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Novel Bilayer-Shelled N, O-Doped Hollow Porous 
Carbon Microspheres as High Performance Anode 
for Potassium-Ion Hybrid Capacitors
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HIGHLIGHTS 

• Proposing a one-step pyrolysis strategy to fabricate a novel bilayer-shelled N, O-doped hollow porous carbon microspheres (NOHPC) 
anode.

• The optimized NOHPC anode displays a high K-storage capacity of 325.9 mAh  g−1 at 0.1 A  g−1 and excellent rate performance (201.1 
mAh  g−1 at 5 A  g−1 after 6000 cycles).

• The assembled NOHPC//hollow porous activated carbon microspheres (HPAC) potassium ion hybrid capacitors deliver a high energy 
density of 90.1 Wh  kg−1 at a power density of 939.6 W  kg−1 even over 6000 cycles.

ABSTRACT With the advantages 
of high energy/power density, long 
cycling life and low cost, dual-car-
bon potassium ion hybrid capaci-
tors (PIHCs) have great potential 
in the field of energy storage. 
Here, a novel bilayer-shelled N, 
O-doped hollow porous carbon 
microspheres (NOHPC) anode 
has been prepared by a self-tem-
plate method, which is consisted 
of a dense thin shell and a hollow 
porous spherical core. Excitingly, 
the NOHPC anode possesses a 
high K-storage capacity of 325.9 mA h  g−1 at 0.1 A  g−1 and a capacity of 201.1 mAh  g−1 at 5 A  g−1 after 6000 cycles. In combination with 
ex situ characterizations and density functional theory calculations, the high reversible capacity has been demonstrated to be attributed to 
the co-doping of N/O heteroatoms and porous structure improved  K+ adsorption and intercalation capabilities, and the stable long-cycling 
performance originating from the bilayer-shelled hollow porous carbon sphere structure. Meanwhile, the hollow porous activated carbon 
microspheres (HPAC) cathode with a high specific surface area (1472.65  m2  g−1) deriving from etching NOHPC with KOH, contributing 
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to a high electrochemical adsorption capacity of 71.2 mAh  g−1 at 1 A  g−1. Notably, the NOHPC//HPAC PIHC delivers a high energy 
density of 90.1 Wh  kg−1 at a power density of 939.6 W  kg−1 after 6000 consecutive charge–discharge cycles.

KEYWORDS Self-template method; Bilayer-shelled hollow porous structure; N, O-doped carbon microspheres; Dual-carbon 
potassium‐ion hybrid capacitor

1 Introduction

Benefited from the high energy/power density and low cost, 
dual-carbon potassium ion hybrid capacitors (DC-PIHCs) have 
been considered to be viable candidates for energy storage and 
conversion [1–5]. However, limited by the large radius of  K+ 
(1.38 Å), the main challenge of DC-PIHCs is the rate perfor-
mance and long-cycle performance of battery-type carbon 
anodes fail to match the dynamics and cycle stability of capaci-
tive carbon cathodes [6–8]. For example, graphite anode pro-
vides a theoretical specific capacity of 279 mAh  g−1 by forming 
the intercalation compound  KC8, however, unsatisfactory rate 
performance and significant capacity degradation during cycling 
limit its further application [9, 10]. Thus, there is an urgent need 
for material innovation of carbonaceous anodes to ensure both 
higher reversible capacity and longer cycling life [11]. Mean-
while, it is necessary for DC-PIHCs to prepare capacitor‐type 
activated carbon cathodes with a high specific surface that pro-
vides high electrochemical adsorption capacity [12].

