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Chemical Coupled PEDOT:PSS/Si Electrode: 
Suppressed Electrolyte Consumption Enables 
Long‑Term Stability
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HIGHLIGHTS

• γ-Glycidoxypropyl trimethoxysilane (GOPS) was incorporated in Si/PEDOT:PSS electrodes to construct a flexible and conductive 
artificial solid-electrolyte interphase (SEI).

• XPS  Ar+ etching depth analysis proved that the addition of GOPS is conducive to forming a more stable SEI.

• A full battery assembled with NCM 523 cathode delivers a high energy density of 520 Wh  kg-1, offering good stability.

ABSTRACT Huge volume changes of Si during lithi-
ation/delithiation lead to regeneration of solid-electro-
lyte interphase (SEI) and consume electrolyte. In this 
article, γ-glycidoxypropyl trimethoxysilane (GOPS) 
was incorporated in Si/PEDOT:PSS electrodes to con-
struct a flexible and conductive artificial SEI, effec-
tively suppressing the consumption of electrolyte. The 
optimized electrode can maintain 1000 mAh  g−1 for 
nearly 800 cycles under limited electrolyte compared 
with 40 cycles of the electrodes without GOPS. Also, 
the optimized electrode exhibits excellent rate capa-
bility. The use of GOPS greatly improves the inter-
face compatibility between Si and PEDOT:PSS. XPS 
 Ar+ etching depth analysis proved that the addition of 
GOPS is conducive to forming a more stable SEI. A 
full battery assembled with NCM 523 cathode delivers 
a high energy density of 520 Wh  kg−1, offering good 
stability.
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1 Introduction

Si, as one of the most promising anode materials for lithium-ion 
batteries, has been investigated for decades due to its highest 
theoretical specific capacity (4200 mAh  g−1) [1, 2]. However, 
Si suffers from huge volume changes (> 300%) during lithia-
tion/delithiation, which causes active material pulverization and 
exfoliation from the collector. Both problems can now be relieved 
by nano-Si [3–5] and surface-bonded binders [6]. However, there 
will be a solid electrolyte interface (SEI) on the anode surface as 
the strong reducibility leads to the reduction and decomposition 
of the electrolyte. The formation of SEI helps to avoid direct 
contact between the active material and the electrolyte. But huge 
volume expansion of Si during lithiation also causes SEI rup-
ture, so additional electrolyte and  Li+ are irreversibly consumed 
repairing regenerations, which severely limits the Coulombic 
efficiency and cyclic stability. This problem is usually ignored 
in most anode studies due to excessive electrolyte in half-cell 
designs with Li metal as a counter electrode. To achieve high 
energy density in the actual full battery, the amount of electrolyte 
will be limited. However, SEI regeneration will overconsume 
electrolytes, resulting in sudden battery death. An ideal solu-
tion would be creating an artificial SEI on Si via an organic/
polymer coating layer [7–10], which can effectively control the 
contact between electrolyte and active material. Nevertheless, 
the artificial SEI is usually insulating that cannot transfer both 
 Li+ and electrons well. Thus, it is necessary to construct a flex-
ible artificial SEI that is dual conductive for electronics and ions.

Conventional Si electrodes contain nearly 40 wt% inactive 
materials, including conductive additive and insulating bind-
ers, such as PAA [11], CMC, or alginate [12]. Conducting 
polymers with dual functions as a binder and conducting addi-
tives have been developed for Si anodes [13–16]. Among that, 
PEDOT is an excellent electronic conductor due to its rigid 
conjugated backbone [17, 18] and has been explored in lith-
ium-ion batteries via in situ polymerization of EDOT [19–21]. 
However, poor ions diffusion ability and bad elasticity of pure 
conjugate rigid backbone may lead to poor cycling stability. 
Commercial PEDOT:PSS is a mixed ion-electron conductor. 
Besides, self-healing properties and improved elasticity of 
PEDOT:PSS make it more suitable as a binder for Si anodes 
[22, 23]. Previous reports focused on improving mechanical 
performance or electrical conductivity of PEDOT:PSS itself. 
Huo’s group did cross-link of D-sorbitol and vinyl acetate-
acrylic onto PEDOT:PSS chains to form a highly stretchable 

conductive glue and used as a high-performance binder [23]. 
Zhou’s group assembled PEO and PEI onto PEDOT:PSS 
chains and used as a binder with high ion and electron con-
ductivities [24]. Our previous work used multivalent ion-cross-
linking PEDOT:PSS to enhance the strength by forming 3D 
structured polymers [25].

