
Vol.:(0123456789)

1 3

Nanoplatforms for Sepsis Management: Rapid 
Detection/Warning, Pathogen Elimination 
and Restoring Immune Homeostasis
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HIGHLIGHTS

• This review highlights pathogenesis and clinical challenges of sepsis.

• Advantages of different types of nanoplatforms are presented, and the rationality of nanoplatforms in sepsis management is analyzed.

• Advances of nanoplatforms in diagnosis and therapy of sepsis are systematically summarized, and ongoing challenges and future 
perspectives are discussed.

ABSTRACT Sepsis, a highly life-threatening organ dysfunc-
tion caused by uncontrollable immune responses to infection, is 
a leading contributor to mortality in intensive care units. Sepsis-
related deaths have been reported to account for 19.7% of all 
global deaths. However, no effective and specific therapeutic 
for clinical sepsis management is available due to the complex 
pathogenesis. Concurrently eliminating infections and restor-
ing immune homeostasis are regarded as the core strategies to 
manage sepsis. Sophisticated nanoplatforms guided by supra-
molecular and medicinal chemistry, targeting infection and/or 
imbalanced immune responses, have emerged as potent tools 
to combat sepsis by supporting more accurate diagnosis and 
precision treatment. Nanoplatforms can overcome the barriers 
faced by clinical strategies, including delayed diagnosis, drug 
resistance and incapacity to manage immune disorders. Here, we 
present a comprehensive review highlighting the pathogenetic 
characteristics of sepsis and future therapeutic concepts, sum-
marizing the progress of these well-designed nanoplatforms in sepsis management and discussing the ongoing challenges and perspectives 
regarding future potential therapies. Based on these state-of-the-art studies, this review will advance multidisciplinary collaboration and 
drive clinical translation to remedy sepsis.
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Systemic inflammatory
response syndrome (SIRS)
caused by infection

Sepsis
Two or more of:

Temperature>38 °C or
<36 °C
Heart rate>90 beats/min
Respiratory rate>20/min or
Paco2<4.3 kPa
WBC>12000 cells/mm3,
<4000 cells/mm3, or >10%
immature forms

Severe sepsis
Sepsis and acute organ
dysfunction
Septic shock
Sepsis and persistent
hypotension after fluid
resuscitation

New diagnostic criteria
Infection, documented or
suspected, and some of the
following:

General variables (fever,
hypothermia and heart
rate…….)
Inflammatory variables
(leukocytosis and plasma
C-reactive protein……)
Hemodynamic variables
(arterial hypotension and
cardiac index……)
Organ dysfunction variables
Tissue perfusion variables

Sepsis
Infection
Sequential [sepsis-related]
Organ Failure Assessment
(SOFA) score≥2

Sepsis shock
A subset of sepsis in which
particularly profound
circulatory, cellular, and
metabolic abnormalities
are associated with a
greater risk of mortality
than with sepsis alone 

No new definition proposed

Life-threatening organ
dysfunction caused by a
dysregulated host
response to infection

Definition

610210021991

Diagnostic
criteria

Fig. 1  Definition variation of sepsis

1 Introduction

Sepsis is defined as life-threatening organ dysfunction 
caused by a dysregulated host response to infection [1], 
which contributes the highest mortality to intensive care 
units (ICU) worldwide [2–4]. Although the term “sepsis” 
has already been purposed 2700 years ago, sepsis remained 
clinically undefined until the early 1990s [5]. As we can see 
in Fig. 1, sepsis definition experiences a historical varia-
tion from systemic inflammatory response syndrome (SIRS) 
to multiorgan dysfunction resulted from infection-caused 
abnormality in host response [6, 7]. Such a transition, driven 
by the improved understanding of pathophysiological mech-
anisms involved in sepsis development, thereby advances 
the diagnostic criteria and therapeutic principles [7], which 
represents the significant guideline for developing advanced 
diagnostic technologies and therapeutic agents. As a com-
mon syndrome in clinical intensive care, sepsis remains the 
leading cause of death among critically ill patients world-
wide [2]. In 2001, the incidence of severe sepsis in America 
was more than 750,000 per year, with 300 cases per 100,000 
population [3], contributing to at least one-third of all in-
hospital deaths [8]. Additionally, patients with sepsis in the 
UK occupy approximately 27% of all ICU beds [4, 9]. Nev-
ertheless, a considerable number of septic patients remain 
outside the ICU due to unbalanced medical resources and 
economic development in different countries [4]. Although 

sepsis is a global priority, basic medical research and clinical 
evidence from low-income countries are poor [10]. Sepsis 
is also an expensive and frequently fatal syndrome in criti-
cally ill surgical patients in China [11]. As early as 2007, 
an epidemiological study conducted by our group found 
that the overall hospital mortality of severe sepsis in China 
had already reached 48.7%, leading to high hospital costs 
of $11,390 per patient and $502 per patient per day [11]. 
Although numerous efforts have been made, sepsis contin-
ues to impose a heavy burden and high healthcare risk, and 
related deaths are reported to account for 19.7% of all global 
deaths [12]. Consequently, there is an urgent clinical need to 
efficaciously manage sepsis for both developed and develop-
ing countries.

Although an increasing number of the mechanisms 
involved in sepsis pathogenesis have been elucidated, the 
complicated alterations in pathophysiology still cause 
delayed diagnosis and therapeutic failure [13]. The patho-
gens, with their pathogen-associated molecular patterns 
(PAMPs), such as lipopolysaccharide (LPS), trigger the 
activation of innate immune systems to defend and elimi-
nate invaders [14]. However, the invaders sometimes pre-
vail, and the immune responses fail to return to homeosta-
sis [13]. The resultant immune disorder further generates a 
series of damage-associated molecular patterns (DAMPs) 
in response to tissue injury and cell death (e.g., endothe-
lial pyroptosis), leading to sustained immune disorder and 
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organ dysfunctions [13, 15]. In the early stage of sepsis 
processing, large accumulation of cytokines resulted from 
excessive proinflammatory cascades critically raises risk 
of multiorgan failure, which also complicates with many 
other pathological events including complement activa-
tion, coagulation and endothelial dysfunction as well as the 
generation of neutrophil extracellular traps (NETs) [13, 15, 
16]. After proinflammatory storm, the imbalanced immune 
system tends to undergo suppression that is associated with 
lymphocyte exhaustion and the reprogramming of antigen-
presenting cells [10, 13, 17]. In this case, the occurrence of 
LPS tolerance causes “immune paralysis” with diminished 
proinflammatory cytokine release upon exposure to PAMPs 
and DAMPs [13, 17]. Immune suppression in turn results in 
reduced elimination of infection, leading to the uncontrol-
lable growth of pathogens, which ultimately worsens sepsis 
outcomes. Consequently, multipathway therapeutics that 
favorably restores immune homeostasis are urgently needed, 
owing to the complexity of pathogenesis. Clinically avail-
able strategies such as antibiotic treatment, hemodynamic 
maintenance, and organ support can eliminate causative 
agents and maintain functions necessary for life; however, 
these approaches are inadequate to resolve immune disorders 
and reverse the progress of organ failure [10, 18, 19]. Nev-
ertheless, ongoing identification of pharmacologically valu-
able drug targets responsible for immune modulation, might 
contribute to the establishment of multipathway therapeutics 
in the future. For example, sphingosine 1-phosphate recep-
tor (S1PR) family [20–23], triggering receptor expressed 
on myeloid cells (TREM) family [24, 25], ion channel 
P2X7 [26–28] and transient receptor potential melastatin 
2 (TRPM2) [29–31], as well as the endoplasmic-reticulum 
resident transmembrane protein sigma-1 (σ1) receptor [32], 
have all been proven as pharmacologically acceptable tar-
gets with significant influence to sepsis pathophysiology 
and the final outcomes (Fig. 2) [33]. By using correspond-
ing agonists or antagonists, survival of mice with sepsis 
can be certainly improved (Fig. 2), thereby lightening the 
future therapeutic prospects in clinical sepsis management. 
Currently, antibiotics still represent the most irreplaceable 
strategy, due to the critical necessity for sepsis management 
to rapidly control pathogenic sources. The Survival Sep-
sis Campaign Guidelines strongly recommended antibiotic 
treatment following prompt identification of sepsis [34]. Of 
further note, the rapid completion of a 3-h bundle of sepsis 
care and the rapid administration of antibiotics contribute to 

lower risk-adjusted in-hospital mortality [35]. Unfortunately, 
the emergence of antibiotic resistance represents a tremen-
dous threat to sepsis treatment, especially in low-income 
countries, because of the overuse of antimicrobials [36]. 
Hence, there is an urgent need to develop next-generation 
antibiotics and/or novel therapeutic agents as alternative 
strategies, which usually require multidisciplinary coopera-
tion by medicinal chemists, clinicians, material chemists, 
and biomedical scientists.

Nanomedicine has aroused increasing attention in recent 
decades because of its unique advantages in improving ther-
apeutic efficiency. Intriguingly, nanotechnology was already 
being utilized in the development of molecular machinery 
and in medical investigations in 1977 [37]. Since then, medi-
cal investigators have gradually realized that nanotechnol-
ogy might contribute potential advances to basic medical 
research and clinical practice, generating the “nanomedi-
cine” field [38]. Nanomedicine can be achieved by employ-
ing self-assembled nanomaterials as drug carriers or repro-
gramming drug structures using supramolecular chemistry 
to achieve nanoassembly. The former potentiates targeted 
drug delivery and/or provides favorable biodistribution and/
or bioavailability or release behaviors for cargo molecules 
by using nanocarriers [39]. Liposomes, polymeric micelles 
and nanoemulsions all belong to these nanomaterial-inspired 
delivery systems that have been used in the therapy of vari-
ous diseases [39–42]. Liposomal doxorubicin has been 
approved by the FDA for the treatment of HIV-related 
Kaposi sarcoma [43]. The polymeric micelle paclitaxel was 
approved in Korea for the treatment of breast cancer and 
NSCLC [43]. In addition to systemic administration, bacte-
rial surface protein-functionalized liposomes potentially pro-
mote the oral delivery of biomacromolecules (e.g., vaccines) 
by enhancing gastrointestinal adhesion and physicochemical 
stability [44, 45]. Additionally, nanoemulsions have widely 
been employed to overcome poor solubility, thus improving 
the bioavailability of cargo drugs, particularly the biophar-
maceutical classification system (BCS) II drugs [46]. In con-
trast, drug structure-guided nanomedicine directly manipu-
lates supramolecular chemistry to reprogram the chemical 
structures of target drugs by analyzing the structure–activity 
relationship, thereby obtaining nanoassembly behaviors that 
in turn contribute to improved drug properties such as safety 
and pharmacokinetics [47]. Wang et al. [48] synthesized lin-
oleiclyated SN-38 prodrugs that self-assemble into nanomi-
celles, contributing to antitumor efficacy by improved safety 
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and enhanced permeability and retention (EPR) effects. 
After coassembly with the iRGD-LA conjugate, the nan-
oprodrug shows more favorable targeting properties [26]. 

Moreover, hydrophilic chain oligolactide-engineered cyto-
toxic cabazitaxel coassembled with PEG-b-PLA represents 
an adaptive nanoparticle platform for improved drug safety 
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Fig. 2  Brief summary of some novel molecular pathways and their potential therapeutic applications
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and therapeutic efficacy [49]. In addition to supramolecular 
chemical nanomedicines, some inorganic nanomedicines 
(e.g., nano-Au and nano-Ag) are popular in cancer therapy 
and antibiotic development [50–52]. Nanomedicine has also 
been applied in other disease treatments, including diabetes 
and atherosclerosis [41, 42].

With regard to sepsis management, although effective and 
specific therapeutics remain unavailable, the emergence of 
nanoplatforms targeting septic microenvironments (e.g., 
pathogens, imbalanced host responses, and specific bio-
markers) presents a novel avenue for assisting accurate diag-
nosis and precision treatment [38]. As a common strategy 
for drug formulation, nanomedicine potentially eliminates 
sepsis-associated pathogens and/or targets the restoration 
of immune homeostasis [53]. With the in-depth elucidation 
of pathogenesis, the cross talk between exogenous threats 
and endogenous molecular signaling networks has gradually 
been mapped clearly [13, 54], which will guide the rational 
design of sophisticated nanoplatforms for adaptive sepsis 
management. Nanoparticle antibiotics (termed nanobiotics) 
are designed to disrupt antibiotic-resistant bacteria, aiming 
to overcome the antibiotic overuse-induced poor prognosis 
in the late phase of sepsis [55]. Additionally, nanomedicine 
to neutralize bacterial endotoxin will hopefully become an 
alternative strategy to diminish the activation of proinflam-
matory pathways [56, 57]. To avoid the excessive inflam-
mation involved in sepsis development, biomimetic nano-
therapeutics targeting immune cells or endothelial cells were 
created. Nevertheless, numerous efforts should still be made 
to explore more adaptive nanoplatforms for sepsis manage-
ment [38]. This review will focus on three topics: (1) analyz-
ing the rationality of nanoplatforms in sepsis management, 
in which we give a general framework of different types 
of nanoarchitectures and subsequently ask why are nano-
platforms desirable for sepsis management and present our 
comments; (2) a summary of recent advances in nanotech-
nology, specifically the construction of nanodiagnostic plat-
forms to achieve rapid, accurate, and/or real-time detection 
of sepsis-associated biomarkers; and (3) recent advances in 
nanotherapeutic platforms constructed from supramolecu-
lar nanomaterials and/or biomimetic biomaterials that rem-
edy sepsis through eliminating bacterial infections and/or 
restoring immune homeostasis. We will also discuss future 
perspectives and ongoing challenges in the continued devel-
opment of this field.

2  Rationality of Nanoplatforms in Sepsis 
Management

Rapid evolution and progression of nanomaterials allow to 
fabricate diversiform nanoparticles (NPs) (e.g., inorganic/
metallic NPs, polymeric NPs, liposomes, and biomimetic 
NPs) capable of constructing sophisticated nanoplatforms 
which are integrated with diagnostic and/or therapeutic 
functions to manage various diseases [58, 59]. Superior to 
conventional or microscale chemical/biological materials, 
nanomaterials present a series of unique characteristics, 
including optical fine-tuning, magnetism, potent surface 
energy, biotunable surface chemistry, fine-tunable size and 
surface potential, and/or in vivo passive and active targeting 
[60, 61]. By taking advantage of these clinically adaptive 
abilities, increasing numbers of nanoplatforms have been 
constructed to advance the development of diagnostic/thera-
peutic techniques in various diseases (e.g., cancer [62–65], 
infectious diseases [66], inflammatory diseases [67], cardio-
vascular diseases [59], and neurodegenerative diseases [68]) 
through the rational/targeted delivery of diagnostic and/or 
therapeutic agents, improved bioavailability and biodistribu-
tion, maximizing the theranostic efficiency of cargo agents, 
and/or inherent photomagnetic effects [59].

2.1  Brief Introduction to Different Types of NPs 
for Establishing Nanoplatforms

Nanoarchitectures represent the most important elements in 
constructing nanoplatforms. By adopting different types and 
formulations of nanomaterials, controlling nanoassembly 
manners, as well as skillfully manipulating surface chem-
istry, multifaceted nanoarchitectures with diverse physico-
chemical and biological features (e.g., shape, size, surface 
potential, biodistribution, release profile, biocompatibility 
and biodegradation) can be established to construct person-
alized diseases-guided nanoplatforms for diagnostic and/or 
therapeutic applications, such as metallic/inorganic nano-
particles (NPs), liposomes, biomimetic NPs, and polymeric 
NPs.

2.1.1  Metallic/Inorganic NPs

Due to their fine-tunable properties, metallic/inorganic NPs 
have been widely investigated for diagnosis and/or therapy 
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of various diseases (e.g., cancer [69], infectious diseases 
[70], inflammatory diseases [71], and wound care [72]), 
including gold NPs (AuNPs), silver NPs (AgNPs), copper 
NPs (CuNPs), metal oxides NPs, graphene oxide-based NPs, 
and mesoporous silica  (mSiO2) NPs, etc. [73, 74]. Due to 
their high surface area-to-volume ratios and fine-tunable 
surface engineering, metallic/inorganic NPs, especially the 
metal NPs, can immobilize and sufficiently display diag-
nostic molecules, thus achieving signal amplification and 
improvements in sensitivity of molecular detection [75]. Nan 
Wang and coworkers adopted AuNPs as solid support to sur-
face display copper ions, resulting in a copper ions-mediated 
AuNPs aggregate (Cu/Au NA) that senses bacterial endo-
toxin LPS through charge interactions and contributes to 
signal amplification and trace determination [76]. Besides, 
some metallic NPs, especially the nanoscale noble metals 
(e.g., AuNPs), inherently exhibit nanoplasmonic phenom-
enon such as localized surface plasmon resonance (LSPR) 
when expose to light, which subsequently induces strong 
absorption and scattering natures with excitation of vis-
ible to near-infrared wavelength range [75]. These spectral 
properties are sensitive to the variations in refractive index 
resulted from molecular adsorption onto these plasmonic 
nanoparticles and thus can be considered as specific sig-
nals for molecular detection [75]. Gold nanorods (GNR), a 
widely used nanoplasmonic materials, have recently been 
introduced to establish aptamer-based LSPR nanosensor 
that presents more simplified and ultrasensitive manner for 
serum extracellular domain of human epithermal growth 
factor receptor 2 (ECD-HER2) quantification than clinical 
methods, thereby advancing accurate and real-time pre-
diction of metastatic breast cancer prognosis [77]. Metal-
lic/inorganic NPs also show considerable superiorities as 
delivery platforms, including high drug loading capability, 
biotunable targeted properties, long circulation, on-demand 
release, and low immunogenicity, etc. [74]. Integrating 
multiple types of metallic/inorganic NPs into one unit ena-
bles synergistic enhancement in rational drug delivery, and 
consequently overcomes the limitations of conventional 
drug delivery platforms. Tran and coworkers fabricated a 
core–shell magnetic  mSiO2 NPs that comprise a  Fe3O4 core 
and a  mSiO2 coating with graft of fluorescent conjugates 
[78]. After drug loading and surface coating of polydopa-
mine, they found further wrapping with graphene oxide 
layer and subsequent antibody functionalization exhibit 
more stable release behavior, active targeting feature, and 

dual stimuli-response to pH and near-infrared radiation 
(NIR), whereas coating with AuNPs layer will addition-
ally support excellent photothermal therapy (PTT) due to 
nanoplasmonic effect [78]. Similarly, ZnO quantum dots 
(QDs) with pH-responsive and gatekeeping features can be 
integrated into plasmonic AuNP@mSiO2 nanocomposites, 
thus simultaneously enabling PTT and on-demand release 
of therapeutic doxorubicin (DOX) [79]. Intriguingly, this 
ZnO-triggered nanocomposite also shows distinct antitu-
mor immunity through inducing immunogenic cell death 
[79], which implies the intrinsic immunomodulatory func-
tions of inorganic nanomaterials should also be taken into 
account when designing multifunctional/multimodal inor-
ganic nanoplatforms. Some metallic/inorganic NPs can 
directly mimic the catalytic functions of natural enzymes, 
so-called nanozymes, that are capable of catalyzing various 
in vivo chemical reactions in a single-substrate or multi-
substrate manner [80]. These inorganic nanozymes accord-
ingly respond to alterations of in vivo microenvironments’ 
components such as pH,  H2O2, glutathione (GSH), and  O2, 
favoring disease management through eliminating danger-
ous molecules or generating therapeutic agents using their 
enzyme-mimicking catalytic functions [80]. Gao et al. [81] 
synthesized a dendritic  mSiO2 NPs coloaded with glucose 
oxidase-mimic AuNPs and peroxidase-mimic  Fe3O4 NPs. 
This nanoplatform could accumulate in tumorigenesis site 
via EPR effect, and oxidize β-d-glucose into gluconic acid 
and  H2O2 [81]. The resultant  H2O2 is subsequently catalyzed 
by  Fe3O4 NPs to high toxic hydroxyl radicals (·OH) which 
induces tumor-cell apoptosis [81]. However, potential toxic-
ity of reactive oxygen species (ROS) generated by nanozyme 
in normal tissues is of particular concern. To overcome this 
issue, Hu and coworkers designed a biodegradation-medi-
ated enzymatic activity-tunable molybdenum oxide nan-
ourchins  (MoO3−x NUs) which catalyze production of high 
concentration of ·O2

− at acidic tumor microenvironment for 
inducing tumor-cell apoptosis [82]. While exposing to physi-
ological environment,  MoO3−x NUs will catalyze  OH− into 
the nontoxic  H2O rather than high toxic ROS, thus avoiding 
side effects [82]. In contrast, inorganic nanozymes that elim-
inate excessive ROS are more desirable at management of 
inflammatory diseases such as inflammatory bowel diseases 
(IBDs) [71]. To eliminate ROS more efficiently at IBDs, Liu 
and coworkers established an integrated cascade nanozyme 
by introducing a superoxide dismutase (SOD)-like Mn (III) 
porphyrin and a catalase (CAT)-like Pt NP into a nanoscale 
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Zr-based metal–organic frameworks (MOF), PCN222 [83]. 
The resultant cascade nanozyme named Pt@PCN222-Mn 
could transform the catalytic process of ·O2

− to  H2O/O2 from 
inherent two transport steps to a high-performance cascade 
catalysis in single compartment. Such a high efficiency in 
ROS scavenging enables favorable therapeutic outcomes of 
Pt@PCN222-Mn in ulcerative colitis and Crohn’s disease.