Recently, studies have shown that the heteroatom doping 
strategy significantly improves the electrochemical performance 
of carbon anodes by tuning their electronic structure and inter-
layer spacing [13–17]. In addition, constructing porous structure 
enables carbon anodes accommodate huge volume strain and 
exposes a large number of active sites for  K+ storage [18–21]. 
For example, Wang et al. have obtained P, O-doped porous car-
bon spheres using MnO as template by a three-stage synthesis 
method, which exhibited excellent rate performance as PIHC 
anode materials [22]. In PIBs, Chong et al. synthesized a N, 
O-doped yolk-shell carbon sphere anode via a mixture strategy 
of soft-template and hydrothermal processes, which shows long 
cycling life with a capacity retention of 85.8% at 500 mA  g−1 
after 2500 cycles [23]. Lu et al. reported a facile precipitation 
polymerization and high-temperature carbonization approach 
for synthesis of a N-doped ball-in-ball structured hierarchical 
carbon microspheres as high performance anode for  Na+ storage 
[24]. As mentioned above, the preparation of heteroatom-doped 
core-shell porous carbon anode underwent a series of complex 
synthesis processes. Therefore, it is necessary to design a novel 

three-dimensional carbon structure with heteroatom doping and 
large porosity through a simple synthesis process to further pro-
mote the application of DC-PIHC [25–28].

Herein, inspired by the solvothermal preparation of carbon 
materials, we proposed a novel self-template method for the 
preparation of bilayer-shelled N, O-doped hollow porous car-
bon microspheres (NOHPC) anode consisting of dense thin 
shell and hollow porous spherical core through one-step car-
bonization reaction [29]. Due to the template effect of NiO and 
the high-temperature catalysis of  Ni2+, the NOHPC anode with 
bilayer-shelled structure has been synthesized by reaction of 
ethanol solution with nickel nitrate in stainless steel autoclave 
at 600 °C, which possesses a high capacity of 325.9 mAh  g−1 
at 0.1 A  g−1 and a capacity of 201.1 mAh  g−1 at 5 A  g−1 over 
6000 cycles. In combination with ex situ Raman, galvanostatic 
intermittent titration technique (GITT), and density functional 
theory (DFT) calculations, the high reversible capacity has 
been demonstrated to be attributed to the co-doping of N/O 
heteroatoms and porous structure improved  K+ adsorption 
and intercalation capabilities, and the stable long-cycling per-
formance originating from the bilayer-shelled hollow porous 
carbon sphere structure. In addition, the high specific surface 
area hollow porous activated carbon spheres (HPAC) were 
converted by KOH activation of NOHPC, which has excellent 
rate performance and high specific capacity (71.0 mAh  g−1 at 
1 A  g−1 after 5000 cycles) as PIHCs cathode. The assembled 
NOHPC//HPAC PIHC delivers a high energy density of 90.1 
Wh  kg−1 with only 0.007% capacity decay per cycle at a power 
density of 939.6 W  kg−1 even over 6000 cycles.

2  Experimental Section

2.1  Material Synthesis

2.1.1  Synthesis of NOHPC, NOCB and NOCNT

Firstly, 2.9 g nickel nitrate hexahydrate is dissolved in 10 mL 
anhydrous ethanol to prepare about 1 M nickel nitrate ethanol 
solution. Then, NOHPC was obtained by high-temperature 
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ethanol thermal reduction reaction with 10 mL nickel nitrate 
ethanol solution in 20 mL stainless steel autoclave. The auto-
clave was heated at 700 °C with a heating rate of 5 °C  min−1, 
and the reaction pressure is about 100 MPa. After 5 h, the 
samples were taken out from autoclave which was naturally 
cooled to room temperature. Washed with hydrochloric acid 
and deionized water, the NOHPC powder was dried under 
vacuum at 60 °C for 12 h. Use the same synthesis method, 
when the carbonization temperatures were 600 and 800 °C, 
NOCB and NOCNT were obtained.

2.1.2  Synthesis of HPAC

As-prepared NOHPC and activation agent (KOH) were 
thoroughly mixed with the mass ratio of 1:3. The mixtures 
were put in a tubular furnace and heated at 800 °C for 2 h 
under argon atmosphere with a heating rate of 5 °C  min−1. 
The activated product was washed with hydrochloric acid to 
remove extra activation agent, and then washed with deion-
ized water for several times. Finally, the dark product was 
dried in an oven at 60 °C overnight.