Although the above researches have alleviated the disadvan-
tages of the Si negative electrode to a certain extent, these are 
mainly focused on optimizing the mechanical performance of 
binder but ignored the interface interaction with Si. The hydro-
phobicity and negativity of Si results in incompatible interfaces 
and charge repulsion, limiting the development of PEDOT:PSS-
based binders. Therefore, improvements in interfacial properties 
may play a crucial role [26–28]. In another work, we improved 
interfacial compatibility and conductivity by glycerol cross-
linking [12], but the interaction between Si and glycerol was 
relatively weak and needed to be further strengthened.

In this paper, considering the overall electrode structure, 
a silane coupling agent, γ-glycidoxypropyl trimethoxysilane 
(GOPS), was incorporated as a bridge between the Si and 
PEDOT:PSS to form a spatial network structure for the high-
performance electrode (SGP electrode). The use of GOPS 
greatly improves the interface compatibility between active 
material and binder. The SGP-10-180-60 electrode exhibited 
higher peeling force, smaller RSEI resistance after cycling. 
XPS  Ar+ etching depth analysis proved that the addition of 
GOPS is conducive to forming a more stable SEI. As a result, 
the obtained SGP-10-180-60 electrode showed better cycling 
stability and rate capability. After cross-linking, the SGP-10-
180-60 electrode could cycle validly for ~ 800 times (compared 
with 40 cycles for the electrodes before cross-linking) under a 
set specific capacity of 1000 mAh  g−1. Full battery composed 
of SGP-10-180-60 anode with NCM 523 cathode exhibited a 
high capacity of ~1.5 mAh  cm−2 and displayed ICE of 87.6%. 
The initial resultant specific energy is 530 Wh  kg−1 (based on 
the total weight of anode and cathode), and after 60 cycles, it 
maintained 485 Wh  kg−1.

2  Experimental Section

2.1  Materials

PEDOT:PSS (1.4 wt% in water) was obtained from Adamas, 
and the Si NPs were supplied by Jingxing alloy welding 
materials co. LTD. (γ-Glycidyloxypropyl) trimethoxysilane 
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(GOPS) was obtained from Adamas-beta. Polyacrylic acid 
(PAA) was supplied by Alfa-Aesar. All the chemicals were 
used directly without further purification.

2.2  Preparation of a Series of SGP Electrodes

In a typical experiment, a mixture of 80 mg of Si NPs, 20 mg 
(1.428 mL) of PEDOT:PSS, and 10 mg of GOPS was stirred 
to form an uniform slurry. After stirring for 6 h, the slurry 
was coated on a copper foil using a doctor blade method and 
dried overnight at 80 °C. Then, the as-prepared electrodes 
were further heat-treated at 180 °C for 60 min. The resulting 
electrode is denoted as SGP-10-180-60 electrode. For com-
parison, the electrodes with 5 mg GOPS and 20 mg GOPS 
were also prepared using the same method except for the mass 
of GOPS, and were denoted as SGP-5-180-60 and SGP-20-
180-60, respectively. Similarly, the electrodes of SGP-10-
160-60, SGP-10-200-60, SGP-10-180-0, SGP-10-180-10, 
and SGP-10-180-120 were also designed following same 
methodology. The Si-PEDOT:PSS electrode was prepared by 
the same method but without addition of GOPS cross-linker.

2.3  Preparation of Si‑PAA‑SP Electrode

In a typical experiment, a mixture of 80 mg Si nanoparticles, 
20 mg PAA binder, and 10 mg super P was stirred to form a 
uniform slurry. After stirring for 6 h, the slurry was coated 
on a copper foil using a doctor blade method and dried over-
night at 80 °C.

2.4  Preparation of SGP‑10–180‑60||NCM 523 Full 
Batteries

NCM 523 electrodes with a mass loading of 10 mg cm−2 
were supplied by Ningbo Shanshan Co., Ltd. The SGP-10-
180-60 anode and NCM 523 cathode had been activated 
by pre-cycling 3 times at low current (anode: 200 mA g−1, 
cathode: 20 mA g−1) before assembling into full battery.