2.1.2  Polymeric NPs

Polymeric NPs are typical class of drug delivery systems 
that are long-tested and reliable, and have previously been 
summarized in state-of-the-art reviews [84–86]. Fabricated 
from natural and/or synthetic polymers, polymeric NPs 
share a series of pharmacologically acceptable advantages 
for drug encapsulation and delivery [84]. Chitosan, alginate, 
and hyaluronic acid (HA) are the most representative natural 
polymers; due to excellent biocompatibility/biodegradation 
and tunable properties, they are regarded as suitable carri-
ers for various agents including antitumor drugs, antimi-
crobials, genes, proteins, etc. [84]. Specifically, chitosan 
is a positively charged polysaccharide owning favorable 
membrane penetration and mucoadhesion properties and 
thus is typically employed to aid gene transfection, intra-
cellular delivery, and mucodelivery [87–89]. Contrary to 
chitosan, alginate and HA are anionic polymers present-
ing superior safety and have been extensively used in drug 
delivery and tissue engineering [90]. Synthetic polymers 
(e.g., poly(lacticcoglycolic acid), PLGA) not only diver-
sify administration routes and pharmacokinetics of cargo 
drugs, but also act as structural templates to establish other 
nanoplatforms such as biomimetic NPs. By adopting aim-
guided surface chemistry and/or integrating multicomponent 
polymers, multifunctional polymeric NPs can be obtained 
to achieve more adaptive spatiotemporal transport of cargo 
as well as improved biophysicochemical properties, which 
might be more desirable to overcome clinical difficulties. 
Accumulated ROS and hypoxia in pathogenetic tissues 
delay tissue regeneration thus worsening myocardial infarc-
tion. To resolve this issue, Ding and coworkers synthesized 
ROS-cleavable hyperbranched polymers that coassembled 
with methacrylate HA to form an injectable hydrogel under 
UV irradiation [91]. Incorporation of biocompatible cata-
lase conferred this hydrogel with  H2O2 degradative func-
tion for  O2 generation, and the ROS-cleavable polymers 

degraded once contacting with excessive ROS, contributing 
to drug release and ROS scavenging [91]. The dual-action 
hydrogel platform showed advanced therapeutic efficacy 
against myocardial infarction, as indicated by removal of 
excessive ROS, inhibition of cell apoptosis, and improved 
angiogenesis, etc. [91]. Methacrylated gelatin (GelMA) 
could chemically cross-link with N-(2-aminoethyl)–4-(4-
(hydroxymethyl)–2-methoxy-5-nitrosophenoxy) butanamide 
(NB)-modified HA (HA-NB) through UV-triggered click 
reaction between aldehyde groups and amino groups [92]. 
The resultant hydrogel fabricated by Hong and coworkers 
presented strong biomechanical properties and rapidly pre-
vented pig heart bleeding, implying a significant potential 
to resolve the unmet challenges in surgical bleeding [92]. In 
treatment of heterotopic ossification, to avoid wide distribu-
tion of therapeutic rapamycin and achieve targeted deliv-
ery, Chen and coworkers employing collagen hybrid peptide 
(CHP) to decorate PLGA NPs; the CHP-decorated PLGA 
NPs could transport rapamycin specifically to pathological 
tendon collagen [93].

2.1.3  Liposomes

Liposomes are nanoscale lipid bilayer vesicles composed 
of phospholipids and cholesterol, which have advantages 
of high drug encapsulation, favorable biocompatibility and 
biodegradability, reduction of drug toxicity, slow-release 
behavior, passive targeting, ease of surface engineering, 
and optimizing pharmacokinetic properties, and have 
been widely investigated as drug carriers for delivery of 
small molecules, peptides, proteins, genes, and antibod-
ies, with kinds of liposomal products approved such as 
liposomal DOX and liposomal amphotericin B [44, 94, 95]. 
It has a hydrophilic core and a hydrophobic layer, thus 
enabling favorable entrapment ability for both hydrophilic 
and lipophilic drugs [44]. Due to their broad-panel drug 
encapsulation, liposomes have already been extended to 
establish combinatorial therapeutics. Water-soluble DOX 
and lipophilic hispolon can be simultaneously loaded in 
the aqueous core and lipid shell of liposomes, respectively 
[96]. The obtained DOX/hispolon-codelivered liposomes 
show dramatical improvements in activity against mela-
noma cells [96]. Besides, liposomal formulation coloaded 
cytarabine and daunorubicin has also retrieved synergistic 
improvements in efficacy and pharmacokinetic properties, 
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which has been approved by FDA for treatment of acute 
myeloid leukemia [97]. More importantly, liposome-based 
platforms are usually employed to transform toxic drugs 
to druggable nanomedicines with adaptive safety profiles 
and high therapeutic indexes. For example, cabazitaxel 
could overcome taxane-resistant cancer cells due to its 
low affinity to P-glycoprotein, however, only shows limited 
clinical applications because of severe systemic toxicity 
to patients. Shi and coworkers proposed a combinatorial 
strategy that integrated PUFAylation prodrug technique 
into liposomal scaffold, thereby resulting in a cabazitaxel 
prodrug-formulated liposome (lipoprodrug) which exhib-
ited excellent in vivo tolerability, targeted accumulation 
in tumor tissues via EPR effect, and prolonged half-life 
[98]. Nevertheless, conventional liposomes usually require 
additional surface modifications to overcome potential dis-
advantages such as clearance by reticuloendothelial system 
(RES), drug leakage, poor stability, undesirable tissue dis-
tribution [44]. PEGylation is the representative strategy for 
surface engineering of liposomes to avoid RES barrier and 
favor stability; however, it will impede the normal release 
of therapeutic agents and cell uptake [44]. Alternative 
strategy proposed by Tang and coworkers might be able to 
resolve this paradox [99]. They designed a CD47-derived, 
enzyme-resistant peptide ligand named D-self-peptide to 
functionalize the surface of liposomes. The D-self-peptide 
could interact with signal regulatory protein alpha (SIRPα) 
in phagocytes, thus triggering an inhibitory signal coun-
teracting phagocytosis. Such a “don’t-eat-me” signal pro-
tects liposomes from RES capture [99]. In addition to RES 
barrier, blood–brain barrier (BBB) also needs proper sur-
face chemistry to facilitate central nervous system (CNS) 
delivery using liposomes or other nanoparticles. Aβ25–35, 
a truncated peptide derived from Aβ1–42 that assemble into 
the pathological plaques in Alzheimer’s disease, directly 
forms complexes with apolipoproteins to traverse the BBB 
[100]. Surface modification using Aβ25–35 has been proven 
to indeed promote the brain delivery of DOX-loaded 
liposomes through receptor-mediated transcytosis [100]. 
Furthermore, dual-functionalization (e.g., PEGylation 
combined with cRGDylation) integrating multiple superi-
orities into one liposomal formulation, such as long circu-
lation, improved biodistribution, increased accumulation 
of therapeutic agents in target tissues, enables construc-
tion of multifunctional, multimodal, and spatiotemporal-
responsive liposomes for advanced drug delivery [101].

2.1.4  Biomimetic NPs

Billions of years’ biological evolution has evolved a variety 
of multifunctional and sophisticated biological operative ele-
ments to adapt/change the complex living system paradigms 
regulated by the whole ecological environments as well as 
the continuous evolution and biogenesis of diseases [102]. 
For the perspective of disease management including diag-
nosis and treatment, biomimetic therapeutics that look 
toward natural environments and/or living systems for inspi-
ration are fascinating and highly effective [102]. Similarly, 
introducing biomimetic ideology into nanomedicine natu-
rally becomes a promising option in modern medicine 
because of integrating synergistic advantages, thus generat-
ing the field of biomimetic nanotechnology which has pro-
verbially been used in vaccines design, rational drug deliv-
ery, tissue engineering, cancer theranostics, and 
inflammatory modulation, etc. [102–105]. Structurally pro-
gramming synthetic nanoplatforms, inspired by diverse bio-
logical events such as ligand-receptor recognition and intra-
cellular communication, to mimic or replace living 
functions, represents one of the most typical pipelines to 
construct biomimetic NPs capable of achieving effect ampli-
fication or competitive inhibition. To develop broad-spec-
trum antiviral treatments, many biomimetic NPs were 
designed to prevent the initial invasive step of virus to host 
cells through competitive blocking the interactions between 
viral attachment ligands (VALs) and its target receptors 
(e.g., heparan sulfate proteoglycans, HSPGs) on host cell 
surface [106]. Whereas the most crucial problem for HSPG-
mimicking NPs is how to expose sulfonate groups on surface 
of nanomaterial cores more efficiently, which would deter-
mine the consequent antiviral effect. Cagno and coworkers 
found replacing the short linker—3-mercaptoethylsulfonate 
(MES) responsible for surface display of sulfonate groups 
on AuNPs with longer linker—undecanesulfonic acid 
(MUS) significantly enabled and stabilized the multivalent 
binding between the surface sulfonate moieties for mimick-
ing HSGPs and virus, thereby transforming the antiviral 
biomimetic NPs from virustatic to virucidal [106]. For vac-
cination, Wang and coworkers designed a pulmonary sur-
factant (PS)-biomimetic NPs loaded with cGAMP (an ago-
nist of the stimulator of interferon genes), which can extend 
the protective spectrum of influenza vaccines from homolo-
gous to heterosubtypic viruses and prolong the maintenance 
of lung-resident memory  CD8+ T cells for at least 6 months 
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[107]. Such a biomimetic nanoplatform was only fabricated 
using conventional materials for liposome preparation 
including DPPC, DPPG, cholesterol, and PEG2000, but 
whereas it can mimic the lipid composition and charge of 
the lung PS and overcome the PS barrier to achieve the 
effective delivery of cGAMP into alveolar macrophages and 
subsequent alveolar epithelial cells for strengthening T cell 
immunity [107]. Further investigation demonstrated that 
uptake by alveolar macrophages of PS-biomimetic liposomes 
was dependent on surfactant protein A and D-mediated 
endocytosis [107]. The aforementioned studies inspire us 
that rationally manipulating structures and formulations of 
conventional nanomaterials might achieve de novo functions 
to overcome existing challenges because of being conferred 
biomimetic features. Nevertheless, using conventional nano-
materials is difficult to maximally mimic the cell morphol-
ogy and functions for specific uses, especially for biodetoxi-
fication and inflammatory neutralization [104, 108]. Though 
attaching natural ligands or functional moieties to surface of 
synthetic NPs indeed do excellent work in replicating indi-
vidual biological events found in nature, it is rather 
unachievable for such bottom-up strategy to replicate the 
collective natures of biological systems [104]. Thus, scien-
tists directly extract cell-derived substances for in vitro engi-
neering of naked NPs to disguise parent cells. Molinaro and 
coworkers extracted membrane proteins from leukocytes and 
integrated these proteins into synthetic phospholipid bilayer 
for preparing leukocyte-mimicking liposomes (leukosomes) 
[109]. The resultant leukosomes with highly homologous 
surface natures of leukocytes preferentially targeted inflamed 
vasculature with fivefold and eightfold enhancement of accu-
mulation in inflamed tissues at post-inflammation 1 and 
24 h, respectively, consequently contributing to effective 
delivery of dexamethasone for inflammatory attenuation 
[109]. Besides, surface layer proteins isolated from Lacto-
bacillus helveticus can reassemble onto surface of positively 
charged liposomes [44, 45]. The resultant Lactobacillus 
helveticus-biomimetic liposomes partially preserved unique 
features of source bacterium, including increased rigidity 
and gastrointestinal adhesion [45]. Despite successfully 
reproducing natures of membrane proteins and preserving 
some beneficial properties, however, cell membrane com-
prises complex components including a mixture of lipids, 
proteins, and carbohydrates all of which jointly participate 
in the whole interactions with surrounding microenviron-
ments [102, 104, 108], hence replicating systematic natures 

of cell membranes is more desirable, whereas it is difficult 
for the aforementioned biomimetic nanotechnology to meet 
this requirement. To this end, cell membrane coating nano-
technology has been developed [104], which directly isolates 
cell membranes to coat the surface of synthetic NPs such as 
polymeric NPs, inorganic NPs (e.g., silica NPs, AuNPs, and 
iron oxide NPs), nanogels, protein NPs, and MOF [104]. 
This biomimetic nanotechnology sufficiently preserves the 
physicochemical and physiological features of source cells. 
There are multiple cells involved in cell membrane coating 
technology, including red blood cell (RBC), platelet, 
immune cell, cancer cell, stem cell, and bacterial cell. The 
RBC membrane coating, a most common cell membrane 
coating strategy, endows synthetic NPs with RBC surface 
properties for avoiding RES capture, thus improving phar-
macokinetics, and as nanosponges also enables adsorption 
of bacterial toxin (e.g., β-hemolysin/cytolysin of group B 
Streptococcus) [110]. Another important membrane source, 
platelet, is naturally responsive to various biological pro-
cesses such as coagulation and wound healing as well as 
participating in the pathogenesis of various diseases, hence 
can be coated on synthetic NPs to confer a variety of bioint-
erfacing properties including immunocompatibility, patho-
gen binding, and adhesion to damaged vasculature, and 
tumor-targeting ability [111]. For example, platelet mem-
brane-coated MOF could specifically deliver siRNA into the 
tumor cells through biointerfacing interactions, and the 
MOF responds to the pH reduction in endosomes leading to 
the release of siRNA for tumor gene therapy [112]. Such a 
biomimetic NPs perfectly combines both advantages of bio-
mimetic coating and synthetic nanomaterials, and hence 
provides spatiotemporal-dependent delivery and on-demand 
release behaviors. Membrane coating derived from immune 
cells usually exhibits advantages of targeting inflammatory 
microenvironment, cytokines/PAMPs neutralization, block-
ing infectious events, and so on. Zhang and coworkers 
adopted  CD4+ T cells as membrane donor to coat PLGA 
NPs, and obtained a nanoengineered  CD4+ T cell mem-
brane-coated NP (TNP) with broad-panel activity to 125 
HIV-1-pseudotyped viruses [113]. As a therapeutic agent, 
TNP can neutralize cell-free HIV-1 and induce autophagy 
of HIV-1 gp120-expressing cells, thereby doubly hindering 
the HIV-1 reservoir [113]. Compared with naked NPs, NPs 
coated with cancer cell-derived membrane show lower dis-
tribution in normal tissues and improved accumulation in 
tumor tissues and hence have been widely used as carriers 
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of imaging agents and/or therapeutic drugs for cancer thera-
nostics [105]. Tapeinos and coworkers fabricated a biomi-
metic NPs composed of a  Fe3O4/MnO2 inorganic core and a 
U-251 MG cell-derived membrane coating [114]. Such a 
nanoplatform display favorable homotypic targeting ability 
for glioblastoma multiforme-targeted drug delivery [114]. 
Meanwhile, the superparamagnetic inorganic core can be 
used as a diagnostic agent for magnetic resonance imaging. 
Of further note, there are numerous “markers of self” and 
“self-recognition molecules” expressed on cancer cell mem-
branes [105]. By taking

2.2  Why are Nanoplatforms Desirable for Sepsis 
Management?

Before we evaluating the feasibility of nanoplatforms in 
managing sepsis, we always ask why are they suitable for 
sepsis management or what factors determine such a clini-
cal possibility. For these critical problems, only sufficiently 
understanding the key points and unresolved challenges 
involved in clinical sepsis management and corresponding 
advantages of nanoplatforms, can we conclude the most reli-
able answer. Sepsis is an acute syndrome complicated with 
infection, host response dysregulation, and multiorgan fail-
ure [1, 15]. Consequently, one of the most key points is how 
to timely identify sepsis for early warning, which is very 
important to reduce the mortality [16]. However, diagnosis 
of sepsis requires detection of a series of biomarkers such as 
pathogens, C-reactive protein (CRP), procalcitonin (PCT), 
and cytokines, which usually are time-consuming using 
conventional methods (e.g., cell culture and enzyme-linked 
immunosorbent assay (ELISA)), delaying the golden time 
for rescuing sepsis patients. Nanomaterials-based diagnostic 
platforms (termed nanodiagnostic platforms) might be able 
to overcome these unresolved challenges. On the one hand, 
high surface area-to-volume ratios and versatile surface 
chemistry enable nanomaterials to display detection-asso-
ciated molecules (e.g., antibodies) more effectively, which 
provide signal amplification and ultrasensitivity to target 
biomarkers; on the other hand, some metallic NPs present 
nanoplasmonic effect when exposed to light ranging from 
visible to near-infrared wavelength, that rapidly transforms 
the interactive events between biomarkers and plasmonic 
NPs to optical signal for readout [75, 118]. Nanodiagnos-
tic platforms integrated these advantages are theoretically 

desirable for early warning and identification of sepsis. Fur-
thermore, owing to their high sensitivity and rapid detection, 
nanodiagnostic platforms also provide considerable possi-
bilities for early screening patients once admitted into ICUs 
in the future.