2.2  Material Characterization

The structures of the samples were measured by X-ray dif-
fraction (XRD) on a Philips X’ Pert Super diffractometer 
with Cu  Kα (λ = 1.54182 Å), and Raman spectroscopy was 
performed by a JYLABRAM-HR Confocal Laser Micro-
Raman spectrometer at 532 nm. The morphologies of the 
samples were characterized on scanning electron microscopy 
(SEM, JEOL-JSM-6700F), transmission electron microscopy 
(TEM, Hitachi H7650) and high-resolution transmission 
electron microscopy (HRTEM, JEM-2100F). The surface 
areas and pore size distribution of the samples were obtained 
by BEL SORP-max machine (BEL, Japan). Thermogravimet-
ric analysis (TGA) was carried out on Shimadzu TGA-50H. 
The FTIR spectra is tested on Fourier transformed infrared 
spectrometer (Hyperion 3000). X-ray photoelectron spec-
troscopy (XPS) was collected on an ESCALAB 250 X-ray 
photoelectron spectrometer (PerkinElmer).

2.3  Electrochemical Measurements

The electrochemical performances of the samples were 
measured using CR2016 coin cells with about 150 μL 

electrolyte (0.8 M  KPF6 in ethylene carbonate (EC) and pro-
pylene carbonate (PC) (1:1, v/v)). The anode was composed 
of 70 wt% active materials, 20 wt% super P, 10 wt% carbox-
ymethyl cellulose (CMC). The mixed slurry was coated on 
a copper film and dried at 100 °C for 5 h in a vacuum oven. 
The average active material loading of anodes was calculated 
at about 1.0 mg  cm−2. And the coin cells were assembled 
in the argon-filled glove box  (O2,  H2O < 0.1 ppm). The dis-
charge and charge measurements were carried out at vari-
ous current rates in the voltage range of 0.01–2.5 V on a 
LANDCT2001A battery tester. And the cathode was pre-
pared by mixing active materials into super P and PVDF 
with a weight ratio of 8:1:1 in NMP, followed by pasting the 
slurry onto an aluminum foil. The average active material 
loading of cathodes was calculated at about 2.5 mg  cm−2. 
The cathodes were cycled at 1.2–4.0 V, while PIHCs were 
cycled at 0.5–3.8 V. Half cells of the PIBs were assembled 
in glovebox under Ar with active materials as the anode, 
potassium foil as the counter electrode, and the PIHC were 
assembled with NOHPC as the anode, HPAC as the cath-
ode. The cyclic voltammogram (CV) measurements were 
performed on a CHI 660D Electrochemical Workstation 
(Shanghai Chenhua Corp.).

In PIHCs full-cell tests, the calculations of energy (E, Wh 
 kg−1) and power densities (P, W  kg−1) based on the total 
mass of both anode and cathode materials are performed 
using Eq. 1:

in which t(s) is the discharge time, E(Wh  kg−1) is the specific 
energy in the discharge phase from the LANDCT2001A bat-
tery tester.

3  Results and Discussion

3.1  Formation Mechanism and Structural 
Characterization

Schematic illustration of the synthetic process and the mor-
phological evolution of the novel bilayer-shelled N, O-doped 
hollow porous carbon microspheres (NOHPC) and the hol-
low porous activated carbon spheres (HPAC) are shown in 
the Fig. 1a. In a typical carbonization process taken place in 
the stainless steel autoclave, the ethanol solution of nickel 
nitrate were converted into bilayer-shelled hollow porous 
carbon microsphere, meanwhile the  Ni2+ were in-situ turned 

(1)E = P × t∕3600
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into NiO template. After being washed with hydrochloric 
acid and deionized water, the NOHPC consisting of a dense 
thin shell and a hollow porous spherical core was obtained 
(Figs. 1b–d and S1). Then, the HPAC with high specific 
surface area were prepared by KOH activation of NOHPC. 
Furthermore, the high-resolution transmission electronic 
microscope (HRTEM) images of NOHPC display that 
the inner hollow porous spherical core composed of small 
particles exhibits the low crystallinity, which is conducive 
to the rapid shuttle of potassium ions in carbon materials 
(Figs. 1e and S2). In order to visually observe the hollow and 

porous bilayer-shelled structure, we prepared NOHPC slices 
with a thickness of 70 nm by gradient resin infiltration and 
ultrathin sectioning technology. In Fig. 1f, TEM image of 
ultrathin section for NOHPC displays a novel bilayer-shelled 
carbon spheres composed of a dense shell and a loose hol-
low porous core, in which the core part contributes to high 
K-storage capacity, and the shell part ensures the structural 
stability of microspheres during charge and discharge pro-
cess [30–33]. The energy dispersive spectrometer (EDS) 
mapping images confirm the uniform distribution of N, O 
elements in NOHPC, illustrating that the N, O element in 

