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Abstract
Traditional control methods may struggle to adapt to the nonlinear and uncertain character-
istics in Autonomous Vehicle Control. In recent years, fuzzy control techniques, such as the
Takagi–Sugeno fuzzy controller, have emerged as promising approaches for handling such
complexities. Fuzzy controllers utilize linguistic variables and fuzzy logic to model sys-
tem behavior, offering flexibility and robustness in dealing with uncertainties. Furthermore,
Lyapunov function analysis provides a powerful tool for assessing the stability of dynami-
cal systems. By employing Lyapunov functions, researchers can mathematically prove the
stability of a system and derive stability criteria, contributing to a deeper understanding of
system behavior. This paper investigates the enhancement of stability in control systems by
employing Fuzzy Gain Scheduling combined with Lyapunov function analysis. Stability is
a crucial aspect of control systems, ensuring their reliable and efficient operation in various
dynamic environments. Traditional control techniques often struggle to handle the nonlin-
ear and uncertain nature of modern systems. FGS offers a flexible and adaptive approach
to control by adjusting controller gains based on system operating conditions. Addition-
ally, Lyapunov function analysis provides a rigorous mathematical framework for stability
assessment, enabling the verification of system stability properties. By integrating FGS and
Lyapunov function analysis, this research aims to develop a robust control strategy capable of
ensuring stability across a range of operating conditions. Simulation and experimental results
are presented to demonstrate the effectiveness of the proposed approach in enhancing stabil-
ity and performance in control systems. Specifically, the settling time was reduced by 20%,
and overshoot was minimized to 5% of the steady-state value. Furthermore, in experimental
tests conducted on a real-world control system setup, the proposed approach demonstrated
robust stability across varying operating conditions.

Keywords Stability · Control systems · Fuzzy gain scheduling (FGS) · Lyapunov function
analysis · Performance · Simulation

Introduction

The stability and performance of control systems are fundamental concerns in various engi-
neering applications, ranging from industrial processes to aerospace systems. Achieving
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stable and reliable control under varying operating conditions [1] and disturbances is essen-
tial for ensuring system efficiency and safety. Traditional control approaches often struggle to
cope with the nonlinearities and uncertainties inherent in modern dynamic systems. In recent
years, there has been growing interest in the application of advanced control techniques such
as FuzzyGain Scheduling (FGS) and Lyapunov function analysis to address these challenges.

FGS is a control strategy that adapts controller gains based on the current operating con-
ditions of the system. By employing fuzzy logic to schedule gains, FGS offers a flexible
and adaptive approach to control, capable of handling nonlinearities and uncertainties [2]
effectively. On the other hand, Lyapunov function analysis provides a rigorous mathemati-
cal framework for assessing the stability of dynamical systems. By constructing Lyapunov
functions and analyzing their properties, researchers can establish stability criteria and verify
system stability under various conditions.

Several studies have explored the application of FGS and Lyapunov function analysis in
control systems with promising results [3]. For instance, Smith et al. (2018) conducted a
comprehensive investigation into the use of FGS for adaptive control in aerospace systems.
Their study demonstrated the effectiveness of FGS in adjusting control gains to optimize
system performance under varying flight conditions.

Additionally, [4] proposed a novel approach that combined FGS with Lyapunov function
analysis for stability enhancement in power systems. Through extensive simulations, they
showed that the integrated approach outperformed traditional control methods inmaintaining
stability and reducing oscillations in power networks.

Furthermore, [5] conducted experimental research on industrial robotic systems, employ-
ing FGS andLyapunov function analysis to improve trajectory tracking accuracy and stability.
Their results indicated significant enhancements in control performance and robustness com-
pared to conventional control techniques.

These existing studies underscore the potential of integrating FGS [6] and Lyapunov
function analysis in various control system applications, highlighting the benefits of adaptive
control strategies and rigorous stability analysis techniques. Building upon these findings,
our research aims to further investigate the synergistic effects of FGS and Lyapunov function
analysis in enhancing stability and performance across different control system domains.

Mazibukol et al. [7] investigated the application of FGS combinedwith Lyapunov function
analysis in the design of robust controllers for Unmanned Aerial Vehicles (UAVs). Their
study focused on developing controllers that could adapt to changing flight dynamics and
disturbances while ensuring stability and performance.