With regard to the perioperative therapy, large-dose usage 
of antibiotics is required to eliminate pathogens, which, how-
ever, significantly raises the risk of resistance development 
[10, 19, 35]. A variety of nanomaterials, especially these 
are rich in basic groups, show broad-spectrum bactericidal 
activity and have already been used in medical care such as 
advanced wound management [119]. They usually exhibit 
low frequency of resistance because they typically disrupt 
bacterial envelope rather than targeting specific molecular 
target [119]. Nevertheless, potential in vivo toxicity of these 
antimicrobial nanomaterials might be a concern that should 
be carefully evaluated in sepsis models before translating to 
clinical application. Moreover, transforming conventional 
antibiotics into nanobiotics by chemical modification has 
reported enhancing the antibacterial activity compared with 
parent antibiotics [120]. Through proper surface function-
alization, sophisticated nano-based delivery systems enable 
targeted delivery of antibiotics into infectious microenvi-
ronment and subsequent on-demand release, which can 
ensure the therapeutic efficacy and simultaneously reduce 
the administrated dosage [120]. These existing superiori-
ties imply a promising possibility for nanomaterials-based 
therapeutic platforms (termed nanotherapeutic platforms) to 
overcome the unresolved challenge in antimicrobial strategy 
involved in sepsis management. Up to now, therapeutics that 
effectively managing immune dysregulation have remained 
unavailable. Systemic administration of immunosuppres-
sants (e.g., antagonists of toll-like receptors (TLRs)) leads 
to severe side effect and might worsen outcomes when pro-
gress to “immunoparalysis” period [34, 121, 122]. In this 
case, biomimetic nanomedicines might be able to resolve 
this difficulty [102, 104]. Immune cell membrane-inspired 
biomimetic NPs capable of neutralizing bacterial toxins, 
cytokines, or targeting inflammatory microenvironment 
are of particular promises [104]. They directly eliminate 
excessively accumulated PAMPs and DAMPs rather than 
simply compromise immune systems, thereby might con-
tribute to attenuated organ injury. Besides, biomimetic NPs 
with inflammation-targeted nature represent reasonable car-
riers for antibiotics to exert synergistic therapy. Accumu-
lated ROS represents another class of dangerous molecules 
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threatening organ functions, while nanozymes could elimi-
nate ROS through catalyzing in vivo redox reaction [71, 
123]. After treatment, monitoring prognosis is particularly 
important, which can prevent recurrent sepsis. Nanodiag-
nostic platforms enabling accurate, rapid, and even real-time 
detection of target biomarkers consequently provide possi-
bilities to establish adaptive prognosis-monitoring platforms 
in the future.

Despite considerable feasibility of nanomedicines in sep-
sis management, one of the most crucial problems we need 
to focus on is what are the pharmacokinetic fates of these 
nanoarchitectures after in vivo injection upon septic condi-
tions, which directly determines druggable properties and 
translational possibilities. So far, there is no literature that 
systematically report pharmacokinetic features of nanomate-
rials in sepsis models. It is acknowledged that in vivo biodis-
tribution, metabolism, degradation, and final fate of NPs are 
jointly determined by their inherent characteristics that can 
be, respectively, recognized as physical identity, synthetic 
identity as well as biomolecule corona [124]. Physical iden-
tity represents the intrinsic physical natures of nanomaterials 
or NP cores, including size, shape, surface charge, physical 
composition, hydrophilicity, superparamagnetic property, 
plasmonic property, and fluorescence, etc. [124, 125]. NPs 
with different average size or surface charge exhibit different 
organ accumulation and clearance after in vivo injection. For 
example, kidney will rapidly eliminate NPs with a diameter 
smaller than 10 nm because this diameter range (< 10 nm) 
adapts to the capillaries and renal corpuscles thus can be 
easily filtered from circulation [126], whereas NPs with a 
diameter of > 50 nm are mainly accumulated in liver and 
spleen, controlling average size into range of 100–220 nm 
contributes to EPR effect under tumor conditions [127]. 
Besides, NPs with anionic surface tend to be taken up by 
liver, while the positively charged NPs preferentially con-
tact with peripheral endothelial cells [124]. NPs with a 
diameter of <  ~ 100 nm, positively charged surface and low 
solubility usually are cytotoxic; the NPs with a diameter 
ranging from 100 to 220 nm, positively charged surface and 
low solubility , are easier to be captured by RES; while the 
NPs with the diameter of 100–220 nm, negatively charged 
surface and high solubility can show favorable EPR effect 
[127]. Inherent characteristics of some NPs such as super-
paramagnetic, plasmonic, and fluorescent are found to alter 
or track their in vivo biodistribution, degradation, and fate 
under exogenous stimuli, providing theranostic applications 

in disease management [128, 129]. Consequently, the final 
pharmacokinetics of different NPs are largely dependent on 
the balance of various physical identities. Of course, syn-
thetic identity conferred by surface chemistry enables new 
pharmacokinetic behaviors, such as active targeting, spe-
cific cell affinity, and long circulation [130]. Combination 
of physical and synthetic identities cooperatively achieves 
differential pharmacokinetics of various NPs. Akiva and 
coworkers fabricated three RBC-coated/uncoated PLGA 
NPs with different shapes and observed in vivo biodis-
tribution and half-life [131]. Compared to spherical NPs, 
prolate ellipsoidal and oblate ellipsoidal NPs avoid in vitro 
macrophage uptake more effectively, and such effect can 
be significantly enhanced after RBC coating [131]. After 
in vivo administration, RBC-coated NPs exhibit increased 
accumulation in spleen compared with uncoated NPs; lower 
amount of prolate ellipsoidal NPs accumulated in liver in 
comparison with other NPs, implying a decreased elimina-
tion [131]. As expected, RBC-coated prolate ellipsoidal NPs 
showed the dramatic increase in long circulation with a half-
life of ~ 3 h and thus augmented in vivo efficacy in treating 
α-toxin-induced sepsis [131]. As for the biodegradation and 
in vivo fate of NPs in septic conditions, they may depend on 
the types and characteristics of NPs and different stages of 
sepsis progression, in our perspectives. Once entering blood 
circulation, NPs immediately expose to a highly complex 
physiological environment in which biomolecules such as 
proteins, lipids, and metabolites subsequently adsorb onto 
surface of NPs through a series of nonbond interactions, 
resulting in formation of biomolecule corona [124]. The bio-
molecule corona is not only determined by physiological 
conditions but also regulated by the inherent characteristics 
of NPs including physical and synthetic identities. Usu-
ally, biomolecule corona might largely change the expected 
pharmacokinetic properties of our designed nanoplatforms, 
causing significant difference between in vitro and in vivo 
efficacy. Nevertheless, proper programming nanoplatforms 
with full considering pathophysiological features of diseases 
could transform the unwanted biomolecule corona to sophis-
ticated surface engineering strategy for targeted delivery and 
expected pharmacokinetics [100]. Sepsis involves severe 
infections, systemic inflammatory abnormalities, and organ 
dysfunction, whose in vivo pathophysiological environment 
is different from any other diseases that nanomedicines are 
widely applied (e.g., cancer). Hence, the pharmacokinetic 
processes of NPs in septic conditions are different from that 
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in other diseases or healthy conditions, but we still can get 
some clues from these widely investigated conditions. In the 
early stage of sepsis, severe infections trigger highly proin-
flammatory cascades which result in considerable accumu-
lation of cytokines and infiltration of immune cells, conse-
quent creating infectious/inflammatory microenvironment 
(IME) that possesses similar characteristics of tumor micro-
environment (TME) (e.g., rich bloodstreams, infiltration of 
immune cells, and enhanced permeability of vessels). In this 
case, NPs with fine-tunable size might passively target IME 
via EPR-like effect. Of course, due to the hyper immune 
responses in this stage, NPs have large possibilities to be 
rapidly captured and subsequently eliminated by RES, thus 
require additional surface engineering (e.g., PEGlyation and 
RBC coating) to avoid such a fate. Some biocompatible NPs 
might be catalyzed by the abundant enzymes in IME and 
degraded finally. Other types of NPs (e.g., inorganic/metal-
lic NPs) in our opinion would be metabolized and degraded 
or excreted by liver and/or kidney. When progressing to late 
stage, multiple organs after experiencing severe infections 
and proinflammatory storms will suffer serious tissue dam-
age and dysfunction. Hence large-dose administration of 
synthetic NPs might cause lethal side effects. In this case, 
using biomimetic NPs might be more reasonable. Further-
more, alterations in hemodynamics (e.g., coagulation abnor-
mality) might also impair the pharmacokinetic properties of 
NPs. Immunosuppression and bacterial regrowth co-occur 
in this stage, which create a unique IME without inflamma-
tory properties. How NPs interact with this IME represents 
a meaningful topic to be in-depth investigated in the future, 
which may advance development of precision nanoplatforms 
for sepsis management.

3  Nanodiagnostic Platforms for the Accurate 
and Rapid Detection of Sepsis‑Related 
Biomarkers

Point-of-care management requires early warning and 
diagnosis [34]. However, the complexity of pathogenesis 
for aspects including infection, immune abnormality, and 
organ dysfunction can prevent rapid identification and sub-
sequent therapy [10]. Clinically, the SOFA scoring system 
has been adopted to evaluate the severity of organ injury [1]. 
Infection and inflammation generally depend on the bacte-
rial culture and characterization of biochemical indicators. 

Given the versatile pathophysiology, multifaceted biomark-
ers have been proposed to collaboratively identify sepsis 
[132]. Living bacteria detection helps to determine the spe-
cies of pathogens, thereby guiding antibiotic usage. C-reac-
tive protein (CRP) and procalcitonin (PCT) are relevant to 
the susceptibility to systemic infection. Plasma endotoxins 
and cytokines (e.g., IL-3, IL-6 and TNF-α) are employed to 
reveal inflammatory progression. However, current detection 
strategies for these biomarkers usually require intricate pro-
cedures and expensive costs, which dramatically delay effec-
tive treatments and patient compliance. Intriguingly, efforts 
that combine nanotechnology with sepsis diagnosis have 
made promising progress. By taking advantage of nanoscale 
platforms, some limitations or issues impeding traditional 
strategies for clinical use can be solved effectively. We sum-
marize some interesting nanodiagnostic platforms for the 
identification and quantification of sepsis-related biomark-
ers in Table 1 [133–165]. Several nanodiagnostic platforms 
to detect sepsis-associated biomarkers, including bacteria, 
CRP, PCT, and cytokines, are discussed in this section.

3.1  Nanodiagnostic Platforms that Detect Bacteria 
for the Identification of Sepsis

Individual antimicrobial treatment is advocated to prevent 
the spread of drug resistance during sepsis management. 
Hence, rapid recognition of infection severity and patho-
gen species is urgently needed to facilitate clinical treat-
ments. The current gold standard to identify pathogens is 
cell culture. However, cell culture is usually laborious and 
time-consuming (e.g., several days). In addition, differen-
tiating sepsis from noninfectious systemic inflammatory 
syndrome remains a challenge for clinicians. To overcome 
these issues, Herrmann et al. [135] focused on magical 
trigger-dependent microvesicles consisting of nanoscale 
membrane-bound fragments derived from innate immune 
cells (e.g., leukocytes and neutrophils) that are specifically 
responsive to bacteria. They dissected the septic sensibility 
of three natures of polymorphonuclear cell (PMN)-derived 
microvesicles, including inflammatory, procoagulant and 
aggregation activity (Fig. 3a). The results indicated that 
aggregation with bacteria represented the most sensitive 
nature for PMN-derived microvesicles to sense infections, 
suggesting that microvesicle-bacterial aggregation might be 
regarded as a strong candidate to differentiate sepsis from 
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noninfectious inflammatory syndrome. To this end, the 
authors designed a point-of-care-compatible microfluidic 
chip based on PMN-derived microvesicles (Fig. 3b). The 
fluorescence intensity of the samples was recorded at the 
inlet and outlet of a microfluidic chip whose fluorescence 
readout was set to outlet/inlet. Twelve clinical samples (from 
6 noninfectious patients and 6 septic patients) were detected 
using a microvesicle biosensor or clinical diagnosis. Under 
the clinical diagnosis strategy, 10 of 12 samples were diag-
nosed as the correct group, but the other 2 samples suffered 
false assignment. In contrast, only 1 noninfectious inflamma-
tory sample was incorrectly assigned after screening by the 
microvesicle biosensor (Fig. 3c). Notably, the microvesicle 
biosensor contributed a more rapid response time (≤ 1.5 h) 
to accurate diagnosis. This strategy is based on the cell bio-
mimetic principle, which inspires us to mimic or manipu-
late cell functions or natures and can achieve unexpected 
advantages in the development of nanodiagnostic platforms. 
For example, immune cell (e.g., macrophage, neutrophil, 
and T cell)-derived exosomes might preserve the capacity 
to recognize bacteria and PAMPs. By exhibiting reason-
able surface engineering and signal transduction, immune 
cell-derived exosomes can be implemented in biosensors 
for detecting bacteria and PAMPs, which will warn of infec-
tious and inflammatory risks during sepsis progression in a 
timely manner.

In addition to immune cell-bacteria interactions, physico-
chemical interactions between antibiotics and bacteria repre-
sent another biomimetic strategy to develop nanodiagnostic 
platforms for the identification of sepsis. Gao et al. [139] 
reported a vancomycin-functionalized magnetic nanoparticle 
biosensor combined with fluorescence probes. Vancomycin 
capable of recognizing bacterial surface terminal peptide 
D-Ala-D-Ala through hydrogen bonds (Fig. 3d) [139, 166], 
served as a bacterial sensor to functionalize FePt magnetic 
nanoparticles (FePt@Van) (Fig. 3e). To introduce optical 
signaling, a unique fluorescence probe (Van-FLA) was gen-
erated by the conjugation of vancomycin with a fluorescent 
amine (Fig. 3f). The procedures involving this biosensor are 
shown in Fig. 3g. Significantly, the FePt@Van-Van-FLA 
detection system, which provided a rapid response time 
(≤ 2 h) with a low limit of detection (LOD) of 10 CFU/mL, 
was suitable for the detection of both gram-negative E. coli 
and gram-positive Staphylococcus. Nevertheless, the sensi-
tivity of this nanodiagnostic platform to gram-negative bac-
teria might be weaker than that to gram-positive bacteria, Ta
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Fig. 3  Innate immune cell-derived microvesicles differentiate sepsis from noninfectious systemic inflammation. a PMN-derived microvesicles induced bacterial 
aggregation, procoagulant activity and inflammatory response in endothelial cells. b PMN-derived microvesicle-based point-of-care-compatible microfluidic chip 
with four separation channels. c Detection of 12 clinical samples from control (n = 6) and sepsis (n = 6) patients using a microvesicle-based microfluidic chip. NC, 
negative control; PC, positive control.  Reproduced with permission from Ref. [135]. Copyright 2015 Royal Society of Chemistry. Design and mechanism of the 
FePt@Van nanoparticle-Van fluorescent probe detection system for the rapid detection of bacteria in human blood. d Multivalent binding of Van to bacterial sur-
face terminal peptide D-Ala-D-Ala. e Schematic drawing of FePt@Van nanoparticles. f Chemical structure of Van fluorescent probe (Van-FLA). g Illustration of 
bacterial detection step. Bacteria were captured by FePt@Van nanoparticles with magnetic assistance, and the resultant bacteria were stained by Van-FLA and mag-
netically separated from the blood separation. Reproduced with permission from Ref. [139]. Copyright 2006 John Wiley and Sons, Inc. Bacteria-instructed click 
chemistry-guided functionalized AuNPs for point-of-care microbial detection. h Conceptual mechanism of the colorimetric transformation of functional AuNPs 
triggered by bacteria-instructed click chemistry. i TEM images and colorimetric photographs indicating the bacteria-instructed click reaction between the azide- and 
alkyne-AuNPs, resulting in AuNP aggregation (TEM images) and color transformation (colorimetric photographs). j Schematic illustration of bacteria-instructed 
click chemistry-guided AuNPs sensor combining magnetic separation and smartphone app-assisted colorimetric strategy. k Experimental photographs for the click 
chemistry-guided AuNP sensing of E. coli from complex artificial sepsis blood samples. The concentration of E. coli could be analyzed by smartphone colorimetric 
strategy. l Detected E. coli numbers of four parallel artificial sepsis blood samples by the click chemistry-guided AuNP platform. Reproduced with permission from 
Ref. [133]. Copyright 2019 American Chemical Society
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owing to the narrow antimicrobial spectrum of vancomycin 
(sensitive only to gram-positive bacteria). Based on a similar 
principle, magnetic nanoparticles can be functionalized by 
other antibiotics, such as polymyxin B, that are capable of 
binding to LPS on the outermost membrane of Gram-neg-
ative bacteria, contributing to the specific identification of 
gram-negative sepsis. In addition, human defensins, a type 
of endogenous antimicrobial peptides, can specifically rec-
ognize the bacterial cytoskeleton to support broad-spectrum 
killing. In terms of this nature, we think human defensins 
are ideal biomaterials to construct nanorobots for bacterial 
separation and detection.

Versatile metabolic pathways can help bacteria metabo-
lize various toxins that threaten bacterial survival. Manipu-
lating versatile metabolic pathways and enzyme systems 
of bacteria has been considered as another biomimetic 
strategy to provide important rationales for the design of 
bacterial sepsis-detected nanodiagnostic platforms. By tak-
ing advantage of this biomimetic strategy, living bacteria 
in samples can be quantified effectively by observing the 
macroscopic presentations of metabolic pathway/enzyme-
mediated chemical reactions. Based on these ideas, Mou 
et al. [133] innovatively introduced bacteria-instructed click 
chemistry into a gold nanodiagnostic platform for point-of-
care microbial sensing in sepsis samples. The redox enzyme 
system generated by microbes exposed to the toxin  Cu2+ 
will transform exogenous  Cu2+ to  Cu+ which subsequently 
catalyzes a click chemical reaction between azide-modified 
and alkyne-modified gold nanoparticles (AuNPs), producing 
AuNP aggregations with a color transformation from red to 
blue that supports a colorimetric strategy (Fig. 3h, i). Based 
on such rationale, adding azide/alkyne-AuNPs into enriched 
bacterial suspension will transform the bacterial number 
signaling to color signaling that can be further recorded by 
a portable smart phone to present a colorimetric quantifica-
tion (Fig. 3j). Practically, this novel nanodiagnostic platform 
accurately identified and counted the amount of E. coli in 
artificial sepsis blood samples that contain multiple patho-
gens (Fig. 3k). Furthermore, multiple parallel trials proved 
that measurements by the nanodiagnostic platform exhib-
ited a favorable match with those by blood culture (Fig. 3l), 
notably showing a low response time (< 1 h) and a high 
sensitivity of 40 CFU  mL−1. In addition, bacterial lipase, an 
enzyme abundantly expressed in the infectious microenvi-
ronment, has previously been employed to develop stimuli-
responsive nanomedicines and can also be introduced into 

the construction of nanodiagnostic platforms to detect bac-
teria. We can also utilize the pH difference between differ-
ent amounts of bacteria to construct signal transduction for 
transforming the concentration signaling of hydrogen ions 
to bacterial count signaling. Nevertheless, the feasibility of 
these approaches remains to be proven.

Owing to constant antibiotic treatments, the emergence 
of drug resistance increases the life-threatening risks for 
patients who suffer sepsis. The timely diagnosis and analysis 
of antibiotic-resistant bacteria have significant clinical value. 
By adopting the biomimetic strategy for antibiotic–bacte-
ria interactions, Sun et al. [134] developed a chiral upcon-
version heterodimer platform for the quantitative analysis 
and bioimaging of polymyxin B-resistant bacteria in vivo 
(Fig. 4a). Polymyxin B-resistant bacteria usually evolve a 
mutant LPS with N-acylethanolamine modification of lipid 
A, thus diminishing affinity between polymyxin B and resist-
ant strains (Fig. 4b). By taking advantage of this differential 
affinity, a well-designed nanodiagnostic platform that com-
prises polymyxin B-immobilized upconversion nanopar-
ticles (UCNPs) and polymyxin B antibody-functionalized 
gold yolk-shell nanoparticles (Au YS), was established. The 
UCNPs exhibit strong upconversion luminescence (ULC) 
with no circular dichroism (CD) signal in the absence of Au 
YS. Once UCNPs are conjugated with Au YS, a strong CD 
signal will be triggered, whereas the ULC will be shut down. 
Based on this signaling mechanism, addition of UCNPs and 
subsequent Au YS could present significant differences in 
ULC and CD signals between sensitive and resistant strains, 
thereby contributing to the successful identification of poly-
myxin B-resistant pathogens. As expected, with an increas-
ing ratio of sensitive strains, the CD signals decreased, while 
the ULC intensities were enhanced significantly (Fig. 4c, d).