Fig. 1  a Schematic illustrations of the formation and microstructure of NOHPC and HPAC. b, c SEM images of NOHPC. d TEM image of 
NOHPC. e HRTEM image of NOHPC. f TEM images of ultrathin section for NOHPC. g EDS elemental mapping images of NOHPC (Red, 
green and blue represent the C, O, and N, respectively). h, i EDS elemental mapping images of ultrathin section for unwashed NOHPC
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the nitrate ion have been doped into the samples after the 
pyrolysis process (Fig. 1g). To explore the role of  Ni2+ in the 
preparation of carbon materials, we prepared the unwashed 
NOHPC slices with a thickness of 70 nm by gradient resin 
injection and ultrathin sectioning technology. In Figs. 1h–i 
and S3, the EDS mapping images prove that Ni and O ele-
ments are uniformly distributed in unwashed NOHPC.

In order to explore the formation mechanism of NOHPC, 
a series of N, O-doped carbon materials were prepared in the 

same autoclave by adjusting the carbonization temperature. 
As shown in Fig. 2a–d, N, O-doped irregular carbon blocks 
(NOCB), and N, O-doped carbon nanotubes (NOCNT) were 
generated by pyrolysis of the ethanol solution of nickel nitrate 
in stainless steel autoclaves at 500 and 700 °C, respectively. 
Clearly, a group of diffraction peaks (labeled as ◇) in the pat-
tern are characterized as NiO (JCPDS No. 73–1523), which 
weakens with increasing carbonization temperature and disap-
pears at 700 °C (Fig. 2e, f). In contrast, the diffraction peaks 

Fig. 2  a, b SEM images of NOCB. c, d SEM images of NOCNT. XRD patterns of NOCB, NOHPC, and NOCNT e before and f after washing 
with 1 M hydrochloric acid solution and deionized water. g BJH pore width of NOCB, NOHPC, and NOCNT. h XPS results of the N, O atomic 
ratio of NOCB, NOHPC, and NOCNT
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of Ni (labeled as ◆, JCPDS No. 04–0850) are stronger with 
increasing carbonization temperature. Therefore, the transfor-
mation of  Ni2+ into NiO forms hollow porous bilayer-shelled 
structures, and the further reduction in NiO results in the for-
mation of uniform carbon nanotubes. In conclusion,  Ni2+ not 
only generates NiO template, but also plays a catalytic role 
in the carbonization process. In addition, it can be found that 
NOCNT exhibits the highest degree of graphitization with 
the highest intensity of diffraction peaks near 25° and 43° 
corresponding to the crystallographic planes of (002) and 
(100) compared to samples obtained at other temperatures. 
The Brunauer–Emmett–Teller (BET) isotherms of NOCB, 
NOHPC, and NOCNT were assessed by nitrogen adsorption/
desorption isotherms. As shown in Fig. S4, the BET surface 
areas of NOCB, NOHPC, and NOCNT are 99.95, 185.56, and 
186.68  m2  g−1, respectively. And the Barrett–Joyner–Halenda 
(BJH) pore widths of the carbon materials are concentrated in 
the < 5 nm range, which ensures rapid  K+ diffusion during the 
charge/discharge process (Fig. 2g). Raman spectra shows two 
characteristic peaks at 1360  cm−1 (D band) and 1585  cm−1 (G 
band), which correspond to the vibration of disordered carbon 
and the in-plane C–C bond stretching vibration of crystalline 
graphite, respectively [34]. In Fig. S5, the Raman details spec-
tra and fitting results show the IG/ID of NOCB, NOHPC, and 
NOCNT are 0.436, 0.443, and 0.503, respectively, denoting the 
existence of significant structural defects in the samples [35]. 
Moreover, the X-ray photoelectron spectroscopy (XPS) sur-
vey scans demonstrate the presence of C, N, and O in NOCB, 
NOHPC, and NOCNT (Fig. S6). The oxygen atomic ratio of 
NOCB, NOHPC and NOCNT are 9.21, 5.28, and 4.70 at%, and 
the nitrogen atomic ratio of NOCB, NOHPC, and NOCNT are 
3.89, 4.91, and 4.40 at%, respectively (Fig. 2h). As shown in 
Fig. S7, the deconvolution N 1 s spectrum includes three peaks 
at 398.7, 400.1, and 401.4 eV, representing pyridinic nitrogen 
(N-6), pyrrolic N (N-5), and quaternary nitrogen (N-Q), respec-
tively [36]. The presence of N-5, N-6 and O generates active 
sites and promotes the  K+ intercalation process, resulting in 
improving the electrochemical properties of the carbon anode, 
and N-Q enhances the electronic conductivity [37–39].