2.5  Characterizations

X-ray diffraction measurements were carried out on Shi-
madzu XRD-6000 using Cu Kα radiation (λ = 1.5418Ǻ), 

and 2θ from 10 to 80 ° with a scan rate of 6 ° min−1. TEM 
(PHILIPS, Tecnai 12) and FESEM (JEOL, JSM-6700F or 
FESEM, Hitachi, S-4800) were conducted to study the mor-
phological features of the samples. Raman spectroscopy was 
conducted on a Jobin-Yvon LabRam HR80 spectrometer to 
examine the chemical composition using a 532 nm laser. 
Fourier transform infrared spectrometer (FTIR) spectra were 
obtained by Nicolet 6700 spectrometer. X-ray photoelec-
tron spectroscopy (XPS) was performed on a VG Scientific 
ESCLAB 220 iXL X-ray photoelectron spectrometer. Peel-
ing test was measured with a universal electromechanical 
tester (Instron 4465) to evaluate the binder strength, and 
an electrode sample prepared in 30 mm width and 80 mm 
length was attached to 3 M tape.

2.6  Electrochemical Measurements

Electrochemical tests were conducted using CR2016 coin 
half cells. Electrochemical cells were assembled with as-
prepared electrodes, metallic lithium foil as counter elec-
trode. The electrolyte is 1 M solution of  LiPF6 in a mixture 
of ethylene carbonate (EC)/diethylene carbonate (DEC) (1:1, 
vol%) with 10% fluoroethylene carbonate (FEC) was used as 
the additive and the separator is obtained from Celgard 2400. 
The weight of each piece of electrode is around 1.0 mg. The 
SGP-10-180-60 || NCM 523 full batteries were assembled 
by similar method. The half-cells were galvanostatic dis-
charged/charged in the fixed voltage range of 0–1.5 V, and 
full cells were tested in 2.8–4.25 V by the battery testing 
system (LAND CT2001A model, Wuhan jinnuo Electron-
ics, China). Cyclic voltammetry (CV) was implemented at 
0.2 mV s−1 between 0.01–2.0 V. Electrochemical impedance 
spectroscopy (EIS) was performed on a CHI 650E electro-
chemical workstation in the frequency range from 100 kHz 
to 0.1 Hz.

3  Results and Discussion

3.1  Electrochemical Performance of Different 
Electrodes

In this work, commercial Si nanoparticles were used as 
active material without further purification (Fig. S1). To 
investigate the effects of different cross-linking conditions 
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on cyclic stability, the galvanostatic cycling tests of SGP 
anodes at a diverse cross-linking time (Fig. S2a), different 
cross-linking temperatures (Fig. S2b), and different GOPS 
amounts (Fig. S2c) were conducted at 1.0 A  g−1. It is evident 
from Fig. S2 that the best cyclic stability is obtained when 
the cross-linking process was kept 60 min at 180 °C, and 
10 mg GOPS added. After 200 cycles, the SGP-10-180-60 
electrode can maintain a high reversible specific capacity of 
1957.6 mAh  g−1, the capacity retention is 70.8%. To better 
illustrate the cyclic stability of the SGP-10-180-60 electrode, 
the electrode used PAA as a binder was prepared with the 
same ratio (where the GOPS was replaced with super P) 
and marked as Si-PAA-SP electrode. After 200 cycles, the 
specific capacity and capacity retention values were 584.6 
mAh  g−1 and 19.1%, lower than the SGP-10-180-60 elec-
trode (Fig. 1a). For comparison, the electrode with pure 
PEDOT:PSS as a binder (Si-PEDOT:PSS electrode) was 
also prepared. After 200 cycles, the specific capacity and 

capacity retention were 384.1 mAh  g−1 and 13.6%. What 
is more, it is clear that the Coulombic efficiency of SGP-
10-180-60 and Si-PEDOT:PSS electrodes is better than 
the Si-PAA-SP electrode (Fig. S3). This could be inferred 
by the dense structure of conductive polymer reducing the 
electrolyte permeation and the direct contact between elec-
trolyte and Si. The rate capabilities were tested in the range 
of 0.5–8.0 A  g−1 of SGP-10-180-60, Si-PEDOT:PSS, and 
Si-PAA-SP anodes (Fig. 1b). The SGP-10-180-60 showed 
the best rate capability, and the specific capacity could main-
tain ~ 760 mAh  g−1 at 8.0 A  g−1, owing to the high electrical 
conductivity of PEDOT:PSS. The electrodes before and after 
cross-linking were tested with a quantitative lean electrolyte 
of 30 μL and a fixed Li insertion capacity of 1000 mAh  g−1 
at 2.0 A  g−1 as shown in Fig. 1c. The electrode after cross-
linking (SGP-10-180-60) can maintain this capacity for 
nearly 800 times compared with Si-PEDOT:PSS electrode 
that can maintain for less than 40 cycles and the Si-PAA-SP 
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Fig. 1  a Galvanostatic cycling test of Si-PEDOT:PSS electrode, SGP-10-180-60 electrode and Si-PAA-SP anode at current density of 1.0 A  g−1. 
b Rate capabilities of Si-PEDOT:PSS, SGP-10-180-60, and Si-PAA-SP anodes in current density of 0.5–8.0 A  g−1. c Si-PEDOT:PSS, SGP-10-
180-60, and Si-PAA-SP electrodes tested with quantitative lean electrolyte of 30 μL and a fixed Li insertion capacity of 1000 mAh  g−1 at 2.0 A 
 g−1
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electrode for 220 times. The reason for such noteworthy 
capacity may be that the SGP-10-180-60 electrode can form 
a stable SEI after cross-linking.