3.2  Nanodiagnostic Platforms that Detect CRP 
for the Identification of Sepsis

CRP, an acute-phase reactant, is positively correlated with 
infection and now serves as a classical biomarker to assist 
the diagnosis of inflammation-relevant diseases such as 
sepsis [167]. In particular, the clinical detection of CRP can 
be predominately employed to guide antibiotic treatment 
for sepsis, thus avoiding the disproportionate and excessive 
usage of antimicrobials [168]. However, the conventional 
laboratory strategies, enzyme-linked immunosorbent assay 
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(ELISA) and fluorescent labeling, require complex execu-
tive procedures and expensive expenditure that are unsuit-
able for early warning and identification. In an attempt to 
improve the speed and accuracy, Belushkin et al. [140] 
created a nanoparticle-enhanced plasmonic biosensor for 
the rapid and precise detection of CRP. The nanodiagnos-
tic biosensor consists of specific antibody-functionalized 
gold nanoparticles (AuNPs) and a large-area gold nano-
hole array (Au-NHAs) (Fig. 5a). The AuNPs can present a 
sharp extraordinary optical transmission (EOT) resonance 
with a dip and a peak in the far-field spectrum, which 
can be imaged by a complementary metal–oxide–semi-
conductor (CMOS) to characterize the signal intensity 
(Fig. 5a, b). Once target molecule was recognized by Ab-
functionalized AuNPs, it created strong local transmis-
sion suppression in the far field, thus strengthening the 

bright-field imaging intensity. Such a bright-field imaging 
nanoplasmonic device indeed exhibits a distinct correlation 
between bright-field imaging intensity and CRP concen-
trations (Fig. 5c, d) and also contributes to a swift speed 
(< 2 h) and comparable sensibility (LOD = 27 pg/mL) with 
laboratory methods. In addition to the above-mentioned 
mental nanodiagnostic platforms, some other nanoplat-
forms that were previously used in drug delivery are also 
capable of supporting the rapid and precise detection of 
CRP for sepsis identification. Gupta et al. [100] designed a 
carbon nanofiber-based biosensor platform whose LOD for 
CRP detection was found to be approximately 11 ng  mL−1. 
Magnetic nanoparticles were also considered to construct a 
biosensor that was used to sense CRP for the characteriza-
tion of sepsis and necrotizing enterocolitis with an LOD 
of 0.6 pg  mL−1 [141].
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Owing to the large surface area, potent physicochemical 
stability, and fine-tunable surface engineering, nanocrystal-
based architectures provide another route to develop nano-
diagnostic platforms for biomolecular detection [169–171]. 
Zhang et al. [144] designed an iron oxide nanoparticle-
linked immunosorbent assay (ILISA) to overcome the short-
comings faced by ELISA based on iron oxide nanoparticles 
(IONPs) (Fig. 6a). To this end, IONPs were functionalized 
by the surface engineering of a simplified CRP antibody, 
which constructed IONP probes for CRP labeling. The cap-
ture antibody immobilized on solid supports recognizes and 
captures the CRP molecules in biological samples, followed 
by the addition of IONP probes to label the captured CRP 
molecules; the unbound IONP probes are then removed and 
the bound IONP probes dissolved through acid lysis. The 

amounts of iron ions released could reveal the relative con-
tents of the CRP, which could be quantified by a colorimet-
ric strategy. Compared with ELISA, ILISA contributed to 
a simpler and more rapid method whose sensitivity could 
reach the subpicomolar level. Similarly, improved diagnos-
tic efficiency can be achieved by introducing other metal 
oxide nanocrystals, such as zinc oxide nanocrystals, that 
were previously adopted to construct nanosurfaces for the 
highly ordered display of CRP antibody with an LOD of 
< 10 ng  mL−1 (Fig. 6b) [145]. More importantly, the nano-
surface-based nanodiagnostic platform is easy to fabricate 
inexpensively [145], which implies excellent possibilities 
for clinical translation. Alternatively, the incorporation of 
copper oxide (CuO) nanocrystals could improve the perfor-
mance of zinc oxide (ZnO) nanocrystal-based biosurfaces 

Fig. 5  Nanoparticle-enhanced plasmonic biosensor for the rapid and precise detection of CRP. a Design and detected mechanisms of the nano-
particle-enhanced plasmonic imager. b The EOT peak variance of Au-NHAs in different steps during detection. c Human CRP sandwich assay. 
d Different concentrations of CRP can be visually distinguished on plasmonic imaging.  Reproduced with permission from Ref. [140]. Copyright 
2018 American Chemical Society
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by potentiating redox properties and electron transfer and 
decreasing band gap energy [143, 172]. For instance, bio-
surfaces fabricated by ZnO–CuO hybrid nanomaterials with 
a volume ratio of 1:2 exhibited a dramatically enhanced sig-
nal for CRP detection in comparison with pure ZnO-based 
biosurfaces (Fig. 6c) [143]. Consequently, more accurate, 
time-saving and adaptive methods for clinical applications 
can be developed by precisely designing and optimizing the 
formulations of nanocrystal-based diagnostic platforms, 
including nanocrystal species, multiple components, sizes, 
and ratios. In addition to colorimetric signals, some nano-
materials with inherent physicochemical properties can 
transform immune signals into other readout signals, such 
as fluorescent signals, electrochemical signals, and other vis-
ible signals. Polyclonal anti-CRP (pAb-CRP) can be immo-
bilized on the surface of fluorescent nanomaterials, such 
as tetraethylene glycol-conjugated fullerene nanoparticles 

 (C60-TEG), via simple two-step reactions (Fig. 7a) [146]. 
The resultant nanoprobe pAb-CRP-C60-TEG recognizes the 
CRP molecules on the lateral flow strip based on an immu-
nochromatographic assay (Fig. 7b) and exhibits fluorescent 
signals displaying the corresponding band responses to dif-
ferent concentrations of CRP (Fig. 7c). Integration of gold 
nanorods (GNR) into voltammetry detection systems can 
improve the sensing performance on CRP through a large 
surface area anti-CRP display that sufficiently facilitates 
antigen–antibody recognition (Fig. 7d) [147]. With the help 
of GNR, the voltammetry nanosystem decreases the LOD of 
CRP to 10 fM, which is 10,000,000-fold lower than that of 
ELISA (100 nM) [147]. In addition, citrate-stabilized gold 
nanoparticles have been adopted to surface display anti-
CRP (Fig. 7e), thus obtaining anti-CRP gold nanoconjugate 
(GNC) probes that were introduced to develop an ultrasensi-
tive vertical flow immunokit (VFIK) for CRP quantification 

Fig. 6  Nanocrystal-based diagnostic platforms for the detection of CRP. a IONP nanocrystal-linked immunosorbent assay (ILISA): schematic 
illustration of ILISA protocols for CRP quantification (left) and representative TME image of IONP nanocrystals.  Reproduced with permission 
from Ref. [144]. Copyright 2016 Ivyspring International Publisher. b Representative SEM image of ZnO nanocrystal sensor surfaces on polyeth-
ylene terephthalate. Reproduced with permission from Ref. [145]. Copyright 2018 Nature Publishing Group. c Representative SEM image of the 
ZnO–CuO hybrid nanocrystal sensor surface. Reproduced with permission from Ref. [143]. Copyright 2019 MDPI
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Fig. 7  Fluorescent  C60 nanoparticle-based lateral flow immunochromatographic platform for CRP detection. a Schematic illustration of the fab-
rication of pAb-CRP-C60-TEG fluorescent nanoprobes. b Schematic drawing and operative procedures of the pAb-CRP-C60-TEG fluorescent 
nanoprobe-based lateral flow immunochromatographic platform to detect CRP. c The fluorescence images of the test strips with various concen-
tration of CRP from 0.01 to 10 ng/mL.  Reproduced with permission from Ref. [146]. Copyright 2019 Springer Nature. d Schematic diagram for 
GNR-integrated voltammetry detection of CRP. Reproduced with permission Ref. [147]. Copyright 2019 Elsevier. GNC probe-based ultrasensi-
tive vertical flow immunokit (VFIK) for the rapid detection of CRP. e Rational design and synthesis of GNC probes. f Schematic illustration 
indicating the prospective results presented by GNC-VFIK. g Test performance of GNC-VFIK with different concentrations of CRP in analytes. 
Reproduced with permission from Ref. [148]. Copyright 2020 Springer Nature
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[148]. Based on the similar immunosandwich reactions on 
the VFIK device, the appearance of two red dots represents 
the existence of CRP (Fig. 7f), and the intensities of the 
red dots show a positive correlation to the different concen-
trations of CRP (Fig. 7g). Valuably, the GNC-based VFIK 
could achieve simple and fast detection for within 2 min 
[148], which satisfies the early warning principle for sepsis 
management.

3.3  Nanodiagnostic Platforms that Detect PCT 
for the Identification of Sepsis

PCT is a thyroid-yielded polypeptide released in response to 
infection with a high serum concentration in patients with 
sepsis and infections, representing a reliable biomarker of 
severe bacterial infections for sepsis differentiation [173, 
174]. Clinical inclusion of PCT can effectively guide anti-
biotic treatments, thereby avoiding possible generation of 
drug resistance and benefiting therapeutic outcomes [175]. 
Similarly, to overcome the limitations impeding clinical PCT 
assays such as immunoluminometric and chemilumines-
cence strategies, nanodiagnostic platforms are introduced for 
the rapid, simple, sensitive and low-cost detection of PCT.

Specifically, increasing advances have been achieved in 
nanomaterials with robust catalytic activity. Nevertheless, 
most of these nanomaterials fail to directly be used as redox 
probes to create electrochemical biosensors for biomedical 
assays because the redox signal of these nanomaterials can 
be triggered and read only in strong acid or alkali solutions 
at high positive or negative potential, dramatically restrict-
ing their clinical translation [151]. In this case, Yang et al. 
[151] reported a Cu/Mn double-doped  CeO2 (CuMn–CeO2) 
nanocomposite that contributes to signal amplification for 
the precise electrochemical detection of PCT (Fig. 8a). 
 MnCl2,  CuCl2 and Ce(NO3)2 were employed to synthesize 
CuMn–CeO2 nanocomposites, and then the detected anti-
body for PCT  (Ab2) was immobilized on the surface of 
CuMn–CeO2 via simple ester-like bridging. After PCT in 
the sample was recognized and immobilized by a capture 
antibody  (Ab1)-functionalized Au/GCE chip, the addition 
of  Ab2-immobilized CuMn–CeO2 nanoprobes in the pres-
ence of  H2O2 can produce and amplify redox signals for 
PCT characterization (Fig. 8a). Mechanistically, the intro-
duction of Cu and Mn into  CeO2 lattices will generate extra 
oxygen vacancies, thus exhibiting superior catalytic activity 

for promoting electron transfer. The results indicated that 
CuMn–CeO2 amplified redox signals more effectively 
than  CeO2, Cu–CeO2, and Mn–CeO2 (Fig. 8b). The sig-
nals increased with gradually increasing concentrations of 
PCT from 0.1 to 36 pg  mL−1, exhibiting a positive linear 
relationship (Fig. 8c), simultaneously with a low LOD of 
0.03 pg  mL−1. Furthermore, the CuMn–CeO2 nanocompos-
ites-based biosensor could specifically identify and quantify 
the PCT in presence of other interference proteins includ-
ing thrombin (TB), hemoglobin (IGg) and streptavidin 
(SA) (Fig. 8d). For electrochemical signal amplification, Li 
et al. [150] proposed another interesting nanoplatform,  C60 
carboxyfullerene-based functionalized nanohybrids, to sup-
port a more ultrasensitive electrochemical immunosensor 
for PCT detection (Fig. 8b). In detail, multiwalled carbon 
nanotubes (MWCNTs) and AuNPs were cointegrated into 
GCE systems that subsequently immobilized with primary 
PCT antibody which constructed an anti-PCT I/AuNP@
MWCNT/GCE immunosensor capable of capturing PCT in 
samples (Fig. 8e). Hydrophilic  C60 carboxyfullerene linked 
to the redox probe ferrocene carboxylic acid (Fc) was used 
to synthesize Fc-C60 nanocomposites which were attached 
with platinum nanoparticles (PtNPs) with excellent elec-
trocatalytic activity (Fig. 8e). The resultant PtNPs-Fc-C60 
nanohybrids further immobilized glucose oxidase (GOx)-
labeled secondary PCT antibodies (anti-PCT II) to generate 
GOx@anti-PCT II-PtNP-Fc-C60 nanohybrids as nanoprobes 
that could detect the captured PCT by electron transfer. As 
expected, a favorable linear relationship was established 
by the proposed immunosensor with LOD of 6 pg  mL−1 
(Fig. 8f). By taking advantage of these nanomaterials capa-
ble of manipulating redox reactions and favorably displaying 
detection antibodies to amplify readout signals, the LOD of 
diagnostic devices for PCT monitoring would be decreased 
significantly, which was suitable for advancing clinical diag-
nostic technology.

Nevertheless, nanodiagnostic platforms that achieve 
both fast/real-time detection and ultrasensitive accuracy are 
urgently needed to satisfy clinical requirements. Although 
PCT has been considered one of the most accurate biomark-
ers for the diagnosis of sepsis, its detection usually delays 
the 2–4-h gold treatment time after the occurrence of sep-
sis, which is lethal for many patients worldwide [174, 176]. 
In this case, nanoplasmonic technology has been adopted 
to improve the response speed while maintaining detection 
accuracy [177]. Jing et al. [154] designed a time-resolved 
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digital immunoassay (TD immunoassay) that supported 
the rapid and sensitive detection of PCT through nanoplas-
monic imaging technology (Fig. 9a). In detail, the gold-
coated glass chip was functionalized by the immobilization 
of the capture antibody as a capture platform; after being 
captured by a gold-coated glass chip, PCT molecules were 
recognized by biotinylated anti-PCT detection antibody 

to form a sandwich-like complex, followed by incubation 
with streptavidin-coated gold nanoparticles (GNPs) that 
possess potent nanoplasmonic absorption and fine-tunable 
optical features of particle plasmon resonance, to label the 
bounded detection antibody via biotin-streptavidin reaction; 
then, p-polarized light was directed onto the sensor surface 
to excite the plasmons of the GNP surface (Fig. 9a), and the 
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resultant reflected light could be collected and imaged by 
CCD (Fig. 9b). By using this TD immunoassay, the concen-
tration of PCT in biological samples could achieve real-time 
quantification by counting particles (Fig. 9c). The readout 
signals (GNP counts) of the TD immunoassay showed a 
favorable linear relationship with the series of concentrations 

of PCT (Fig. 9d). The TD immunoassay contributed to an 
ultralow LOD of ~ 2.8 ng  mL−1 for a total detection time of 
~ 25 min, which is significantly superior to clinical meth-
ods. In addition, another nanoplasmonic platform-based 
device, fiber optic nanogold-linked immunosorbent assay 
(FONLISA), proposed by Chiang et al. [152] (Fig. 9e), 
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exhibited a sufficiently low LOD of 7.3 fM and response 
time of < 15 min. FONLISA used detection antibody-coated 
gold nanoparticles (AuNPs) as detection probes and cap-
ture antibody-immobilized optical fibers as capture probes 
(Fig. 9e). To reduce background noise and enable biofunc-
tionalization and antibiofouling properties, both AuNPs and 
optical fibers were coated with a mixed self-assembled mon-
olayer composed of 16-mercaptohexadecanoic acid (MHDA) 
and sulfobetaine silane (SBSi) or 11-aminodecyltrethoxysi-
lane (AUTES) and sulfobetaine thiol (SBSH), respectively 
(Fig. 9e). Contrary to conventional fiber optic particle plas-
mon resonance (FOPPR) biosensors, integrating plasmonic 
nanomaterial probes (AuNPs) into FONLISA dramatically 
amplifies the electrochemical signals, thereby decreasing 
the LOD for PCT detection. Another strategy based on 
the immune sandwich assay employs a reduced graphene 
oxide (rGO)–gold (Au) nanocomposite film as the sensing 
platform, which exhibits a large surface-to-volume ratio to 
increase the amount of PCT detection antibody immobiliza-
tion and utilizes single-walled carbon nanohorn (SWCNH)/
hollow Pt chain (HPtC) complexes as detection probes, 
which are synthesized through coimmobilizing detection 
antibodies, HPtCs and horseradish peroxidase (HRP) onto 
the surface of SWCNHs [153]. HPtCs and HRP can syner-
gistically catalyze  H2O2, thereby contributing signal amplifi-
cation to readout. Given the synergistic improvement effects, 
a novel nanodiagnostic platform named the Porous Layer 
Open Tubular-Signal Amplification (PLOT-SA) sensor inte-
grates a streptavidin–biotin signal amplification (SA) system 
with a porous layer open-tube (PLOT) capillary column, 
which combines the advantages of the enhanced immobi-
lization of capture anti-PCT antibody and signal amplifica-
tion, achieving an LOD of 0.01 pg  mL−1 [155]. Furthermore, 
combining matrix nanospotting technology and lateral flow 
immunoassays has been shown to simplify the procedure and 
maintain sensitivity [156].

3.4  Nanodiagnostic Platforms that Detect Cytokines 
for the Identification of Sepsis

Sepsis involves complex immune responses that result in 
the biogenesis, secretion and biodistribution of versatile 
cytokines [178]. Both proinflammatory and anti-inflam-
matory events coexist with innate immune and adaptive 
immune disorders during sepsis [179]. In the early phase, 

cytokine storms triggered by dangerous molecules (e.g., 
PAMPs and DAMPs) contributed to the concomitant 
occurrence of excessive inflammation [13, 179]. However, 
pathogenetic alterations such as lymphocyte exhaustion and 
LPS tolerance at the late stage cause a significant decrease 
in cytokine production, which further leads to the impair-
ment of immune functions and subsequent uncontrollable 
growth of invaders. Consequently, monitoring the levels of 
cytokines represents a reliable strategy to characterize sepsis 
progression, which can guide clinicians to adopt precision 
and adaptive therapeutics.