3.2  Electrochemical Performance and Structural 
Evolution

To evaluate the electrochemical performance of bilayer-
shelled NOHPC anode, a range of charge–discharge tests 

have been conducted in 0.8 M  KPF6 in ethylene carbon-
ate (EC) and propylene carbonate (PC) (v/v = 1:1) with 
potassium metal as a counter electrode during the volt-
age range of 0.01–2.5 V. Rate performances have been 
assessed at the current rates from 0.1 to 5 A  g−1, and the 
reversible capacities of NOHPC are 385.9, 352.4, 300.1, 
268.3, 256.4, and 248.8 mAh  g−1 at the current densities 
of 0.1, 0.2, 0.5, 1, 2, and 5 A  g−1, respectively (Fig. 3a). In 
contrast, the NOCB and NOCNT electrodes supply capaci-
ties of 45.8 and 138.8 mAh  g−1 at 5 A  g−1, proving that 
NOHPC proffers the best rate performance. As shown in 
Fig. 3b, the reversible capacity of the NOHPC is 405.5 
mAh  g−1 at a current density of 0.1 A  g−1 with an ICE of 
52.2% at the first cycle and a reversible capacity of 321.7 
mAh  g−1 is reserved over 200 cycles. Figure 3c shows ex 
situ Raman spectra of NOHPC anode at 0.1 A  g−1. It is 
explicit that the D and G bands of NOHPC are both weak-
ened at fully discharge state because of the intercalation 
of  K+ [40–42]. And the D bands and G bands reappear 
during the depotassiation process, demonstrating excel-
lent structural stability. Surprisingly, the D and G bands 
remain almost unchanged after 20 cycles at 0.1 A  g−1, 
which corresponds to the remarkable long cycling stabil-
ity of NOHPC.

In addition, at a current density of 0.5 A  g−1, the NOCB, 
NOHPC, and NOCNT deliver the reversible capacities 
of 287.4, 316.7, and 308.6 mAh  g−1 with ICEs of 48.7%, 
51.5%, and 36.9% during the first charge and discharge cycle 
(Fig. 3d). After 500 cycles, NOHPC retains a specific capac-
ity of 299.8 mAh  g−1 with a loss of 5.3% compared with the 
first cycle, while NOCB and NOCNT only maintain capaci-
ties of 53.7 and 151.6 mAh  g−1 (Fig. 3e). Notably, after 
500 cycles at the constant current density of 0.5 A  g−1, the 
morphology of the NOHPC was not significantly damaged, 
which demonstrates that the special hollow porous bilayer-
shelled structure not only provides high electrochemical 
K-storage capacity but also maintains structural stability 
during cycling (Fig. S8). Exhilaratingly, at a high current 
rate of 5 A  g−1, NOHPC offers a reversible capacity of 246.0 
mAh  g−1 in the first cycle and retains a reversible capacity of 
202.6 mAh  g−1 with a loss of 17.6% even over 6000 cycles 
(Fig. 3f). As shown in Fig. 3g and Table S1, a comparison 
with the electrochemical performance of other previously 
reported carbon anodes for PIBs indicates that the NOHPC 
anode has higher reversible capacity, excellent rate perfor-
mance, and long cycling life [43–47].
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3.3  Kinetics Analysis and DFT