3.2  Mechanism of the Cross‑linking Reaction

To gain insight into the cross-linking reaction mechanism 
among PEDOT:PSS, GOPS, and Si nanoparticles, a series 
of XPS were conducted. As shown in Fig. 2a, broad peaks 
within the range of 102–105 eV are evident in both meas-
ured samples ascribed to the amorphous  SiOx layer [29]. 
The conclusion agrees with the TEM results. In Fig. S1, the 
area ratio of oxidation state peaks has been increased after 
treatment with GOPS, indicating the interaction between Si 
and GOPS. Besides, the peaks centered at ~ 99 eV can be 
indexed to  Si0, and there was a shift of ~ 0.3 eV toward high 
energy after treatment with GOPS. Figure 2b shows the S 
2p spectra consisting of two major parts, one from PEDOT 
at low binding energy (163-166 eV) and the other from PSS 
at high binding energy (166–172 eV) [30, 31]. After treat-
ing with GOPS, the PSS region’s S 2p spectra relate to the 
-SO3

− groups interacting with  Na+ or  H+ (~ 169 eV) has a 
shift to higher binding energy, while the PSS interacting 
with PEDOT and PEDOT region stays constant. The XPS 

revealed the cross-linking between PEDOT:PSS and GOPS 
[32–34]. The O 1s spectra after treating with GOPS also 
showed a shift to high binding energy (Fig. 2c), suggesting 
the change in the chemical environment of the oxygen atoms 
after getting treated with GOPS.

FTIR measurement is conducted to confirm the cross-link-
ing among Si, GOPS, and PEDOT:PSS binder. As shown in 
Fig. 2d, after treated with GOPS, two distinct peaks located 
at ~ 1200 and ~ 900 cm−1 were observed and assigned to 
-CH2 wagging, whereas the main band around 1100 cm−1 
is due to Si-O-Si symmetric stretching mode [35], which is 
the strong evidence of cross-linking between Si and GOPS. 
From Fig. 2e, it can be seen that in the spectrum of the 
PEDOT:PSS after treatment with GOPS, there are two peaks 
centered at ~ 1200 and ~ 1080 cm−1 that also exist in GOPS 
and three peaks at 1130, 1000, and 920 cm−1 are consistent 
with pure PEDOT:PSS. As it can be seen that in pure GOPS 
spectra, there are two peaks at 820 and 910 cm−1, which can 
be assigned to epoxide moieties of GOPS [36]. After reac-
tion with PEDOT:PSS, the two epoxide absorption bands 
disappeared, which further confirmed the reaction between 
GOPS and PEDOT:PSS. From the above analysis, GOPS 
acts as a bridge connecting Si with PEDOT:PSS. This struc-
ture is conducive to the contact between Si and binder and 
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further facilitates a dense SEI film formation. Raman spec-
tra of both pure PEDOT:PSS and after treatment by GOPS 
show the typical features of PEDOT:PSS [37]. There are no 
obvious Raman shifts of PEDOT:PSS after treatment with 
GOPS (Fig. S5), indicating that GOPS incorporation has not 
changed the main chain structure of PEDOT:PSS.