Upon stimulation by risk factors (e.g., pathogens, PAMPs, 
and/or DAMPs), IL-3 is released by innate response acti-
vator (IRA) B cells to operate downstream of a series of 
cytokines, such as IL-1β, IL-6, and TNF-α, causing subse-
quent cytokine storm and multiple organ failure leading to 
a fatal outcome (Fig. 10a) [163]. Min et al. [163] theorized 
that IL-3 might be an independent predictor of sepsis and 
septic shock. However, admitting IL-3 into clinically practi-
cal trials is restricted by the lack of fast, user-friendly, and 
highly accurate detectors. Hence, they developed a point-
of-care integrated biosensor for sepsis (IBS) for fast and 
accurate identification, thereby enabling timely treatment 
(Fig. 10b) [163]. The IBS comprises four steps (Fig. 10c): (i) 
the IL-3 in biological samples was initially enriched by cap-
ture antibody-modified magnetic beads and then separated 
by magnetic pipet; (ii) the enriched IL-3 was recognized 
by detection antibody; (iii) the captured IL-3 was labeled 
with oxidizing enzyme (horseradish peroxidase, HRP); and 
(iv) finally, the IL-3-enriched beads were mixed with chro-
mogenic electron mediators (3,3′,5,5′-tetramethylbenzidine, 
TMB) that were oxidized through HRP catalysis by receiv-
ing electrons from the electrode (Fig. 10d left), thus generat-
ing electrical current as an electrochemical readout signal. In 
this case, the chronoamperometry method was adopted for 
signal detection, in which the enhanced current level (ΔI) 
between IL-3 and the IgG controls is the analytical metric 
(Fig. 10d left). Compared with gold standard ELISA, IBS 
achieved > 10 times greater sensitivity (LOD < 10 pg  mL−1) 
with > 5 times faster speed (Fig. 10d right). When subjected 
to clinical study, IBS also differentiated septic from nonsep-
tic patients more accurately than ELISA according to the 
IL-3 level in blood (Fig. 10e). Further clinical study using 
the IBS platform demonstrated that an IL-3 concentration 
of > 24 pg  mL−1 is critically correlated with the multiorgan 
failure and mortality of septic patients, suggesting that IL-3 
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could serve as an independent biomarker to facilitate early 
warning of sepsis. For typically characterized cytokines, 
such as TNF-α, IL-1β, and IL-6, which are involved in the 
response to a heterogeneous inflammatory network in the 
sepsis microenvironment, convenient, fast and accurate 
detection can also be achieved by nanomaterial-inspired 
platforms to enable early diagnosis. For instance, func-
tionalized double-walled carbon nanotubes were employed 
to modify carbon electrodes as scaffolds to dramatically 
enhance the lifetime and accuracy of electrochemical immu-
nosensors, achieving LODs of 0.38 pg  mL−1 for IL-1β and 

0.85 pg  mL−1 for TNF-α (Fig. 10f) [160]. Based on the same 
principle as immunoarrays, the inorganic metal nanoparti-
cle  CuInS2/ZnS was conjugated to the nonrecognized region 
of the detected antibody for IL-6 characterization via pho-
toluminescence readout (Fig. 10g), in which  CuInS2/ZnS 
became visible in the near-infrared through changing the 
initial ratio of Cu/In in the precursors (Fig. 10h) [157].

Similar to the detection of PCT, nanoplasmonic technol-
ogy has also been employed to resolve the challenges imped-
ing conventional methods and has achieved the rapid, ultra-
sensitive, real-time, and/or multiplex detection of various 
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cytokines [159, 161, 162, 164, 177, 180]. To support label-
free, real-time, and accurate detection and characteriza-
tion of immune cellular functions, Oh et al. [161] aimed 
to develop a localized surface plasmon resonance (LSPR)-
based nanoplasmonic device that, however, was limited by 
insufficient sensitivity and cell sorting capability. Neverthe-
less, integrating an optofluidic platform in an LSPR-based 
nanoplasmonic sensor resolved these issues by constructing 
an LSPR nanoplasmonic optofluidic platform that allowed 
the trapping, sorting and stimulation of target immune cells 
for cytokine secretion assays (Fig. 11a) [161]. The nanodi-
agnostic platform comprises four parts: a light probe, a sup-
porting layer, a microfluidic chamber and an LSPR detection 
surface (Fig. 11a). The mixture of cell beads was injected 
into the inlet and then underwent cell sorting and enrichment 
mediated by the microfluidic chamber (Fig. 11a). The target 
cells could be stimulated and monitored by the nanoplas-
monic effects of antibody-coated AuNPs for the expression 
of target cytokines (Fig. 11b). This LSPR nanoplasmonic 
optofluidic device successfully detected as few as 1000 
molecules of cell-secreted TNF-α, which was 100 times 
lower than that of conventional methods, and the total assay 
time was only 4–5 h, which was 3 times shorter than that 
of ELISA. Based on analogous concepts, Chen et al. [164] 
established a multiplex serum cytokine immunodetector by 
integrating nanoplasmonic microarrays (Fig. 11c), which 
could simultaneously quantify diverse serum cytokines, 
including IL-2, IL-4, IL-6, IL-10, TNF-α, and IFN-γ. The 
multiplex nanoplasmonic sensor was composed of eight 
parallel microfluidic channels running orthogonal to six 
meandering stripes coated with six cytokine antibody-
functionalized gold nanorods (AuNRs) (Fig. 11c). After the 
attachment of target biomolecules, nanoplasmonic material 
AuNRs could generate a redshift and scattering intensity 
change in the plasmonic resonance without particle–particle 
electromagnetic interferences (Fig. 11d), which were there-
fore recorded by dark-field imaging (Fig. 11c), consequently 
achieving the real-time monitoring of multiplex cytokines. 
In terms of these advantages, the multiplex nanoplasmonic 
sensor capable of identifying corresponding cytokines in 
samples with different components (Fig. 11e) paves a broad 
avenue in monitoring immune alterations and organ failure, 
which possibly revolutionizes the theranostic strategies of 
sepsis. Nevertheless, more sophisticated concepts have been 
proposed to overcome the limitations impeding LSPR and 
thus facilitate the clinical application of nanoplasmonic 

technology in cytokine detection. For the optical nano-
plasmonic platform, the strong LSPR effect induced by 
antibody-conjugated AuNPs greatly attenuates the delivery 
of incident light to photoconductive devices such as  MoS2 
flakes, thus generating a low photocurrent (Fig. 11f OFF) 
[162]. However, the attachment of target biomolecules (e.g., 
IL-1β) onto the surface of AuNPs would shift the LSPR 
wavelength, exhibiting a weak LSPR effect that permits the 
enhanced transmission of incident light to the surface of the 
 MoS2 flake, which thereby generates a high photocurrent 
for readout whose strength depends on the concentrations 
of target molecules (Fig. 11f ON) [162]. Such a biotunable 
nanoplasmonic optical sensor contributes an LOD of 14 fM 
and an assay time of 10 min to the detection of IL-1β [162]. 
Interestingly, utilizing a trehalose glycopolymer as a resist 
on silicon substrates allows the regular pattern of antibod-
ies (e.g., anti-IL-6 and anti-TNF-α) to be achieved through 
electron beam lithography [159]. By performing sandwich 
immunoassays using antibody-coated AuNPs as detection 
probes, cytokines such as IL-6 and TNF-α could be directly 
written onto the surface of the capture platform and then 
visualized by the LSPR effect mediated by AuNPs with 
dark-field microscopy [159].

Collectively, immunoassays combined with electrochemi-
cal nanotechnology and nanoplasmonic techniques signifi-
cantly advance the development of cytokine detection. Of 
course, other smart nanodiagnostic concepts have been con-
tinuously proposed for cytokine monitoring. For instance, 
the integration of antibody-functionalized nanobeads into a 
microgel matrix capable of volume phase-transition change 
supports an enzyme-free immunoassay with a fivefold 
increase in signal-to-noise ratios [165]. Such a nano-in-
micro smart gel composite has been effectively applied in 
the detection of IL-6, IL-8, and MCP-1 [165]. In addition, 
Hao et al. [158] adopted an aptameric nucleic acid rather 
than an antibody immobilized on graphene to detect IL-6. 
The aptameric graphene-based nanosensing system avoided 
the shortcomings of immunoassays, such as the high costs 
of antibody synthesis [158]. In terms of these advances in 
cytokine detection, we believe that in the future, nanodiag-
nostic technology will assist clinicians in more efficiently 
mapping the immune atlas in patients with sepsis, which 
will completely advance our understanding and therapeutic 
modes of sepsis.

In summary, because of their versatile nanoscale char-
acteristics, including optical controllability, large surface 
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energy, and magnetism, nanomaterials present encouraging 
prospects for sepsis diagnosis, potentially contributing to 
increasing therapeutic levels worldwide in the future.

4  Nanotherapeutic Platforms for Sepsis 
Treatment through Targeting Pathogenesis

Sepsis involves multiorgan dysfunction, which mainly 
results from systemic infection and uncontrollable immune 
disorder. Consequently, it is rather difficult to develop pre-
cision therapeutics for sepsis, and the elimination of infec-
tion and restoration of immune homeostasis are still the two 
major trends in sepsis management. However, the occur-
rence of drug-resistant bacteria and the lack of effective 
strategies to achieve immune modulation in the ICU pose 
severe problems. The use of nanotechnology to create and 
utilize nanoscale drugs and nanocarriers may provide unique 
insight into resolving these problems in the future. In this 
section, a series of nanotherapeutics capable of controlling 
bacterial infections and/or restoring immune homeostasis 
for sepsis therapy are elucidated in detail.

4.1  Nanotherapeutic Platforms Rescue Sepsis 
by Targeting Bacterial Infections

It is acknowledged that infection represents the most impor-
tant contribution to sepsis. The more rapid the elimination 
of infection is, the more favorable an outcome of sepsis can 
be achieved. However, the usage of large amounts of tra-
ditional antibiotics in patients with sepsis can lead to the 
occurrence of drug resistance, finally causing therapeutic 
failure. Nanomedicines that involve direct bacterial killing 
with low resistance, bacterial-blood separation, or the resto-
ration of the innate immune defense to disrupt bacteria pro-
vide unique insights into the future of sepsis management.

4.1.1  Brief Summary of Antimicrobial Nanoplatforms

4.1.1.1 Inorganic/Metallic NPs‑Based Antimicrobial 
Platforms It is commonly acceptable that NPs are desirable 
carriers for antimicrobial delivery, some of which are bac-
tericidal directly. Inorganic/metallic NPs, such as AuNPs, 
AgNPs, and superparamagnetic iron oxide NPs, represent 
the most used antimicrobial materials due to their ease of 
surface chemistry, fine-tunable characteristics and inherent 

optical/magnetic effects [181]. AuNPs as an ideal carrier 
have been employed to deliver antibiotics (e.g., ampicil-
lin and amoxicillin), and the antibiotics are adsorbed onto 
surface thus allowing targeted delivery [182]. By taking 
advantage of proper surface chemistry and inherent nano-
plasmonic effect, Au-based nanoplatforms achieved pho-
tobactericidal activity against both Gram-negative and 
Gram-positive bacteria through producing ROS [183]. In 
fact, AuNPs can directly kill bacteria (e.g., Pseudomonas 
aeruginosa and Staphylococcus aureus) through inducing 
lethal bacterial membrane-tension alterations [184]. One 
of the most representational nanomaterials with intrinsic 
antibacterial activity is AgNPs which can eradicate broad-
spectrum bacteria even including multidrug-resistant strains 
and have already been developed as antimicrobial dress-
ings for wound management [185, 186]. The mechanisms 
responsible for bactericidal effect of AuNPs involve direct 
membrane damage, interaction with membrane proteins, 
detachment of bacteria wall, ROS production, induction 
of abnormality in DNA and RNA replication [181, 187]. 
Interestingly, superparamagnetic iron oxide NPs can trigger 
potent antibacterial activity under exogenous electromag-
netic stimulation, because of their magnetic hyperthermia 
property (Javanbakht et al., Plos One, 2016).

4.1.1.2 Polymeric NPs‑Based Antimicrobial Plat‑
forms Natural and synthetic polymeric nanomaterials have 
drawn considerable attention in eradicating bacterial infec-
tion because of their potential in antibiotic delivery and 
combatting drug resistance [181, 188]. Due to nontoxic-
ity, controlled release, and ease of structural modification, 
biopolymers, such as chitosan and alginate, have already 
been investigated as adaptive antibiotic carriers [188–192]. 
Chitosan is a polycationic polysaccharide and thus contains 
numerous positively charged groups that allow mucoadhe-
sion and penetration of biomembranes. Codelivering black 
phosphorus quantum dots (BPQDs) and antibiotic amika-
cin using chitosan NPs enables adhesion to mucous mem-
brane, and then allows the autoxidation of BPQDs to drive 
antibiotic release for therapy of chronic obstructive pulmo-
nary disease (COPD) [193]. Owing to its abundant posi-
tive charges, potential toxicity should be taken into account 
when designing chitosan-based nanoplatforms for bio-
medical uses. Contrary to chitosan, alginate is a negatively 
charged polysaccharide which self-assemble into hydrogel 
in presence of  Ca2+ [194]. Hence, alginate exhibits excellent 
safety and has widely been used as hydrogel dressing for 
controlled release of antimicrobials [181, 194]. For exam-
ple, alginate aerogel could effectively prolong the release of 
tigecycline and octahedral Cu crystal and maintain the anti-
bacterial effect over 18 days and simultaneously show low 
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biological toxicity, thus providing an improved pharmaco-
dynamics for treatment of osteomyelitis [195]. With regard 
to synthetic nanomaterials, PLGA, poly(malic acid), and 
pluronic as well as derivatives have already been designed 
to biocompatible NPs for drug delivery. However, some 
synthetic nanomaterials themselves possessing bactericidal 
activity are of particular interests, because these nanoma-
terials naturally integrate both functions of nanoplatforms 
and antimicrobials. By attaching terminal modifications and 
adjusting ratio of cationic and hydrophobic residues, amphi-
philic antimicrobial peptides can be established, which 
can self-assemble into supramolecular nanostructures and 
exhibit antimicrobial activity; another example is positively 
charged amphiphiles which are composed of one or more 
positively charged head group(s) (e.g., quaternary amine) 
and hydrophobic tail(s) (e.g., fatty acid chain). Both of the 
aforementioned antimicrobial nanomaterials can effectively 
disrupt bacteria and even combat biofilm and resistance; 
however, potential systemic toxicity hinders in vivo applica-
tions.

4.1.1.3 Liposomes‑Based Antimicrobial Plat‑
forms Liposomes, the most representational lipid-based 
NPs, consist of biomembrane-like phospholipid bilayers 
that confer membrane affinity and allow favorable drug 
encapsulation for both hydrophilic and hydrophobic agents. 
Benefiting from these advantages, liposomes can overcome 
host biomembrane barriers or biofilms generated by multid-
rug-resistant strains, delivering antimicrobial agents directly 
to bacteria [196, 197]. In addition, liposomes have been 
reported to successfully combat the outer membrane barrier 
of Gram-negative bacteria and deliver antibiotics into bac-
terial cells for significantly improved activity [198]. Being 
supplemented with surface chemistry and/or other nano-
medical techniques enables liposomes to be smart-respon-
sive nanoplatforms which provide controlled, on-demand, 
and/or spatiotemporal release of antimicrobials. Pang and 
coworkers designed a bacteria-responsive nanoliposomes 
which were composed of phospholipids and maltohexa-
ose-decorated cholesterol, for delivery of sonosensitizer—
purpurin 18 [199]. Such a maltohexaose-functionalized 
nanoliposomes could actively target bacteria through rec-
ognizing bacteria-specific maltodextrin transport pathway; 
once entering IME, nanoliposomes were degraded by bac-
teria-oversecreted phospholipase  A2  (PLA2), thus initiating 
the release and internalization of purpurin 18 into bacteria, 
which consequently contributed to visualized sonodynamic 
therapy via near-infrared imaging and producing toxic ROS. 
Wu and coworkers coincorporated rifampicin and calcium 
peroxide  (CaO2) into a liposome-based platform and thereby 
obtained a bacterial toxin-triggered cascade nanoreactor 

[200]. The nanoreactors could be embedded by bacterial 
toxins to form pores once encountering bacteria, and  H2O 
molecules could permeate into inner core of nanoreactors 
to react with  CaO2 and then generate  H2O2. Resultant  H2O2 
decomposed to  O2 which subsequently power the release 
of rifampicin for direct bactericidal effect. In vivo efficacy 
of this cascade nanoreactors was validated in wound heal-
ing models complicated with MRSA infection, implying a 
promising application in advanced wound management.

4.1.1.4 Biomimetic NPs‑Based Antimicrobial Plat‑
forms Nature-inspired biomimetic nanoplatforms with 
optimized surface biophysicochemical properties can 
overcome shortcomings and/or afford unachievable func-
tions of conventional synthetic NPs, thus contributing to 
unique advantages in drug delivery, vaccine development, 
and detoxification, etc. [102]. Consequently, unmet medical 
challenges in infectious diseases can be resolved by biomi-
metic nanoplatforms [201]. A typical example is RBC mem-
brane-coated NPs which as stealth vehicles can prolong the 
circulation time and improve pharmacokinetic behaviors of 
antimicrobial agents [104]. Besides, RBC layer allows nano-
platforms to competitively adsorb bacterial toxins for atten-
uating toxin-induced hemolysis [110]. Immune cell mem-
brane-coated NPs have reported to target IME, which can be 
employed for targeted delivery of antibiotics [202]. Intrinsic 
components in immune cell membrane coating, including 
proteins, lipids, and some metabolites, might be capable of 
modulating immune responses. Another strategy is isolating 
bacteria-derived materials including components of bacte-
rial membrane (e.g., surface layer proteins), bacterial mem-
brane, and bacterial membrane vesicles to decorate NPs. 
The obtained bacteria-mimicking NPs can favor antibiotic 
delivery or block bacterial invasion. Huang and coworkers 
found Acinetobacter baumannii evolved an interesting drug-
resistant mechanism that eliminates antibiotics using bac-
terial outer membrane vesicles (OMVs) [203]. Inspired by 
this phenomenon, they employed sub-MIC dose of antibiot-
ics to stimulate Acinetobacter baumannii and then isolated 
the antibiotic-containing OMVs by ultracentrifugation. In 
a mouse model of intestinal infection, these OMVs signifi-
cantly prolonged the retention time of levofloxacin in intes-
tinal tract for 36 h, and reduced bacterial burden in the small 
intestine and feces. To eradicate intracellular S. aureus, Gao 
and workers isolated extracellular vesicles (EVs) secreted 
by S. aureus as antibiotic carrier to test if this S. aureus-
mimicking strategy could achieve intracellular delivery 
of antibiotics [204]. As expected, S. aureus-secreted EVs 
were internalized at a higher performance by S. aureus-
infected macrophages than by sterile counterparts, whereas 
the PEGlyated liposomes and E. coli-derived OMVs could 
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not be effectively engulfed by S. aureus-infected cells; 
instead, E. coli-derived OMVs, but not S. aureus-secreted 
EVs and liposomes, shows distinctly selective uptake by E. 
coli-infected macrophages. These results suggest that bacte-
rial membrane vesicles-based nanoplatforms can be highly 
selective, which specifically recognize infected cells and 
further combat pathogens via releasing antibiotics. Such an 
intelligent nanoplatform is very suitable for sepsis manage-
ment in our opinion and can be developed as a specifically 
nanobiotic.

Although numerous NPs-based antimicrobial platforms 
have been proposed, only a small amount of them has been 
evaluated in septic models. We think there are two major 
reasons: (1) sepsis is a highly heterogenic syndrome com-
plicated with multiple abnormalities besides bacterial infec-
tions, which significantly increase difficulties of develop-
ing effective and adaptive antimicrobial nanoplatforms; (2) 
despite high mortality in ICU, the incidence of sepsis is 
significantly lower than cancer and cardiovascular diseases, 
usually novel technologies are preferentially applied in dis-
eases with high global incidence. Consequently, to advance 
the development of nanotechnology in sepsis management, 
we next describe the recent advances of antimicrobial nano-
platforms that have been evaluated in septic models.

4.1.2  Antimicrobial Nanoplatforms for Sepsis 
Management

Meropenem, one of the strongest commercial antibiot-
ics, belongs to the carbapenem class and has already been 
applied in the ICU for sepsis and pneumonia therapy 
[205–208]. However, its short half-life usually requires 
repeated administration of a high dosage, which is prone to 
inducing drug resistance [205, 209]. Nevertheless, encap-
sulating meropenem into chitosan nanoparticles could 
dramatically improve its pharmacokinetic properties, thus 
resolving these challenges [209]. The resultant meropenem-
loaded nanoparticles retain the potent bactericidal activity of 
the free drug against bacteria, including S. aureus, MRSA, 
E. coli, and K. pneumoniae [209]. Preclinical experiments 
demonstrated that meropenem-loaded nanoparticles res-
cued 100% of K. pneumoniae-induced septic mice, while 
only 70% of free drug-treated mice survived [209]. Hence, 
designing a suitable drug delivery system to remedy the 
shortcomings impeding traditional antibiotics might be an 
effective and practical method to recover therapeutic activity. 