The kinetic processes of NOCB, NOHPC, and NOCNT 
have been analyzed to reveal the reasons for outstanding 
electrochemical performance of NOHPC. The scanning 
CV curves of NOCB, NOHPC, and NOCNT at different 
scanning rates ranging from 0.2 to 1.0 mV  s−1 are shown 
in Fig. S9, the similar curve shape illustrates the homolo-
gous  K+ storage mechanism for anodes. The values of b 
(i = avb, b = 1 for the ideal capacitive behavior and b = 0.5 
for the diffusion-limited process) for NOCB, NOHPC, and 
NOCNT are 0.910, 0.857, and 0.730, respectively, which 
indicates that the ion diffusion rate of carbon materials 

decreases with the increase in carbonization temperature 
at the voltage of peak current (Fig. S10). The capacitive 
contribution was calculated based on i = k1v + k2v1/2, where 
k1v is the capacitive contribution and k2v1/2 represents the 
diffusion-limited contribution [48, 49]. The capacitive 
contribution rate of 71.95% confirms that the charge stor-
age of NOHPC dominated by the surface-driven capaci-
tive behavior, which is instrumental to the high-rate per-
formance and long-cycle stability (Fig. 4a). Notably, the 
capacitance contribution of NOCB and NOHPC exceed 
60% at different scan rates, which indicates that the capaci-
tance contribution to capacity is higher than the diffusion-
limited contribution (Fig. 4b). On the contrary, for the 

Fig. 3  The electrochemical evaluation of NOCB, NOHPC and NOCNT anodes for PIBs, and the metallic potassium foil was used as both 
the counter and reference electrodes. a Rate capabilities at various current rates of NOCB, NOHPC and NOCNT. b Cycling performance of 
NOHPC at 0.1 A  g−1. c Ex situ Raman spectra in the first discharge/charge process of NOHPC at 0.1 A  g−1. d The first charge–discharge curves 
of NOCB, NOHPC and NOCNT at 0.5 A  g−1. e Cycling performance of NOCB, NOHPC and NOCNT at 0.5 A  g−1. f Cycling performance of 
NOHPC at a high current rate of 5 A  g−1. g Electrochemical performances of the NOHPC and previously reported carbonaceous materials
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NOCNT anode, the capacitance contribution to capacity 
is lower than the diffusion-limited contribution.

In order to further explain the excellent  K+ storage perfor-
mance of NOHPC, the  K+ adsorption energy (ΔEa) and den-
sity of states (DOS) distributions for different N, O-doped 
structures have been obtained from first-principles calcula-
tions based on the density functional theory (DFT) [23, 50]. 
According to experimental data, a 8 × 8 × 1 supercell was 
constructed to simulate carbon material, while nitrogen and 
oxygen atoms were set into this 8 × 8 × 1 supercell to form 
the N, O-doped carbon material. In Fig. 4c, the carbon calcu-
lation model including pyrrolic nitrogen and oxygen-doped, 
pyridinic nitrogen and oxygen-doped, quaternary nitrogen 

and oxygen-doped carbon structures (donated as S1, S2, S3, 
and S4 represent the N-Q/O, N-6-1/O, N-6-2/O, and N-5/O, 
respectively) was constructed based on the XPS results of 
the current work, where the atomic ratio of C, N, and O 
are 90%, 5%, and 5%, respectively, while the N-5, N-6 and 
N-Q ratios are 1:2:1. In Figs. 4d and S11, the calculated  K+ 
adsorption energies(ΔEa) for S1, S2, S3, and S4 are − 2.98, 
− 3.37, − 4.93, and − 4.94 eV, respectively, which are higher 
than the  K+ adsorption energy of − 1.19 eV for pristine car-
bon. The results verify that the stronger  K+ adsorption ten-
dency induced by N/O doping contributes to the enhanced 
 K+ storage capacity of the NOHPC anode. In addition, the 
DOSs of different carbon structures have been investigated 

