estimation and out-of-sample forecasting, all the BGARCH models produced higher

variance reduction than the OLS and naı̈ve strategies. The SHF contract reduces risk

in terms of out-of-sample variance reduction by about 40–49 %, and the TKF

contract reduces risk by about 36 %. In general, the SHF performs better in variance

reduction than the TKF contract, for the weekly data. However, the magnitude of

variance reduction is still less than the empirical results for developed countries.

The empirical results imply that the Chinese energy fuel oil market is not well-

established and more market and regulation efforts are needed to help investors

diversify risk exposure. Among other factors, financial constraints, corruption and

legal institutions may play an important role in improving the effectiveness of the

financial market (Gur 2012) and eventually enhance the hedging effectiveness of the

futures market. Other more advanced time series models can be used for risk

management. Puigvert-Gutierrez and de Vincent-Humphreys (2012) propose

models of probability density functions for EURIBOR, which was estimated from

the prices of options on EURIBOR futures. And the option-implied probability

density functions can be used to measure the degree of uncertainty for monetary

policy and financial stability in a country.

4 Conclusions

Hedging using futures contracts is a popular short-term risk-minimizing strategy for

investors. Successful hedging strategy gives investors protection against changes in

currency exchange rate. In this paper, the authors examined the hedging

performances of the domestic SHF and the TKF futures contracts. The results

revealed that the SHF contract provides little risk reduction in daily hedging while

the TKF provides two-times higher risk reduction. Both contracts provide better

hedging performance when weekly data are applied.

The OHRs are estimated with the CCC-BGARCH and DCC-BGARCH models.

To capture the fat-tails and asymmetry properties of the spot and futures returns and

avoid misspecification of the models, we estimated the BGARCH model with

flexible distributions such as bivariate symmetric student-t and bivariate skewed-

t density functions. The use of asymmetry distributions improves the goodness-of-

fit. However, it also confirms additional evidence that there is no guarantee that the

Table 7 Hedge performance with weekly data

OLS Naı̈ve CCC DCC

Normal Student Skewed-t Normal Student Skewed-t

SHF In-sample -0.027 -0.1079 0.4608 0.4618 0.4597 0.4327 0.3967 0.4874

Out-of-sample -0.0853 -0.1724 0.4313 0.4285 0.4314 0.4314 0.491 0.43

TKF In-sample -0.4496 -0.559 0.3469 0.3566 0.3563 0.3469 0.3564 0.3567

Out-of-sample -2.1442 -2.4147 0.283 0.2952 0.2955 0.2624 0.255 0.2883

This table reports the magnitude of variance reduction (VR) of each model using weekly data
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models of the goodness-of-fit have higher variance reduction and lower variances in

returns. In addition, the results show that simple OLS hedge ratios fail to outperform

the complicated BGARCH models in terms of variance reduction. This contradicts

many previous studies on developed futures markets (Collins 2000; Lien et al. 2002;

Lien 2009; Park and Jie 2009). Because data from different markets were used, we

found this contradiction in general, that the performance of hedging strategies

depends on market liquidity and time series characteristics. Zanotti et al. (2010)

used different models including naı̈ve, ordinary least squares, and GARCH to

evaluate the hedging effectiveness of the European electricity markets. The authors

found evidence that hedging strategies cannot reduce portfolio’s variance in a

market where it is very illiquid. More importantly, time varying GARCH model

outperformed the naı̈ve, ordinary least squares and traditional GARCH models.

Some models outperform others because of Market liquidity and time series

characteristics of the sample. Salvador and Arago (2013) incorporated nonlinearity

to the model by using a Markov Switching GARCH model. They compared

different models of the hedging performance in the European stock indexes and

concluded from the in-sample and out-sample performance that the nonlinear model

outperforms the linear models. Lau and Bilgin (2013) investigated the hedging

performance of the Shanghai futures market, with the London futures market acting

as the channel for volatility spillover. The authors incorporated structural changes,

basis effects, and return and volatility spillover effects, and found that the estimated

hedging performance was not improved. As mentioned by Moosa (2003), only high

correlation between prices of the un-hedged position and the hedging instrument can

produce a good hedging performance. Therefore, government can improve market

efficiency in Shanghai Futures Exchange Markets (not only the fuel oil contracts) as

a whole, and attention should be given to the transaction cost involved in financial

constraints, corruption and legal institutions, in particular for using hedging

instrument in an emerging market like China.

Energy commodity futures prices have soared and deviated from cash prices in

the past few years, when institution investors are increasingly interested in

commodities. However, the phenomenon does not show up in the Chinese energy

futures market, because the SHF contract provides little hedging benefits to

investors. The results presented in this paper provide evidence that the Chinese

energy fuel oil market is not well-established and more market and regulation

efforts are needed to help investors diversify risk exposure.
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