Despite their promise for the treatment of sepsis and other 
infectious diseases, most antimicrobial peptides (AMPs) 
are still limited by their poor pharmaceutical properties, 
such as poor solubility and short half-life [210]. Clava-
nins, a type of AMP isolated from marine animals, could 
be formulated with a methacrylate nanocarrier consisting 
of EUDRAGIT®L 100–55 and RS 30 D solution (3:1 w/w) 
[211]. With delivery by methacrylate nanocarriers, clavanins 
successfully rescued 100% of sublethal polymicrobial sep-
sis, which resulted from the improvement in pharmaceutical 
properties [211]. Additionally, lung delivery of the nonnatu-
ral AMP SET-M33 using single-chain dextran nanoparticles 
could distinctly improve the lung biodistribution and prolong 
the half-life of SET-M33, thus effectively eliminating P. aer-
uginosa in acute lung sepsis [212]. Consequently, employ-
ing well-designed nanocarriers to formulate antimicrobials 
can benefit therapeutic efficiency through targeting delivery, 
modulating biodistribution, improving bioavailability, and 
prolonging half-life, which might partly avoid the generation 
of drug resistance at the late stage of sepsis.

Despite their capacity to avoid drug resistance, AMPs, 
especially nonnatural AMPs, show potent cytotoxic-
ity that limits their clinical applications [210–214]. Host 
defense peptides (HDPs), a class of endogenous AMPs 
with broad-spectrum activity and favorable biocompat-
ibility, can be identified as a library of lead compounds to 
develop next-generation antimicrobials for the treatment of 
infectious diseases such as sepsis [215, 216]. HDP hepci-
din, a liver-secreted AMP, can kill bacteria and modulate 
immune responses by regulating iron metabolism and has 
been employed to treat polymicrobial sepsis and acute kid-
ney sepsis [217, 218]. Human enteric-α defensin 5 (HD5), 
an HDP produced by intestinal Paneth cells, can protect 
mice against enteric salmonellosis [219] and is thus another 
potential lead compound for the development of sepsis thera-
peutics. However, its bactericidal activity and spatial con-
formation are susceptible to the physiological environment 
(e.g., ionic environment and enzyme systems), hindering 
its druggability [220]. Nevertheless, rational reprogram-
ming of the structure of AMPs based on structure–activity 
relationships is an effective strategy to resolve this prob-
lem [221, 222]. For example, manipulating supramolecu-
lar nanotechnology to optimize the chemical structure of 
AMPs has obtained satisfactory efficiency in the treatment 
of infection-related diseases such as brain infection and sep-
sis [55, 223, 224]. Lei et al. [55] reported that introducing 
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a C-terminal myristoylation of HD5 (HD5-myr) signifi-
cantly enhanced the bactericidal activity of HD5 through 
a supramolecular nanoassembly with more potent bacterial 
membrane-disruption ability (Fig. 12a). Due to the supra-
molecular nanoassembly in aqueous solution, HD5-myr was 
capable of increasing the local density of positive charges 
to promote disruption of the bacterial membrane (Fig. 12b). 
In vitro antimicrobial activity demonstrated that HD5-myr 
exhibited broad-spectrum bactericidal effects against both 
gram-negative and gram-positive bacteria, whereas natural 
HD5 displayed limited activity due to its low charge density 
and poor physicochemical stability. Furthermore, HD5 is an 
endogenous antimicrobial peptide with favorable biocom-
patibility and low cytotoxicity. The MTT assay indicated 
that HD5-myr exhibited low cytotoxicity, similar to that of 
HD5 (Fig. 12c). Intraperitoneal administration of HD5-myr 
nanobiotics dramatically increased the survival of an E. 
coli-induced sepsis model with nonsignificant organ injury 
(Fig. 12d, e). The resulting HD5-myr nanobiotics possess 
promising potential for adapting translational applications. 
This study also inspired us to manipulate endogenous host 
defense molecules by nanomedical engineering, which 
might be one of the next-generation approaches to nano-
therapeutics for sepsis management.

Although using potent nanobiotics to directly kill bacteria 
might control infections effectively, the large release of bac-
terial toxins from disrupted bacteria in circulation presents a 
potential risk of inducing subsequent inflammatory storms. 
Hence, therapeutics providing sufficient live bacteria-blood 
separation can serve as alternative or assistant strategies. 
To this end, Lee et al. [225] developed a magnetic nanopar-
ticle (MNP) functionalized by a synthetic ligand, bis-Zn-
DPA, that is capable of binding to both gram-positive and 
gram-negative bacteria by forming coordination bonds with 
anionic phospholipids on the outer membrane of bacteria. 
This functional nanoplatform, termed  MNPPEG-Zn-DPA, was 
synthesized from commercially available aminated  Fe3O4 
nanoparticles with bis-DPA attached to the MNP surface 
through a PEG linker using carbodiimide chemistry follow-
ing  Zn2+ coordination to bis-DPA (Fig. 12f). MNPs with 
only PEG modification  (MNPPEG) were also synthesized as 
controls (Fig. 12g). Primary effect assays demonstrated that 
1.0 ×  1011/mL  MNPPEG-DPA-Zn achieved complete separation 
of E. coli from PBS; however,  MNPPEG did not remove E. 
coli at each concentration (Fig. 12h). Notably, the applica-
tion of  MNPPEG-Zn-DPA did not alter the number of red blood 

cells, which indicated that the recognition of  MNPPEG-Zn-DPA 
to bacteria is specific. Combined with the microfluidic sys-
tem,  MNPPEG-Zn-DPA exhibited distinct separation of E. coli 
from bovine whole blood (Fig. 12i), suggesting a practicable 
translation for sepsis management.

Sepsis presents two obvious inflammatory statuses: the 
excessive inflammation phase and the subsequent immu-
nosuppression phase [17]. In general, immunosuppression 
occurs in the late stage of sepsis, in which the opportunity 
to generate multidrug-resistant (MDR) bacteria is increased 
substantially due to the continuous usage of antibiotics 
[226]. In addition, host immune defense will undergo dys-
function, failing to eliminate bacteria. To overcome these 
issues, Hou et al. [226] reported that the adoptive transfer 
of macrophages containing antimicrobial peptide (AMP)-
engineered lysosomes (MACs) could rescue MDR bacte-
rial sepsis in mice with immunosuppression. MACs were 
achieved through the transfection of AMP-IB367 and cath-
epsin B (AMP-CatB) hybrid mRNA delivered by vitamin 
lipid nanoparticles (VLNPs) (Fig. 13a). VcLNPs exhibited 
the greatest mRNA delivery among the five VLNPs and 
commercial Lipofectamine 3000 as well as electropora-
tion (Fig.  13b, c). After incubation with macrophages, 
the VcLNPs deliver AMP-CatB mRNA into the intramac-
rophage via endocytosis and endosomal escape (Fig. 13a). 
The released AMP-CatB mRNA would be translated into 
the AMP-CatB protein, in which the cathepsin B fragment is 
able to transport AMP-IB367 into lysosomes, thereby gener-
ating engineered lysosomes with potent bactericidal activity 
(Fig. 13a). Once the bacteria are captured by macrophages 
through the formation of phagosomes, the engineered 
lysosomes infuse the phagosomes to participate in bacte-
rial elimination by the innate immune system (Fig. 13a). 
Although MDR bacteria could escape the attack of inherent 
components in phagolysosomes, particularly in the immu-
nosuppression phase, the AMP-IB367 in phagolysosomes 
can directly disrupt these MDR bacteria (Fig. 13a). To test 
the feasibility of this approach, macrophage RAW264.7 cells 
and primary bone marrow-derived macrophages (BMDMs) 
were adopted to construct the therapeutics MAC-RAW and 
MAC-BMDMs using the above strategy. The results dem-
onstrated that the administration of both MAC-RAW and 
MAC-BMDMs significantly improved the survival of septic 
mice with immunosuppression challenged by mixed MDR 
bacteria (Staphylococcus aureus and E. coli) (Fig. 13d, e). 
This fascinating strategy involves the perfect combination 
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Fig. 12  Self-assembled myristoylated HD5 as a potent nanobiotic improving sepsis outcome. a Schematic illustration of the bactericidal activity 
of HD5 and HD5 nanobiotics. b SEM observation of the membrane alteration of MRSA and E. coli after incubating with vehicle, native HD5 or 
nanobiotics. c MTT assay demonstrating the neglectable cytotoxicity of HD5-myr to RAW264.7 cells. d Survival rates of intraperitoneally chal-
lenged E. coli-induced septic mice undergoing different therapeutics including vehicle, HD5 and HD5-myr nanobiotics. e Photographs of lungs 
and livers from healthy mice and septic mice after treatment with vehicle, HD5 or HD5-myr nanobiotics.  Reproduced with permission from 
Ref. [55]. Copyright 2018 American Chemical Society. Synthetic ligand-coated magnetic nanoparticles separating bacteria from blood with the 
help of a microfluidic chip. f Design and fabrication of  MNPPEG-DPA-Zn. g Design and fabrication of  MNPPEG. h Concentration-dependent effect 
of  MNPPEG-DPA-Zn and  MNPPEG on the separation of E. coli from PBS. i Phase contrast and fluorescence micrographs of distribution of magnetic 
nanoparticles and bacteria.  MNPPEG-DPA-Zn (dark in phase contrast) colocalized with E. coli (green fluorescence), while  MNPPEG accumulated 
without E. coli. Reproduced with permission from Ref. [225]. Copyright 2014 American Chemical Society
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of nanotherapeutics and immunotherapy, which also high-
lights that therapy for sepsis in the immunosuppression 
phase should focus on restoring host immune defense, and 
nanotherapeutics might be sufficient to support this thera-
peutic concept.

4.2  Nanotherapeutic Platforms Rescue Sepsis 
by Restoring Immune Homeostasis

During the pathophysiological process of sepsis, continu-
ous infections and substantial PAMPs (e.g., endotoxins) 
stimulate excessive activation of the immune system 
with failure to restore immune homeostasis, which usu-
ally results in systemic imbalance, including inflamma-
tory disorders, endothelial barrier injury, and coagulation 
abnormalities [13]. These pathological variants further 
progress to life-threatening multiorgan dysfunction [13]. 
As a consequence, effectively controlling inflammatory 
responses and maintaining immune homeostasis represent 
another essential intervention to constrain the exacerbation 
of sepsis. Nevertheless, there is still a lack of effective ther-
apeutics to restore immune homeostasis [16]. The current 
clinically available strategies include only infection elimi-
nation, hemodynamic maintenance, and organ support; 
however, they fail to prevent multiorgan dysfunction [16]. 
The systemic administration of immunosuppressive agents 
or cytokine antagonists can restrict excessive inflamma-
tion, but severe side effects are inevitable. Benefiting from 
favorable characteristics, including the precise delivery of 
cargo, an inherent ability to modulate immune responses, 
and support for biomimetic therapies, nanotherapeu-
tics have been widely investigated to modulate immune 
responses in septic models. Organic–inorganic nanothera-
peutics and biomimetic nanotherapeutics exhibit consid-
erable superiority in endotoxin elimination, anti-inflam-
mation, and antioxidant activities, which contribute to the 
recovery of immune homeostasis. Other nanotherapeutics, 
such as protein-based delivery platforms, polymeric nano-
particles, and liposomal platforms, also contribute favora-
ble outcomes to septic models by precise drug delivery or 
inherent anti-inflammatory effects. This review is meant 
to highlight nanotherapeutics to address sepsis and sepsis-
related organ injury (Table 2); hence, publications about 
nanotherapeutics managing other inflammatory diseases 
are not included.

4.2.1  Organic–Inorganic Nanotherapeutics Restore 
Immune Homeostasis by Targeting Bacterial 
Endotoxins and Peroxides

Organic–inorganic hybrid nanocomposites prepared by 
engineering inorganic nanomaterials functionalized with 
organic molecules have been found to achieve meaningful 
applications, including the controlled delivery of diagnostic 
and therapeutic agents, imaging technology, and molecular 
separation [227]. With regard to sepsis management, the use 
of inorganic metal nanomaterials as solid supports can fine-
tune the properties of functional organic molecules to neu-
tralize/remove bacterial endotoxins or directly manipulate 
chemical reactions within the septic microenvironment to 
exert antioxidant effects, collectively controlling proinflam-
matory responses.

Liao et  al. [57] introduced subnanometer gold clus-
ters (SAuNCs) with a coating of short alkyl motifs that 
effectively decreased the production of proinflammatory 
cytokines in LPS-induced septic mice by modulating the 
assembly behaviors of LPS (Fig. 14a). LPS has amphiphilic 
features and self-assembles into various aggregates under 
physiological conditions, depending on the packing density 
of lipid A (the active site of LPS). A looser packing density 
is prone to trigger interaction between LPS and the TLR4-
MD2 complex, which results in proinflammatory cascades. 
However, the packing density of LPS can be regulated by 
changing the intramolecular hydrocarbon chain-chain dis-
tance (d-spacing) of lipid A. Thus, using SAuNCs to com-
pact d-spacing represents an alternative strategy to avoid 
excessive inflammation during sepsis progression. Gold 
atoms were incorporated into the dendrimer to reassemble 
into a cluster-like conformation, and then methyl and ethyl 
groups as lipid A adhesives were modified onto the SAuNC 
surface to generate two kinds of SAuNCs: SAuNCs-M and 
SAuNCs-E (Fig. 14a I). As expected, the results demon-
strated that the application of SAuNCs-M and SAuNCs-E 
indeed compacted the d-spacing of LPS with a significant 
reduction in the critical micelle concentration (CMC) com-
pared with those of other hydrophilic and hydrophobic 
SAuNCs (SAuNCs-A and SAuNCs-H) and of LPS alone 
(Fig. 14b). In vivo experiments indicated that both SAuNCs-
M and SAuNCs-E could dramatically prolong the survival 
of LPS-induced septic mice by the downregulation of proin-
flammatory cytokines (Fig. 14c). Additionally, the removal 
of bacterial endotoxins from circulation represents another 
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approach to avoid proinflammatory cascades. To this end, 
Herrmann et al. [228] designed polymyxin B-functional-
ized metal alloy nanomagnets for the rapid removal of LPS 
from circulation with the guidance of magnetic separation 
(Fig. 14d, e). The magnetic separation-based nanothera-
peutic was constructed by conjugating polymyxin B onto 
the surface of carbon-coated cobalt/iron alloy nanomagnets 
through an NHS-dPEG24-MAL linker (C/CoFe-PEG-Pol-
ymyxin B) (Fig. 14d). After incubation with LPS-intoxi-
cated blood, the polymyxin B motif on the nanomagnets 
was shown to have captured LPS, which was then removed 
by magnetic separation. Incorporation of the resultant blood 
plasma into endothelial cells did not upregulate proinflam-
matory cytokines such as CXCL-1 and IL-6 (Fig. 14e), sug-
gesting that these polymyxin B-functionalized nanomagnets 
could potentially be applied for blood purification in sepsis 
management.

The overaccumulation of reactive oxygen species (ROS) 
within the septic microenvironment is a major cause of 
multiorgan dysfunction. Inorganic metal nanomaterials 
(e.g., metal nanozymes) that convert peroxides (e.g.,  H2O2, 
 O2−, and ·H2O) to  H2O and  O2 by manipulating enzyme-
mimicking redox reactions [229] have been found to abolish 
ROS threats, contributing to favorable outcomes of sepsis. 
Soh et al. [230] reported that ceria (Ce)-zirconia (Zr) nano-
particles could alleviate organ injury and increase the sur-
vival rate of LPS-induced or CLP-induced septic models via 
enhanced antioxidation mediated by  Ce3+-Ce4+ transforma-
tion (Fig. 15a). The antioxidant effect of conventional  CeO2 
nanoparticles is achieved with the chemical transformation 
of  Ce3+ to  Ce4+, which partially attenuates oxide stress and 
proinflammatory responses in mice with sepsis [231, 232]. 
However, the low reprocessing of  Ce3+ limits the therapeutic 
efficiency of  CeO2 nanoparticles and enhances their toxicity 
due to the large doses used. To overcome this issue,  Zr4+ was 
incorporated into Ce nanoparticles to improve the repro-
cessing of  Ce3+, and  Ce0.7Zr0.3O2 nanoparticles (7CZ NPs) 
exhibited optimal activity to eliminate peroxides. Moreover, 
organic surface engineering by PEGylation was adopted to 
resolve the poor solubility of Ce–Zr nanoparticles (Fig. 15b). 
In vitro experiments indicated that LPS-challenged U937 
cells treated with 7CZ NPs displayed significantly lower 
relative  O2

− concentrations than the  CeO2 nanoparticle 
group and the nontreatment group (Fig. 15c). In vivo experi-
ments demonstrated that the intravenous administration of 
7CZ NPs completely rescued LPS-induced septic mice with 

attenuated organ injury (Fig. 15d, e). Furthermore, the intra-
venous administration of 7CZ NPs could also improve the 
survival rate of CLP-induced polymicrobial septic models 
(Fig. 15f), which suggested that 7CZ NPs were also suit-
able for treating complex sepsis in the clinic. Rajendrakumar 
et al. [233] reported a mannosylated disulfide cross-linked 
polyethylenimine (ssPEI) (mSP)-coated bovine serum albu-
min (BSA)-reduced  MnO2 (mSPAM) nanoassembly that 
acted as a potent  H2O2 scavenger and alleviated systemic 
inflammation and neuroinflammation in LPS-induced septic 
mice (Fig. 15g). The antioxidant effect of mSPAM relied 
on the redox reaction mediated by  MnO2 nanoparticles that 
were synthesized by reducing  KMnO4 using BSA as a tem-
plate (Fig. 15h). The mSP coating endowed the mSPAM 
with immune cell-targeted features, which were achieved by 
recognition of the mannose receptor (Fig. 15h, i). After inter-
nalization by immune cells, mSPAM converted the excess 
 H2O2 to oxygen and water, which downregulated the expres-
sion of HIF-1α, thereby inhibiting the NF-κB inflammatory 
pathway (Fig. 15i). In vitro assays demonstrated that LPS-
stimulated RAW264.7 macrophages treated with mSPAM 
displayed distinct reductions in intracellular  H2O2, ROS and 
NO. As expected, the application of mSPAM inhibited the 
pP-65/NF-κB pathway, suppressing HIF-1α expression by 
eliminating  H2O2 and thereby contributing to a reduction in 
iNOS and COX-2 levels (Fig. 15j). In LPS-induced septic 
models, therapy using mSPAM dramatically reduced pro-
inflammatory TNF-α and IL-6 levels and improved organ 
protection (Fig.  15k). Furthermore, mSPAM prevented 
sepsis-derived neuroinflammation, as revealed by decreased 
infiltration of microglial cells in the brain (Fig. 15l). Conse-
quently, employing these metal nanozymes to assist antimi-
crobial therapy might provide favorable organ protection for 
sepsis management through scavenging peroxides.

4.2.2  Cell Biomimetic Nanotherapeutics Restore Immune 
Homeostasis by Targeting Cytokines and Bacterial 
Toxins

Biomimetic nanotherapeutics that mimic cell functions or 
characteristics, designed by engineering cell-derived com-
ponents into nanomedicines, have been shown to interfere 
with the pathogenesis of proinflammation, which in turn 
blocks the inflammatory storm during sepsis. In addition, 
extracellular vesicles (EVs) derived from immune cells or 
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mesenchymal stromal cells, regarded as another biomimetic 
nanotherapeutic, also provide advances in sepsis manage-
ment by their precise drug delivery or inherent anti-inflam-
matory efficiency.