Fig. 4  a Capacitive-contribution of NOHPC at the scan rate of 0.4 mV  s−1. b Contribution ratios of adsorption capacity at different scan rates of 
NOCB, NOHPC, and NOCNT. Theoretical simulations and relative verifications: c Computational models of NOHPC (four types of  K+ adsorp-
tion site labeled as S1, S2, S3, and S4, black, red, and blue represent the C, O, and N, respectively); d  K+ adsorption energies of the pristine 
and four types of N, O-doped carbon structures; e DOS of the pristine and four types of N, O-doped carbon structures. f GITT curves of NOCB, 
NOHPC, and NOCNT at the second cycle. g Diffusion coefficients of the discharging process are calculated from the GITT curves as a function 
of cell voltage. h Diffusion coefficients of the charging process are calculated from the GITT curves as a function of cell voltage



Nano-Micro Lett. (2023) 15:151 Page 9 of 13 151

1 3

(Fig. 4e). The increased DOS values of N/O-doped carbon 
structures (combined with K atom) around the Fermi energy 
level demonstrate higher electronic conductivity compared 
to undoped carbon layers (combined with K atom). The 
highest DOS value for the N-Q/O doping is attributed to the 
ability of graphitic-N to increase the electrical conductivity 
of the carbon material [51]. Thus, the N/O doping enhances 
 K+ adsorption and electronic conductivity of carbon mate-
rials, resulting in excellent electrochemical performance of 
NOHPC as PIHCs anode.

In addition, it is important to explore the kinetic processes 
by galvanostatic intermittent titration technique (GITT). As 
shown in Fig. 4f, the GITT curve of NOHPC displays the 

lowest overpotential during the (de)potassiation period, 
which represents excellent kinetic performance [34]. During 
the potassiation process, the diffusion coefficient of NOHPC 
is significantly higher than that of NOCB and NOHCNT 
when the voltage is higher than 0.5 V (Fig. 4g). Meantime, 
the diffusion coefficient of NOHPC is higher than that of 
NOCB and NOCNT when the voltage is less than 1 V in 
the depotassiation process (Fig. 4h). In conclusion, the ion 
diffusion coefficient of NOHPC is generally higher than that 
of NOCB and NOCNT during the charge/discharge cycle, 
indicating bilayer-shelled hollow porous structure promote 
the transmission of ions.

Fig. 5  a Rate capabilities at various current rates of HPAC//K cell in the voltage range of 1.2–4.0 V. b Cycling performance of HPAC//K cell at 
1 A  g−1. c A schematic diagram of PIHC. d Rate capabilities at various current rates of NOHPC//HPAC PIHC in the voltage range of 0.5–3.8 V 
(based on the total mass of the active materials). e Charge/discharge curves at the different current densities of the NOHPC//HPAC PIHC (based 
on the total mass of the active materials). f Long-cycling performance of NOHPC//HPAC PIHC at a high current rate of 2 A g.−1 (based on the 
total mass of the active materials). g Ragone plots of the NOHPC//HPAC PIHC compared with previously reported PIHCs (based on the total 
mass of the active materials)
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3.4  Electrochemical Performance of DC-PIHCs

With regard to DC-PIHCs, the capacitance of the carbon 
cathode is closely related to the specific surface area and 
pore structure [52–54]. Here, hollow porous activated car-
bon microspheres (HPAC) have been prepared as PIHC cath-
odes by KOH etching of NOHPC at 800 °C. As shown in 
Fig. S12, the spherical structure of NOHPC has been main-
tained after KOH activation, but the outer dense shell has 
been etched into a porous structure with abundant mesopores 
and micropores uniformly distributed on the carbon spheres. 
Meanwhile, the (002) peak in the XRD spectrum of HPAC 
disappears, indicating that KOH destroys the microcrystal-
line structure and creates abundant defects (Fig. S13). In Fig. 
S14, the nitrogen adsorption–desorption curves of HPAC is 
the typical type I isotherms, corresponding to a large number 
of micropores in the carbon material. Additionally, the BJH 
pore width of the sample is mainly concentrated in the range 
of < 4 nm in Fig. S15.