Based on the above characterizations, the cross-linking 
reactions between PEDOT:PSS, GOPS, and Si are shown 
in Fig. 3. The addition of (γ-glycidyloxypropyl) trimeth-
oxysilane (GOPS) in acidic PEDOT:PSS solution (1.4 wt% 
in water, pH = 2) causes the epoxy groups to be opened to 
form two hydroxyl groups (–OH) (chemical Eq. 1); these 
hydroxyl groups (–OH) interact strongly with –OSO3H in 
PSS chains by hydrogen bonding as shown in chemical 
Eq. 2 [30]. The methoxyl groups (–OCH3) on the other end 
of GOPS will be hydrolyzed, and the more stable silanol 
(Si–OH) groups are generated [38]. From Fig. S1, we can 

find that there is a layer of amorphous  SiOx on Si nanopar-
ticles, Si–OH groups of hydrolyzed GOPS and surface of 
Si nanoparticles can react with each other releasing water 
molecules. In brief, GOPS finally realized the cross-link-
ing of Si active material and binder PEDOT:PSS to form 
a spatial network structure, to increase the strength of the 
adhesive and the contact area between Si and PEDOT:PSS.

3.3  Characterization of Different Electrodes After 
Cycling

The impedance spectroscopy results of SGP-10-180-60, Si-
PEDOT:PSS, and Si-PAA-SP anodes after cycling 200 times 
at 1.0 A  g−1 are shown in Fig. 4a (inset image is the corre-
sponding fitting circuit model). The fitting resistances based 
on fitting equivalent are shown in Table S1. The EIS curves 
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are composed of two semicircles (corresponding to RSEI and 
Rct resistances) in the medium-to-high frequency region and 
Warburg impedance  (Zw). The SGP-10-180-60 electrode 
exhibited the smallest Rs and RSEI resistances. To investigate 
electrodes’ mechanical properties before and after cross-
linking with GOPS, peeling tests were conducted as shown 
in Fig. 4b. According to the F-D curves, the peeling force 
of Si-PEDOT:PSS is ~ 60 mN. After the addition of GOPS, 
the SGP-10-180-0 revealed a peeling force of ~ 125 mN. 
After being sufficiently cross-linked with GOPS, the SGP-
10-180-60 presented the highest peeling force value of ~ 200 
mN, indicating that GOPS cross-linking also encourages the 
improvement in the mechanical properties of the electrodes.

To better understand the cross-linked electrodes’ 
improved cycling stability, the SEM was conducted for the 
Si-PAA-SP, Si-PEDOT:PSS, and SGP-10-180-60 electrodes 
before cycling and after 200 cycles at 1.0 A  g−1 as shown in 
Fig. 5. It can be observed that Si nanoparticles are uniformly 
distributed on the Si-PAA-SP electrode and Si-PEDOT:PSS 
electrode (Fig. 5a, b). In comparison, there is a layer of poly-
mer on the SGP-10-180-60 electrode (Fig. 5c). After 200 
cycles at 1.0 A  g−1, evident morphology changes are noticed 
on Si-PAA-SP and Si-PEDOT:PSS electrodes as marked by 
red circles in Fig. 5d, e, considered as pulverization of Si 
particles [39]. By contrast, no obvious detectable morphol-
ogy change of Si nanoparticles was found for the SGP-10-
180-60 electrode after 200 cycles (Fig. 5f).

Figure 6 presents XPS  Ar+ etching depth analysis of 
Si-PEDOT:PSS and SGP-10-180-60 electrodes after 100 
cycles with a quantitative lean electrolyte (30 μL) and a fixed 
capacity of 1000 mAh  g−1 at 2.0 A  g−1 and the correspond-
ing SEM images are shown in Fig. S6. The etching proce-
dure included 6 steps, with an etching time of 500 s per step. 
Given that, the etch depth of  Ar+ is about 1.3 nm per 100 s. 
Each etch step corresponded to ~ 6.5 nm. From Fig. 6a, b, 
the different behavior of two electrodes surfaces is obvious 
(etching time is 0 s). The Si-PEDOT:PSS electrode showed 
no Si signal when the SGP-10-180-60 electrode displayed 
only the oxidation state of Si signal. It could be inferred that 
the surface of the electrodes after the cycling formed SEI. 
For the Si-PEDOT:PSS electrode, the SEI contained no Si 
element, while for the SGP-10-180-60 electrode, the Si of 
oxidized state (102–104 eV) participated in the formation 
of the SEI. As can be deduced from the above analysis, the 
main state of raw Si NPs is  Si0 (~ 99 eV). Therefore, the Si 
of oxidized state on the surface of the electrode after cycling 
comes from GOPS. After etched one step (500 s), the Si 
signal was detected on the surface of the Si-PEDOT:PSS 
electrode, which was also confirmed by SEM images (Fig. 
S6a, b). After cycling, the Si-PEDOT:PSS electrode showed 
obvious cracks (~ 3.7 μm), revealing that the SEI had been 
destroyed and generated repeatedly, so the signal of active 
material Si was detected by etching only one step. As for 
the SGP-10-180-60 electrode, it can be seen from the SEM 
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images (Fig. S6c, d) that the surface of the electrode after 
cycling is relatively uniform i.e., without obvious cracks. 
The signals of active material Si were detectable from the 
third steps of etching (1000 s). The XPS  Ar+ etching depth 
analysis peak fitting and relevant quantitative analysis of 
Si–Si and Si–O were added in Figs. S7, S8 and Table S2. 
With the increase in etching time, the Si–Si bond content 
of Si-PEDOT:PSS electrode increased from 27 to 40%, and 
after the etching 1500 s, the content remained at 40%. While 
the Si–Si content of the SGP-10-180-60 electrode gradually 
increased from 0 to 20% with the etching time increase from 
0 to 3000 s. It can be inferred that the addition of GOPS 
favors and contributes to forming a more stable SEI, which 
can alleviate the problems of SEI being destructed and 
repeated generation.