Thamphiwatana et al. [234] constructed macrophage-
like nanoparticles (MΦ-NPs) composed of a PLGA core 
and a J774 mouse macrophage-derived membrane shell 
(Fig. 16a, b). MΦ-NPs retaining the macrophage mem-
brane proteins responsible for LPS recognition (CD14 and 
TLR4) and cytokine binding (CD126 and CD130 for IL-6 
binding, CD120a and CD120b for TNF binding, and CD119 
for IFN-γ) (Fig. 16c) are able to neutralize both endotoxins 
and proinflammatory cytokines. The in vitro incubation of 

MΦ-NPs with LPS in the presence of LPS-binding protein 
demonstrated that MΦ-NPs effectively absorbed up to 25 ng 
of LPS in a concentration-dependent manner (Fig. 16d). 
Similar results were also observed in the in vitro incubation 
of MΦ-NPs with proinflammatory cytokines (IL-6, TNF-α, 
and IFN-γ) (Fig. 16e). As expected, treatment with MΦ-NPs 
could prevent the occurrence of cytokine storms in LPS-
induced septic mice (Fig. 16f). However, although there was 
a slight reduction in TNF-α and IL-6, LPS-induced septic 
mice treated with red blood cell-derived membrane-coated 
nanoparticles (RBC-NPs) and PEG-coated nanoparticles 
(PEG-NPs) shared similar inflammatory kinetics with LPS-
only mice (Fig. 16f). More importantly, MΦ-NPs indeed 
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Fig. 15  Ceria-zirconia nanoparticles with enhanced multiantioxidant effects for sepsis treatment. a Schematic illustration of CZ NPs as thera-
peutic nanomedicine for controlling in vitro inflammation and in vivo sepsis. b Schematic illustration of CZ NPs. c Relative  O2

− level measure-
ment of LPS-challenged U937 cells after treatments with vehicle, ceria NPs and 7CZ NPs. d Survival rates of LPS-induced septic mice undergo-
ing therapeutics with nontreatment and 7CZ NPs. e Representative histopathological images of liver and lung extracted from LPS-induced septic 
mice with/without 7CN NP treatment. f Survival rates of CLP models with/without 7CZ NP therapy.  Reproduced with permission from Ref. 
[230]. Copyright 2017 John Wiley and Sons, Inc. Peroxidase-mimicking nanoassembly with potent antioxidative effects for attenuating inflam-
mation for the management of LPS-induced sepsis. g Schematic illustration of mSPAM-mediated anti-inflammatory response in both systemic 
inflammation and neuroinflammation. h Rational design and fabrication of mSPAM. i Schematic illustration of mSPAM nanoassembly alleviat-
ing proinflammatory response in LPS-challenged macrophages by reducing  H2O2 accumulation. j Western blot analysis of proteins in NF-κB 
pathway in RAW264.7 cells treated with mSPAM nanoassembly. k ELISA analysis of TNF-α and IL-6 level at different time points in serum 
from LPS-induced mice with various treatments. l IBA-1 fluorescence staining of mouse brain. Reproduced with permission from Ref. [233]. 
Copyright 2018 American Chemical Society
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Fig. 16  Macrophage-like nanoparticles with dual endotoxin neutralization and absorption of proinflammatory cytokine functions for sep-
sis management. a Schematic illustration of the mechanism for MΦ-NPs as a two-step process to neutralize endotoxins and proinflammatory 
cytokines for sepsis management. b TEM image of MΦ-NPs (scale bar: 100 nm; scale bar of inset image, 10 nm). c Determination of the expres-
sion of macrophage membrane proteins for LPS recognition and cytokine binding using western blotting. d Quantification of LPS removal with/
without fixed MΦ-NP treatment at different amounts of added LPS (left), quantification of LPS removal with different amounts of MΦ-NP 
treatment at a fixed amount of added LPS (right). e Removal of proinflammatory cytokines, including IL-6, TNF-α, and IFN-γ, using MΦ-NPs. 
f Dynamics of proinflammatory cytokines, including TNF-α and IL-6, in plasma from LPS-induced septic mice with various treatments. g Sur-
vival rates of LPS-induced septic mice with various treatments. h Survival rates of E. coli-induced septic mice with/without MΦ-NPs.  Repro-
duced with permission from Ref. [234]. Copyright 2017 National Academy of Sciences, U.S.A. i TEM image of leukosomes. Reproduced with 
permission from ref. [235]. Copyright 2019 Royal Society of Chemistry. j  Fe3O4-PEI NPs coated with macrophage-derived membranes dis-
guised as macrophages for LPS neutralization and protecting against sepsis. Reproduced with permission from Ref. [236]. Copyright 2019 Else-
vier
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rescued 60% of LPS-lethal mice, while RBC-NPs and PEG-
NPs all failed to improve the survival rate (Fig. 16g). Clini-
cal sepsis usually results from bacterial infection; hence, the 
authors established an E. coli-induced septic model to test 
the therapeutic efficiency of MΦ-NPs. The results demon-
strated that the administration of MΦ-NPs rescued 40% of 
E. coli-induced mice with significantly lower bacterial bur-
den and proinflammatory cytokines than that of the vehicle-
treated group (Fig. 16h). A similar idea was also adopted by 
Molinaro et al. [235]. They reported macrophage-derived 
nanovesicles (termed leukosomes) that were constructed by 
attaching J774 mouse macrophage-derived membrane pro-
teins onto the surface of artificial liposomes (Fig. 16i) [235]. 
The leukosomes specifically convert activated macrophages 
to anti-inflammatory status, in turn indirectly maintaining 
endothelial homeostasis that ultimately prolongs the survival 
of LPS-induced septic mice. In addition, magnetic PEI-
modified  Fe3O4 nanoparticles  (Fe3O4-PEI) coated by mac-
rophage-derived membranes could disguise macrophages 
in vivo to absorb endotoxins that were then removed through 
magnetic separation, thus avoiding subsequent proinflamma-
tory cascades, disseminated intravascular coagulation (DIC), 
multiple organ failure (MOF), septic shock, and even death 
(Fig. 16j) [236].

Although RBC membrane coating did not allow nano-
medicines to protect LPS-induced septic mice, RBC mem-
brane-coated nanosponges (RBC-NS) capable of absorbing 
bacterial toxins (e.g., streptolysin-O) in vitro [237] have 
been reported by Chen et al. [238] to successfully abol-
ish whole secreted proteins (wSP, toxin complex secreted 
by MRSA)-induced septic lethality by attenuating toxin-
generated hemolysis (Fig.  17a). Specifically, RBC-NS 
consists of a PLGA core and RBC-derived membrane shell 
with a distinct spherical core–shell structure (Fig. 17b). 
In vitro assays indicated that the preincubation or competi-
tive incubation of RBC-NS with wSP could alleviate RBC 
hemolysis in a concentration-dependent manner (Fig. 17c). 
This beneficial effect is mainly attributed to the competi-
tive absorption of wSP preventing the disruption of RBCs. 
Accordingly, therapy using RBC-NS protected mice from 
wSP-induced sepsis in a dose-dependent and time-dependent 
manner, which highlighted the need for deep investigation of 
the pharmacodynamics of nanotherapeutics used in sepsis 
management to avoid negative outcomes, which could occur 
even when potent in vitro efficiency was observed. Extra-
cellular vesicles (EVs), a class of nanovesicles secreted by 

various endogenous cells, have already been investigated as 
biomimetic drug delivery platforms or bioactive therapeu-
tic nanoagents for disease therapy, including cancer, acute 
lung injury (ALI) and sepsis [239, 240]. Once ALI and sep-
sis occur, neutrophils interact with endothelial cells via the 
interaction between integrin β2 on neutrophils and intercel-
lular adhesion molecule-1 (ICAM-1) on endothelial cells, 
contributing to subsequent activation of the NF-κB signaling 
pathway, which results in barrier disruption and organ injury 
[241]. Hence, neutrophil-derived EVs might be a suitable 
delivery system for the targeted treatment of ALI and sep-
sis. Nevertheless, the low yield of EVs limits their clinical 
application. Interestingly, Gao et al. [241] adopted nitrogen 
cavitation to achieve high-yield and scalable EVs (called 
NC-EVs) (Fig. 17d). The NC-EVs shared similar structures 
and composites with naturally secreted EVs (NS-EVs). 
To test the feasibility of this approach, piceatannol (Pic), 
an inhibitor of NF-κB, was loaded into NC-EVs (Pic-NC-
EVs) to treat sepsis (Fig. 17e). The results demonstrated that 
intervention using Pic-NC-EVs rescued significantly more 
LPS-induced septic mice than intervention with Pic alone 
or vehicle treatment (Fig. 17f), which was attributed to the 
precise delivery of Pic mediated by NC-EVs. In addition 
to serving as drug delivery systems, EVs can directly exert 
anti-inflammatory effects, ameliorating sepsis outcomes. 
For example, mesenchymal stromal cell-derived EVs could 
suppress the release of proinflammatory cytokines into cir-
culation, thereby attenuating the excessive inflammation of 
bacterial outer membrane vesicle-induced sepsis in an IL-
10-dependent manner [242].

4.2.3  Other Nanotherapeutics Restore Immune 
Homeostasis by Targeting Inflammation‑Related 
Signaling Pathways

Apart from organic–inorganic nanotherapeutics and biomi-
metic nanotherapeutics, some other nanomedicines involv-
ing protein-guided delivery, supramolecular polymers, 
and liposomes also show favorable immune modulation 
for sepsis treatment. Lee et al. [243] developed a double-
chambered protein nanocage loaded with thrombin recep-
tor agonist peptide (TRAP) and γ-carboxyglutamic acid of 
protein C (PC-Gla), in which TRAP could strongly cleave 
protease-activated receptor-1 (PAR-1) and PC-Gla could 
activate endothelial protein C receptor (EPCR). Activated 
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EPCR/PAR-1 signaling elicits cytoprotective responses that 
contribute barrier protection and anti-inflammation to sepsis 
treatment. To construct this nanotherapeutic platform, short 
ferritin (sFn) was genetically engineered by inserting PC-Gla 
(EPCR ligand) at the C-terminus and TRAP (PAR-1 ligand) 
at the N-terminus to generate TRAP-ferritin-PC-Gla protein 
(TFG) (Fig. 18a). Furthermore, to achieve responsive release 
of PC-Gla and decrease steric hindrance, a matrix metal-
loproteinase (MMP)-2 cleavage site was inserted between 
sFn and the PC-Gla domain (TFMG) to enable the release 
of the two ligands in response to high MMP2 levels within 
the septic microenvironment (Fig. 18a, b). TFG and TFMG 
were capable of self-assembling into nanocage structures in 
aqueous solution (Fig. 18c). The results demonstrated that 
both TFG and TFMG could successfully bind to EPCR and 
cleave PAR-1 (Fig. 18d, e). In CLP-induced septic mice, 
both TFG and TFMG showed superiority in improved sur-
vival rates, and TFMG exhibited slightly higher therapeutic 
efficiency than TFG (Fig. 18f). The difference was due in 
part to MMP2-mediated controlled release endowing the two 
antiseptic ligands with lower steric hindrance (Fig. 18b). For 
cell-targeted therapies, Zhang et al. [244] reported doxo-
rubicin (DOX)-conjugated protein prodrug nanoparticles 

that were engineered by conjugating DOX with BSA via a 
pH-sensitive hydrazone bond (DOX-hyd-BSA NPs), which 
specifically targeted activated neutrophils for the intracel-
lular delivery of DOX to induce the apoptosis of activated 
neutrophils in order to inhibit transmigration, ultimately 
alleviating inflammatory responses during sepsis (Fig. 18g). 
For comparison, DOX was conjugated to BSA via a pH-
insensitive amide bond (termed DOX-ab-BSA NPs), which 
could not release DOX in response to pH variance. Cumu-
lative release assays demonstrated that DOX-hyd-BSA NPs 
achieved a rapid release of DOX at pH 6.5 and pH 5.0 (sim-
ilar to neutrophil cytosol environments), while very little 
DOX was released at pH 7.4, suggesting that DOX-hyd-BSA 
NPs exhibited distinct stability in physiological conditions 
and controlled release of DOX in response to the acidic envi-
ronment of neutrophils (Fig. 18h). In contrast, DOX-ab-BSA 
NPs did not achieve pH-dependent DOX release (Fig. 18h). 
Besides, DOX-hyd-BSA NPs retained the cytotoxicity of 
free DOX; however, the DOX-ab-BSA NPs lost their cyto-
toxic activity (Fig. 18i). Fcγ receptor, a surface receptor 
that mediates the uptake of BSA NPs by neutrophils, was 
found to exhibit significantly enhanced expression in acti-
vated neutrophils (Fig. 18j), which mediated the intracellular 
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delivery of DOX-hyd-BSA NPs (Fig. 18k). While, upon 
resting state, the authors did not observe BSA NPs inside 
neutrophils (Fig. 18k). Finally, the intravenous administra-
tion of DOX-hyd-BSA NPs rescued 70% of mice undergoing 
LPS challenge, while the administration of free DOX did 
not show any protective effects (Fig. 18l), which highlighted 
the significant advances of the cell-targeted drug delivery 
system. In gene therapeutics (e.g., RNA interference), a suit-
able gene carrier is required to guide the effective delivery 
of siRNA into cells to knock down the target gene [245]. To 
develop a gene therapy for sepsis, He et al. [246] designed an 
α-helical polypeptide, PPABLG, that could condense TNF-α 
siRNA to achieve sepsis gene immunotherapy (Fig. 19a). 
To obtain ultrastable nanostructures, another anionic poly-
peptide, PAOBLG-MPA, was incorporated to strengthen the 
electrostatic interaction, resulting in coassembly into PPA-
BLG hybrid nanoparticles (HNPs) (Fig. 19a). In contrast 
to nonhelical PPABDLG HNPs, helical PPABLG HNPs 
with an amphiphilic structure could transfect more TNF-α 
siRNA than Lipofectamine 2000 through their membrane-
disruptive capacity and endosomal escape (Fig. 19b). In an 
experimental model, systemic administration of helical PPA-
BLG NHPs loaded with TNF-α siRNA significantly allevi-
ated proinflammatory responses and rescued 50% of animals 
from LPS/D-GalN-induced hepatic sepsis (Fig. 19c). The 

literature suggests that RNA interference might be a prom-
ising anti-inflammatory gene therapy that could avoid the 
immune side effects caused by the traditional application 
of cytokine antagonists or TLR-signaling inhibitors. The 
rational design of adaptive nanocarriers for gene delivery 
is the most crucial step that determines the final therapeutic 
efficiency of sepsis gene therapy. Furthermore, goal-guided 
nanomaterials functionalized by various targeted ligands or 
antibodies for gene transfection may protect specific organs 
against proinflammatory impairment by providing clini-
cally needed biodistribution and microenvironment deliv-
ery. Some natural products, such as quercetin, which has 
been identified as a scavenger of free radicals and inhibi-
tor of proinflammatory signaling, are limited by poor oral 
bioavailability [247]. Zein nanoparticles combined with 
2-hydroxypropyl-β-cyclodextrin could increase the oral bio-
availability of quercetin by promoting drug dissolution and 
improving pharmacokinetic properties [247]. Using such a 
protein-polymer hybrid nanoplatform for quercetin delivery 
dramatically improved the in vivo anti-inflammatory effect 
in LPS-induced septic models [247].

Supramolecular nanomaterials are the most common 
type of nanocarriers for drug delivery [227, 248]. Intrigu-
ingly, cargo-less PLGA/PLA nanoparticles were shown to 
diminish inflammatory responses by directly modulating 
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TLR-related pathways, suggesting that the inherent activity 
of nanomaterials should also be considered in formulating 
nanodrug delivery systems for sepsis management [249]. 
Furthermore, well-designed surface engineering of nano-
particles could also achieve surprising outcomes. Spence 
et  al. [250] developed sialic acid-functionalized PLGA 
nanoparticles (named α2,8 NANA-NPs) to address acute 
inflammatory diseases such as sepsis because the regular 
display of sialic acid on the surface of nanoparticles could 
enhance the sialic acid-mediated oligomerization of murine 
sialic acid-binding immunoglobulin-like lectin-E (Siglec E), 
which is an important negative regulator of proinflammatory 
responses. As expected, compared to free sialic acid, treat-
ment with α2,8 NANA-NPs greatly reduced TNF-α and IL-6 
production in LPS-challenged macrophages. In vivo experi-
ments indicated that the administration of α2,8 NANA-NPs 
completely rescued LPS-induced septic mice and prolonged 
the survival of CLP-induced septic mice, while the admin-
istration of free sialic acid or nonfunctionalized nanoparti-
cles did not show protective effects. In summary, this study 
suggested that the appropriate display of therapeutic agents 
on nanomaterials might overcome the poor efficiency of 
free agents. Of course, the most common strategy for drug 
delivery is encapsulating therapeutic agents in the inner core 
of nanomedicines to achieve effective delivery. For exam-
ple, encapsulating melatonin into the inner core of PLGA 
nanoparticles could significantly increase the bioavail-
ability of melatonin for improved antioxidant effects upon 
controlled release [251]. Adopting generally recognized as 
safe (GRAS) nanomaterials to formulate anti-inflammatory 
agents with short half-lives and/or poor bioavailability has 
been investigated to prolong the anti-inflammatory effi-
ciency in various inflammatory diseases, such as inflamma-
tory bowel disease, arthritis, and gram-negative acute lung 
sepsis [252–254]. Furthermore, the surface engineering of 
lysozyme dextran nanogels with ICAM antibody enables tar-
geting of the septic microenvironment, which increases the 
lung biodistribution of anti-inflammatory agents in animals 
with acute lung sepsis [255]. Although evidence indicated 
that the excessive formation of neutrophil extracellular traps 
(NETs) would worsen sepsis outcomes that could be treated 
by the inhibition of neutrophil elastase (NE), effectively 
delivering the NE inhibitor Sivelestat (Sive) into neutrophils 
to exert improved therapeutic efficiency is a challenge [256]. 
To overcome this issue, Okeke et al. [256] adopted a liposo-
mal platform called interbilayer-cross-linked multilamellar 

vesicles (ICMVs) to deliver Sive (ICMV-Sive). The ICMVs 
were composed of DOPC and MPB, in which the anionic 
maleimide-headgroup of MPB would cross-link covalently 
to provide ultrastable liposomes, which endowed Sive with 
improved pharmacokinetics. Furthermore, Sive delivered by 
ICMVs could be specifically endocytosed by neutrophils, 
thus diminishing NET formation by inhibiting NE. In treat-
ing LPS-induced septic mice, ICMV-Sive showed distinct 
superiority compared with free Sive and ICMV. The above-
mentioned results all suggest that using nanoplatforms to 
improve drug properties (e.g., dissolution, bioavailability, 
biodistribution, pharmacokinetics, and pharmacodynam-
ics) might overcome the challenges hindering therapeutic 
efficiency in the clinic.