Then, the galvanostatic charge–discharge tests which used 
HPAC as the cathode have been carried out in the voltage 
range of 1.2–4.0 V. In Fig. 5a, the reversible capacities of 
HPAC cathode are 126.9, 113.1, 104.1, 99.6, 95.0, and 90.1 
mAh  g−1 at current densities of 0.2, 0.5, 1, 2, 5, and 10 A 
 g−1, respectively. While returning to 0.5 and 0.2 A  g−1, the 
reversible capacities of 111.0 and 114.9 mAh  g−1 have been 
maintained after a range of high current rate cycles. Excit-
ingly, at a constant current density of 1 A  g−1, the HPAC 
cathode has a reversible capacity of 71. 2 mAh  g−1 after 
5000 consecutive charge–discharge cycles (Fig. 5b).

Furthermore, to appraise the feasibility of NOHPC anode 
and HPAC cathode for PIHC, a dual‐carbon NOHPC//HPAC 
PIHC device has been constructed (Fig. 5c). In Fig. 5d, 
at the current densities of 0.5, 1, 2, 3, 4, and 5 A  g−1, the 
reversible capacities of PIHC are 67.7, 55.3, 47.7, 43.4, 38.9, 
and 35.4 mAh  g−1 in the voltage range of 0.5–3.8 V. The 
GCD curves are triangular at different current densities, 
which indicates that Faraday processes have occurred dur-
ing the charging-discharging of PIHC (Fig. 5e). As shown 
in Fig. 5f, the PIHC offers a reversible capacity of 40.9 mAh 
 g−1 and retains a reversible capacity of 35.7 mAh  g−1 with 
high Coulombic efficiency at 2 A  g−1 after 6000 cycles. It is 
notable that a viable PIHC successfully lights up a “PIHC” 
panel consisting of light-emitting diodes (LEDs) after fully 

charging, as shown in the inset of Fig. 5f. In Fig. 5g, the 
comprehensive indexes of energy density and power density 
of NOHPC//HPAC PIHC (90.1 Wh  kg−1 at 939.6 W  kg−1, 
52.93 Wh  kg−1 at 6,217.5 W  kg−1) surpass most of the previ-
ously reported PIHCs, such as AC//Graphite, NGC//KTO, 
PB//AC, KVC//PB [54–57].

4  Conclusion

Herein, a novel self-template method has been developed 
for the preparation of high-performance bilayer-shelled 
structure NOHPC anode through one-step carbonization 
reaction. Then, HPAC cathode with high specific surface 
area (1,472.65  m2  g−1) has been converted by KOH activa-
tion of NOHPC. As a result, the optimized NOHPC anode 
with high N, O doping level (4.91 at% of N, 5.28 at% of 
O) displays a high reversible capacity of 299.8 mAh  g−1 
at 0.5 A  g−1 after 500 cycles, outstanding rate capability, 
and a long cycle life of 6000 cycles with a high capacity 
of 202.6 mAh  g−1 at 5 A  g−1. In combination with ex situ 
Raman, GITT and DFT, the high reversible capacity has 
been demonstrated to be attributed to the co-doping of N/O 
heteroatoms and porous structure improved  K+ adsorption 
and intercalation capabilities, and the stable long-cycling 
performance originating from the bilayer-shelled hollow 
porous carbon sphere structure. Meanwhile, the HPAC 
cathode with ultrahigh specific surface obtains superior 
rate performance and high reversible capacity (71.2 mAh 
 g−1 at 1 A  g−1). Finally, the assembled NOHPC//HPAC 
PIHC provides a reversible capacity of 40.9 mAh  g−1 and 
maintains a reversible capacity of 35.7 mAh  g−1 after 6000 
cycles at 2 A  g−1. It is notable that a viable PIHC success-
fully lights up a “PIHC” panel consisting of LEDs after 
fully charging, which signifies that the method offers a via-
ble idea for the development of high performance PIHC.
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