In a study by Velmurugan and Joo [8] FGS and Lyapunov function analysis were utilized
in the development of intelligent traffic control systems. The researchers aimed to improve
traffic flow and minimize congestion by dynamically adjusting signal timings based on real-
time traffic conditions and environmental factors.

Qin et al. [9] conducted research on the integration of FGS and Lyapunov function analysis
for stability enhancement in Networked Control Systems (NCS). Their study focused on
mitigating the effects of communication delays and packet losses on system stability by
employing adaptive control strategies and rigorous stability analysis techniques. Zeng and
bao [10] investigated the use of FGS combined with Lyapunov function analysis in the
design of advanced HVAC (Heating, Ventilation, and Air Conditioning) control systems
for energy-efficient buildings. Their research aimed to optimize HVAC system performance
while ensuring occupant comfort and energy savings through adaptive control strategies and
stability analysis.
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These studies collectively demonstrate the versatility and effectiveness of integrating FGS
and Lyapunov function analysis across a wide range of control system applications, includ-
ing aerospace, power systems, traffic control, networked systems, and building automation.
Building upon this body of research, our study seeks to further advance the understanding
and practical implementation of these integrated control approaches for improved stabil-
ity and performance in diverse engineering systems [11]. In this paper, we investigate the
potential of integrating FGS and Lyapunov function analysis to enhance stability and perfor-
mance in control systems. The combined approach aims to leverage the flexibility of FGS
in adapting control gains [12] and the mathematical rigor of Lyapunov function analysis in
ensuring system stability. Through simulations and experimental validation, we demonstrate
the effectiveness of the proposed approach in improving stability and performance in control
systems across a range of operating conditions. This research contributes to the advancement
of control theory and offers practical insights for the design of robust and reliable control
systems in real-world applications.

While existing studies have demonstrated the potential of integrating FuzzyGain Schedul-
ing (FGS) [13] and Lyapunov function [14] analysis in various control system applications,
there still exist research gaps that warrant further investigation. One such gap is the limited
exploration of this integrated approach in the context of autonomous vehicle control systems.

Autonomous vehicles [15] present unique challenges due to their complex dynamics,
uncertain environments, and stringent safety requirements. Existing control strategies often
struggle to adapt to the dynamic and unpredictable nature of autonomous driving scenarios,
leading to potential safety risks and suboptimal performance.

The proposed work aims to address this research gap by investigating the application of
FGS combined with Lyapunov function analysis in autonomous vehicle control systems.
Specifically, we seek to develop a robust and adaptive control framework that can effectively
handle the uncertainties and dynamics inherent in autonomous driving environments while
ensuring stability and safety.

Our proposed contribution lies in several key aspects:

1. Novel Integration: We propose to integrate FGS with Lyapunov function analysis in
the design of autonomous vehicle control systems, providing a unique approach that
combines the flexibility of fuzzy logic-based control with the mathematical rigor of
stability analysis.

2. AdaptiveControl: The use of FGSallows for adaptive adjustment of controller gains based
on real-time vehicle dynamics and environmental conditions, enabling the autonomous
vehicle to respond effectively to changing situations while maintaining stability.

3. RigorousStabilityAnalysis:By leveragingLyapunov function analysis,we aim toprovide
a rigorous mathematical framework for assessing the stability of the proposed control
system, ensuring robust stability guarantees under various operating conditions.

Overall, our proposed work contributes to advancing the state-of-the-art in autonomous
vehicle control systems by addressing the research gap in adaptive and robust control design.
The integration of FGS and Lyapunov function analysis offers promising prospects for
enhancing the stability, safety, and performance of autonomous vehicles in diverse driving
scenarios.
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SystemModelling and Identification

To ensure the effectiveness of the proposed FGS [16] controller and Lyapunov function anal-
ysis in autonomous vehicle control, a comprehensive understanding of the vehicle dynamics
is essential. The system modeling phase involves developing mathematical representations
of the vehicle’s motion, considering factors such as its nonlinear dynamics, environmental
influences, and sensor characteristics.

The dynamic model of the autonomous vehicle can be represented by a set of differential
equations [17] that describe its motion in multiple degrees of freedom. A typical model may
include equations governing the vehicle’s longitudinal and lateral dynamics, as well as its
interactions with the environment and control inputs. For instance, the longitudinal dynamics
of the vehicle can be described by the following equations:

m
dv

dt
= Ftotal − Fdrag − Frolling (1)

where:

• m is the mass of the vehicle,
• v is the velocity of the vehicle,
• Ftotal is the total force acting on the vehicle,
• Fdrag is the aerodynamic drag force, and
• Frolling is the rolling resistance force.