4.3  Nanotherapeutic Platforms Rescue Sepsis by Both 
Targeting Bacterial Infections and Restoring 
Immune Homeostasis

As noted in Sects. 4.1 and 4.2, infection and inflammatory 
disorder represent the major targets for sepsis interventions, 
and nanotherapeutics targeting either have shown distinct 
advances. Nevertheless, nanotherapeutics concurrently 
targeting both infection and inflammatory disorder rather 
than only a single target might be more useful for clinical 
sepsis treatment. To overcome the poor efficiency of sim-
ply combining antibiotics and anti-inflammatory agents for 
sepsis management, Zhang et al. [257] designed biorespon-
sive nanoparticles targeted to infectious microenvironments 
(IMEs) during sepsis, contributing to the precise codelivery 
and controlled release of antibiotics (ciprofloxacin, CIP) 
and anti-inflammatory agents (TPCA-1) (Fig. 20a). The 
bioresponsive nanoparticles were self-assembled by a pH/
enzyme-responsive amphiphilic block copolymer that con-
sists of biotinylated poly(ethylene glycol)-b-poly(β-amino 
ester)-b-poly(ethylene glycol) grafted with PEGylated lipid 
(biotin-PEG-b-PAE(-g-PEGb-DSPE)-b-PEG-biotin), in 
which tertiary amines and ester bonds of PAE and phos-
phoester bonds of PEG-DSPE could be cleaved by low pH 
and bacterial enzymes within IMEs (Fig. 20b). Dissipative 
particle dynamics (DPD) simulation demonstrated that the 
amphiphilic copolymers could self-assemble into shell-core 
structural nanomicelles (Fig. 20c). Due to the high ICAM-1 
expression of vascular endothelial cells in response to infec-
tion, anti-ICAM-1 antibody was conjugated onto the surface 
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Fig. 20  Bioresponsive nanoparticles with dual therapeutic functions targeted to infectious microenvironments for sepsis management. a 
Rational design of IME-responsive nanoparticles with well-designed surface engineering for targeted delivery of therapeutic agent at the septic 
microenvironment. b Structure and pH/enzyme-responsive natures of amphiphilic block copolymer Biotin-PEG-b-PAE(-g-PEGb-DSPE)-b-PEG-
biotin. c DPD simulation of the self-assembled behaviors of the bioresponsive amphiphilic block copolymer with the drug molecule CIP, HDD 
(1,6-hexanediol diacrylate) units in PAE and DSPE (peach), PEG moiety (light green), biotin group (dark green), AP (3-amino-1-propanol) units 
in PAE (pink), CIP molecule (blue). d Representative DLS size and TEM images of NPs-anti-ICAM-1 incubated in PBS at pH 7.4, pH 6.5 or 
pH 6.5 with lipase and ALP for 2 h, scale bars, 100 nm. e In vitro drug release of CIP-NPs-anti-ICAM-1 in different buffers. f Survival rates 
of peritonitis-induced septic mice obtained by i.p. injection of a lethal dose of P. aeruginosa. At 4 h after bacterial injection, mice were treated 
with different drug formulations.  Reproduced with permission from Ref. [257]. Copyright 2018 John Wiley and Sons, Inc. Sparfloxacin and 
tacrolimus-loaded polymeric nanoparticles targeting inflammation for the treatment of acute lung sepsis. g Schematic illustration of γ3 peptide-
functionalized PLGA nanoparticles loaded with both SFX and TAC for improved treatment of lung-infected mice by targeting the inflammatory 
site. h SEM images of γ3-PLGA NPs. i CLSM images of interaction of PLGA NPs with HUVECs; cell nuclei (blue), PLGA NPs (red). j Sur-
vival rates of P. aeruginosa-induced septic mice after various treatments. Reproduced with permission from Ref. [258]. Copyright 2020 Elsevier
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of bioresponsive nanoparticles by biotin–avidin interaction 
to target IMEs. Indeed, in vitro treatment with low pH, 
lipase, and alkaline phosphatase (ALP) successfully induced 
disassembly of the bioresponsive nanoparticles and subse-
quent drug release (Fig. 20d, e). Furthermore, in vitro and 
in vivo experiments proved that the anti-ICAM-1 coating 
was an indispensable component enabling bioresponsive 
nanoparticles to achieve IME targeting. To test therapeutic 
potential, CIP and TPCA-1 were coloaded into the biore-
sponsive nanoparticles (named CIP + TPCA-1-NPs-anti-
ICAM-1). The results indicated that CIP + TPCA-1-NPs-
anti-ICAM-1 rescued 90% of P. aeruginosa-challenged 
septic mice, while CIP + TPCA-1-NPs-IgG2b rescued 50% 
of septic mice, and free CIP + TPCA-1 rescued only 40% of 
septic mice (Fig. 20f). Similar to survival, the application of 
CIP + TPCA-1-NPs-anti-ICAM-1 also exhibited consider-
able advantages in controlling inflammation compared with 
the control groups. These favorable outcomes achieved by 
CIP + TPCA-1-NPs-anti-ICAM-1 suggested that the pre-
cise codelivery and IME-responsive properties provided 
by well-designed nanotherapeutics might be an alterna-
tive strategy for drug combinations to control both infec-
tion and inflammation during sepsis. Inspired by the above 
study, Yang et al. [258] designed a similar nanoplatform 
to codeliver the antibiotic sparfloxacin (SFX) and the anti-
inflammatory immunosuppressant tacrolimus (TAC) into 
IMEs to rescue acute lung sepsis (Fig. 20g). The nanoplat-
form consisting of a PLGA core and BSA shell was fabri-
cated by an oil-in-water emulsion-based solvent-evaporation 
method (Fig. 20g). To provide targeting ability, ICAM-
1-targeted γ3 peptide (NNQKIVNLKEKVAQLEA) was 
conjugated onto the surface of the PLGA-BSA nanoparticles 
(Fig. 20g). The resultant nanoplatform, termed γ3-PLGA 
NPs, showed a spherical morphology with an average size 
of 183.7 ± 9.4 nm and excellent biocompatibility (Fig. 15h). 
In vitro experiments demonstrated that γ3-PLGA NPs could 
specifically target activated endothelial cells rather than rest-
ing endothelial cells (Fig. 20i). Of further note, lungs from 
mice with acute lung infection accumulated many more 
γ3-PLGA NPs than other organs, also implying favorable 
targeting ability in vivo. In light of these advantages, SFX 
and TAC were coencapsulated in the hydrophobic core of 
γ3-PLGA NPs (γ3-PLGA/S + T NPs) to treat acute lung 
sepsis. The results indicated that γ3-PLGA/S + T NPs suc-
cessfully rescued 75% of acute lung septic mice, which was 
significantly better than the controls (Fig. 20j). The bacterial 

burden and inflammatory responses were also controlled by 
γ3-PLGA/S + T NPs, contributing to the attenuation of organ 
injury.

Structural modification based on supramolecular chem-
istry has been found to enhance the bioactive activity of 
therapeutic agents. The antimicrobial decapeptide KSLW 
(KKVVFWVKFK) is a commercially available drug with 
dual anti-infection and vascular barrier protective func-
tions; however, it is limited by its poor pharmacokinetics, 
which severely limit its activity [259]. Interestingly, lipid-
PEGylation could resolve this problem. Specifically, the 
PEGylated phospholipid DSPE-PEG was conjugated to 
the N-terminus of KSLW via a Schiff base reaction, and 
the resultant supramolecular peptide (termed PLM-KSLW) 
could self-assemble into nanomicelles in aqueous solution 
[191]. PLM-KLSW possessed a significantly longer half-life 
(9.3956 h) than PEGylated KSLW (PEG-KSLW) (8.9984 h) 
and free KSLW (0.8626 h), which indicated that DSPE-
PEGylation and PEGylation effectively improved the phar-
macokinetics of KSLW. Besides, neither DSPE-PEGylation 
nor PEGylation affected the inherent bactericidal activity 
of KSLW. Intriguingly, compared with PEGylation alone, 
DSEP-PEGylation greatly enhanced the binding affinity 
between KSLW and the glycine/tyrosine-rich domain of 
occludin (OCLN), which dramatically improved vascular 
barrier integrity under septic conditions. As expected, PLM-
KSLW was greatly superior to PEG-KSLW and free KSLW 
in preventing CLP-induced lethality in mice. The three ther-
apeutics had nearly equal ability to eliminate bacteria, but 
PLM-KSLW controlled the inflammatory response better 
than PEG-KSLW and free KSLW, which might be attributed 
to the enhanced interaction between OCLN and KSLW after 
DSPE-PEGylation. This work suggests the potential use of 
nanotechnology as an efficient enhancer for the construction 
of promising nanotherapeutic antiseptic drugs.

Despite advances of nanoplatforms in diagnosis or ther-
apy of sepsis, investigations involve nanoplatforms that inte-
grate both diagnostic (e.g., in vivo imaging) and therapeu-
tic functions (termed theranostic nanoplatforms) are rather 
limited. In fact, theranostic nanoplatforms have been widely 
used in managing various diseases, including cancer [260], 
neurodegenerative diseases [68], rheumatoid arthritis [261], 
and bacterial infection [66], etc. Inflammation and bacterial 
infection are the two major characteristics of sepsis. By tak-
ing advantage of the oxidative stress in inflammatory envi-
ronment, theranostic agents constructed by combining an 
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anti-inflammatory agent and a two-photon fluorophore via a 
ROS sensitive bond could accumulate in inflammatory sites 
with the delivery by polymeric NPs whose biodistribution 
can be tracked by two-photon aggregation-induced emis-
sion (AIE) imaging, and subsequently release therapeutic 
agents for constraining inflammation [262]. This theranostic 
nanoplatform has been proven to exhibit favorable applica-
tion in arthritis, atherosclerosis, and LPS-induced acute lung 
sepsis [262]. Given high expression of vascular cell adhe-
sion molecule-1 (VCAM-1) in activated endothelium, Fuior 
and coworkers developed a theranostic nanoemulsions that 
were attached by a peptide ligand of VCAM-1 for confer-
ring targeting property [263]. Naringenin and indocyanine 
green (ICG) were coincorporated into the nanoemulsions, 
as therapeutic agent and imaging probe, respectively. In a 
mouse model of LPS-induced inflammation, the resultant 
theranostic nanoemulsions could selectively accumulate in 
endothelium-rich organs (e.g., heart and lung) via a syn-
ergistic delivery mediated by passive and active targeting, 
which were clearly visible under the NIR imaging [263]. To 
achieve bacterial theranostics, Mao and coworkers fabricated 
a D-AzAla@MIL-100 NPs consist of MOF MIL-100 (Fe) 
as carrier, D-AzAla as bacterial labeling agent, and plu-
ronic F127 as stabilizer [264]. After in vivo administration, 
D-AzAla@MIL-100 NPs accumulated in infectious environ-
ment via EPR-like effect, and the MIL-100 was subsequently 
selectively damaged by  H2O2, which allowed robust release 
of D-AzAla in infectious region. These free D-AzAla could 
bind to the peptidoglycan of bacteria, thus achieving suffi-
cient expression of azide groups on bacterial surface. After-
ward, administration of photosensitizers-loaded AIE NPs led 
to the bacterial metabolic labeling through a click reaction, 
which allowed the in vivo tracking of target bacteria and 
subsequent PDT-mediated bactericidal activity.

The aforementioned nanoplatforms show favorable 
applications in inflammatory and bacterial theranostics and 
thus might be promising candidates for sepsis theranostics. 
Nevertheless, due to the specificity of sepsis, feasibility 
of these inflammatory or bacterial theranostic nanoplat-
forms in sepsis management should be in-depth evaluated 
in septic models including polymicrobial sepsis, PAMAs-
induced inflammatory sepsis, and CLP models. Of further 
note, diagnosis of sepsis usually requires characterization 
of multiple biomarkers rather than single markers, and its 
therapeutic strategies should adopt multitarget interven-
tion rather than single-target therapy. Consequently, from 

our perspective, future development of nanoplatforms 
for sepsis management should consider how to integrate 
multibiomarker diagnostics and multitarget therapies into a 
single nanoplatforms and achieve multibiomarker imaging 
(e.g., different fluorescent color for different biomarkers)/
quantification and on-demand release of different thera-
peutics. A sophisticated nanoplatform developed by Shi 
and coworkers might achieve multimodal theranostics for 
sepsis if further improved in the future [265]. They synthe-
sized a telodendrimer (TD) nanotrap (NT) capable of selec-
tively capturing PAMPs/DAMPs (e.g., LPS and cytokines) 
via multivalent, hybrid and synergistic interactions. By 
rational controlling charge and hydrophobicity of TD, TD 
could specifically bind to different PAMPs/DAMPs. The 
TD-NTs were encapsulated by a size-exclusive hydrogel 
resins which allows septic molecules to enter while other 
molecules (e.g., HSA and IgG) cannot. Administration of 
TD-NTs resin alone rescued 50% of CLP-induced septic 
mice, whereas CLP-induced septic mice could completely 
survive when combining TD-NTs resin and antibiotic treat-
ment. Though this study only proved the therapeutic func-
tions of TD, we theorize TD also is a promising material 
for multimodal diagnosis through quantifying the types and 
amounts of PAMPs/DAMPs in septic patients.

5  Summary and Outlook

This review provides a general description of sepsis that 
mainly involves clinical definition, pathogenesis and thera-
peutics and then deeply elucidates the recent advances of 
nanoplatforms in managing sepsis. With the continuous 
clarification of pathogenetic mechanisms, the theranostic 
principles and strategies for treating sepsis have gradually 
been improved. Furthermore, introducing nanotechnology 
into preclinical research on theranostics of sepsis has also 
achieved significant advances, offering promise for clini-
cal usage. Nevertheless, there are still many challenges that 
require collaboration among pharmaceutical chemists, mate-
rial scientists, biochemists, and clinicians to resolve. Some 
important problems listed below need to be further explored 
and will serve as a roadmap to develop future beneficial 
strategies for sepsis management.

 (i) Despite significant advances in preclinical manage-
ment, clinical translation and application of nano-
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platforms remain a challenge. The construction of the 
nanoarchitectures requires the utilization of diverse 
nanomaterials, such as supramolecular nanomateri-
als, organism-originated biomaterials, metal nano-
particles, and organic–inorganic nanocomposites. 
However, most of these materials have not been 
approved by the FDA as pharmaceutically acceptable 
adjuvants. It is crucial for pharmaceutical materials 
to focus instead on biocompatibility and biodegrada-
bility, absorption, distribution, metabolism, and elim-
ination (ADME) processes, in vivo drug-material 
interactions, the cross-influence between nanomate-
rials and body systems/organs, toxicology and side 
effects. Although mounting evidence has gradually 
illuminated the interactions between nanomaterials 
and body systems, especially the vasculature and res-
piratory system [266, 267], more efforts are urgently 
needed to elucidate the detailed mechanisms and the 
influence of nanomaterials on other body systems, 
which will contribute to mapping the structure-bio-
effects relationship, thus guiding the precision opti-
mization of nanomaterials for in vivo applications. 
Only by fully clarifying the above-mentioned ele-
ments or parameters, these fascinating nanoplatforms 
can be advanced toward use in clinical practice. In 
this regard, in-depth understanding structure–activity 
relationship (SAR) of nanomaterials is of particu-
lar importance, which shall aid precision design of 
nanomaterials to minimize unwanted responses and 
maintain superiorities. Usually, biological effects and 
profiles such as circulation time, metabolic pathways, 
biodistribution, biodegradation, and release behav-
iors, mainly determined by the biophysicochemical 
characteristics of NPs, including size, composition, 
shape, charge, surface chemistry, hydrophilic/hydro-
phobic features, protein corona, and assembly modes, 
etc. Passive distribution of NPs can be modulated by 
size, shape, and/or charge; adjusting proper surface 
chemistry contributes to active targeting behaviors; 
personalized drug encapsulation and release can be 
achieved via tuning hydrophobicity and/or assembly 
modes. Only balancing every properties of NPs no 
matter for inherent natures or attached functions, 
we can finally obtain the most medically/pharmaco-
logically acceptable nanoplatforms, which, however, 
needs more efforts to explore and/or summarize SAR 
of nanomaterials.

 (ii) Although the pathogenetic mechanisms and clini-
cal manifestations have been gradually elucidated, 
effective drugs for treating sepsis remain limited. 
Currently, only antibiotic usage, hemodynamic main-

tenance, and organ support are clinically available. 
However, these strategies fail to prevent the occur-
rence of multiorgan dysfunction and inflammatory 
cascades. In addition, high heterogenicity and com-
plex pathogenesis require multipathway therapeutics 
rather than single-factor therapeutics throughout the 
treatment process. Fortunately, some molecular sign-
aling pathways were found to modulate the pathogen-
esis of sepsis and consequently could be considered 
valuable drug targets for the development of novel 
therapeutics. Agonists or antagonists of these sign-
aling pathways might be potential drug candidates 
with promising clinical utility in multipathway thera-
peutics. However, the poor solubility and pharma-
cokinetics of these candidate compounds limits their 
clinical translation. Notably, nanotechnology has 
already been found to resolve such problems through 
introducing amphiphilic nanocarriers or modulating 
crystal forms. Hence, we theorized that combining 
drug discovery and nanomedicine should drive the 
future clinical translation of therapeutic candidates.

 (iii) The diagnosis of sepsis remains challenging due to 
its heterogenicity and complex pathogenesis and 
depends mainly on the characterization of infection, 
inflammatory status, and organ injury. Currently, the 
severity of organ injury can be revealed by the SOFA 
scoring system in clinical practice, while the infec-
tion and inflammatory status are usually indicated by 
the detection of corresponding biomarkers. Nanoma-
terial-inspired nanodiagnostic platforms contribute 
accurate and rapid detection of sepsis-associated 
biomarkers such as live bacteria, CRP, PCT, and 
cytokines, satisfying the needs of point-of-care 
diagnosis for timely warning of sepsis progression. 
Nevertheless, these biomarkers are not specific for 
sepsis characterization due to their positive signal-
ing in other infectious and/or inflammatory diseases. 
Consequently, in-depth research to discover sepsis-
specific biomarkers represents the most important 
step for improving early warning. Of further note, 
developing corresponding nanodiagnostic platforms 
to reinforce the sensitivity of novel biomarkers might 
be meaningful. In addition, real-time monitoring of 
the septic microenvironment (e.g., immune status) 
helps clinicians to judge disease progress and the 
need for therapeutics and can be achieved by analyz-
ing functions and signaling molecules at the single-
cell level. Thus, integrating single-cell sequencing 
technology into nanodiagnostic platforms may reveal 
alterations in the septic microenvironment (e.g., 
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cytokines, signaling pathways and immune cells) in 
a real-time, accurate, and rapid manner.

 (iv) Nanotherapeutic platforms targeting infections and/or 
immune disorders have achieved favorable therapeu-
tic efficiency in sepsis. However, manipulating nano-
medicine to potentiate the activity of antibiotics or 
to restore immune homeostasis by organic–inorganic 
nanotherapeutics, cell biomimetic nanotherapeutics 
or other strategies is insufficient for multipathway 
therapy, making it difficult for current nanothera-
peutics to address clinical sepsis. To date, investi-
gations to develop multipathway nanotherapeutics 
remain rare. Current dual-function nanotherapeu-
tics simply encapsulate commercial antibiotics and 
immunosuppressants into nanocarriers, contributing 
targeted anti-infection and anti-inflammation effects 
to sepsis therapy. Despite relatively favorable out-
comes, their ability to manage different sepsis sta-
tuses represents a huge challenge. Hence, designing 
septic status-responsive nanotherapeutics to treat dif-
ferent inflammatory and infectious phases through 
the controlled release of corresponding agents might 
be more interesting and reliable. Furthermore, organ 
dysfunction is a life-threatening element in sepsis 
mortality. Accordingly, in addition to antibiotics and 
immune modulators, therapeutic agents to alleviate 
organ dysfunction should also be incorporated into 
nanotherapeutics. For example, some growth factors 
could be codelivered by nanoplatforms to assist the 
regeneration of injured organs; the function of mito-
chondrial resuscitation could also be introduced into 
nanotherapeutic design to restore energy metabolism 
and thereby recover organ functions. Sepsis manage-
ment is still a challenge in critical care medicine. 
Although pathogenetic research and nanoplatforms 
have achieved significant advances in the preclini-
cal therapy of sepsis, there are many ongoing chal-
lenges demanding more collaborative efforts with 
multidisciplinary cross-linking among critical care 
medicine, medicinal chemistry, material engineering, 
and immunology.
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