Overall, the mechanism is shown in Fig. 6c, the superior 
performance of SGP-10-180-60 electrodes can be attributed 
to the favorable properties of GOPS: (1) high conductivity 
and good film-forming properties of PEDOT:PSS are con-
ducive to form a desired SEI on the Si surface; (2) GOPS 
as a typical cross-inker [30] can improve the stability, elas-
ticity [40], mechanical stability [41], and adhesion [42] of 

PEDOT:PSS; therefore, the incorporation of GOPS can bet-
ter alleviate the volume expansion of Si; (3) the interaction 
between the GOPS and Si improved the stability of Si elec-
trode and made the Si not easy to fall off. (4) GOPS cross-
linked PEDOT:PSS is conducive to the formation of a more 
stable SEI, which can suppress the continued consumption 
of electrolyte.

3.4  Characterization of Full Batteries

To further explore the practicability of the SGP-10-180-60 
electrode, a full battery by a commercial Li-rich cathode 
was tested (NCM 523, SEM images of NCM 523 electrodes 
are shown in Fig. S9), as shown in Fig. 7a. The reversi-
ble capacity of NCM 523 cathode was ~ 160 mAh  g−1 at 
2.8–4.25 V (Fig. S10); the mass loading employed was 
10 mg cm−2, which is comparable to the cathode in practical 
mass loading of 15 mg cm−2 [43]. To balance this capacity, 
the SGP-10-180-60 anode had an active mass loading of 
only 0.8 mg cm−2. Figure 7b overlays the potential curves of 
SGP-10-180-60 and NCM 523 half-cells. Figure 7c shows 
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Fig. 5  SEM images of Si-PAA-SP (a, d), Si-PEDOT:PSS (b, e), and SGP-10-180-60 (c, f). Anodes before cycling (a–c) and after cycling 200 
times at 1.0 A  g−1 (d–f) 
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the cycling performance of full battery at 20 mA g−1; the 
full battery delivers a high specific capacity of ~1.5 mAh 
 cm−2 and exhibits a high ICE of 87.6% (after the initial three 
cycles, the Coulombic efficiency kept over 99%). The full 

cell presented an average discharge voltage of ~3.5 V. The 
initial resultant specific energy was 530 Wh  kg−1. After 60 
cycles, it maintained 485 Wh  kg−1, based on the total weight 
of anode and cathode.
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4  Conclusions

In summary, we have designed a GOPS cross-linked 
PEDOT:PSS binder for Si electrodes. The cross-linked 
binder enhanced the contact between the Si and the 
binder and alleviated the volume expansion and contrib-
uted to the formation of a more stable and robust SEI 
to reduce the absorption of the electrolyte. The obtained 
SGP-10-180-60 electrode can maintain a high specific 
capacity of 1957.6 mAh  g−1 after cycling 200 times, with 
a high capacity retention of 70.8%. What is more, the 

SGP-10-180-60 electrodes maintained up to ~ 800 times 
when tested with a quantitative lean electrolyte of 30 
μL and a fixed Li insertion capacity of 1000 mAh  g−1 
at 2.0 A  g−1. SGP-10-180-60 anode║NCM 523 cathode 
full battery exhibited an area capacity of ~1.5 mAh  cm−2 
and exhibited a high ICE of 87.6%. The initial resultant 
specific energy was 530 Wh  kg−1, and after 60 times, it 
maintained 485 Wh  kg−1, based on the total weight of 
anode and cathode. This study paves a new way of design-
ing binders used in other high-capacity electrodes with a 
strong volume effect.
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