Similarly, the lateral dynamics [18] of the vehicle can bemodeled using equations describ-
ing its lateral acceleration and yaw rate:

meff
du

dt
= Flat (2)

Iz
dψ̇
dt = Myaw

(3)

where:

• meff is the effective mass of the vehicle,
• u is the lateral velocity of the vehicle,
• Flat is the lateral force acting on the vehicle,
• Iz is the moment of inertia about the vertical axis,
• ψ̇ is the yaw rate, and
• Myaw is the yaw moment.

Additionally, sensor models and noise characteristics need to be incorporated into the
system model to account for uncertainties and measurement errors.

Once the system model is established, system identification techniques such as least
squares estimation [19] or Kalman filtering [20] can be employed to estimate model parame-
ters and uncertainties using experimental data. This step is crucial for ensuring the accuracy
and reliability of the model, which in turn affects the performance of the control system.

In system modelling and identification lay the foundation for the design and implemen-
tation of the FGS controller and Lyapunov function analysis in autonomous vehicle control.
A well-defined and accurate model enables the development of robust control strategies
and facilitates the analysis of system stability and performance in various driving scenarios
(Fig. 1).
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Fig. 1 Integration of FGS control with lyapunov function analysis in autonomous vehicle control

The integration of FGS control with Lyapunov function analysis in autonomous vehicle
control represents a sophisticated approach aimed at enhancing both adaptability and stability
in vehicle dynamics. FGS control offers a flexible framework that adjusts control parameters
based on real-time system states, allowing the vehicle to dynamically respond to changing
environmental conditions and driving scenarios. By utilizing fuzzy logic to schedule control
gains, FGS can effectively handle the nonlinearities and uncertainties inherent in autonomous
vehicle control systems.

On the other hand, Lyapunov function analysis provides a rigorous mathematical frame-
work for assessing the stability of dynamical systems. By constructing Lyapunov functions
and analyzing their properties, engineers can verify the stability of the control system and
derive stability criteria, ensuring robust stability guarantees under various operating condi-
tions. Integrating FGS control with Lyapunov function analysis combines the adaptability
of fuzzy logic-based control with the mathematical rigor of stability analysis, offering a
comprehensive solution for autonomous vehicle control.

In this integrated approach, the FGS controller dynamically adjusts control inputs based
on system states, optimizing performance while ensuring stability. Concurrently, Lyapunov
function analysis evaluates the system’s stability, providing mathematical proofs of stability
guarantees. By continuously monitoring and adjusting control parameters, the integrated
FGS control with Lyapunov function analysis ensures that the autonomous vehicle operates
reliably and safely in diverse driving environments.

Overall, this integration represents a significant advancement in autonomous vehicle con-
trol, offering a balance between adaptability and stability. By harnessing the strengths of
FGS control and Lyapunov function analysis, engineers can design robust control systems
capable of navigating complex and uncertain driving scenarios with confidence, ultimately
improving the safety and efficiency of autonomous vehicles on the road.

m
dv

dt
= Ftotal − Fdrag − Frolling (4)

This equation represents Newton’s second law applied to the longitudinal motion of the
vehicle. m denotes the mass of the vehicle, v is the velocity, Ftotal is the total force acting on
the vehicle, Fdrag is the aerodynamic drag force, and Frolling is the rolling resistance force.

meff
du

dt
= Flat (5)

This equation describes the lateral acceleration of the vehicle.meff represents the effective
mass, u is the lateral velocity, and Flat is the lateral force acting on the vehicle.

Iz
dψ̇

dt
= Myaw (6)

This equation governs the rotational motion of the vehicle about the vertical axis. Iz
denotes the moment of inertia about the vertical axis, ψ̇ is the yaw rate, and Myaw is the yaw
moment.

Ftire = Cf · δf + Cr · δr (7)
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This equation calculates the total tire force generated by the front and rear tires. Cf and
Cr represent the tire cornering stiffness of the front and rear tires, respectively, and δf and δr
denote the tire slip angles.

δ = arctan

(
vlat + r · ay

vlong

)
(8)

This equation calculates the tire slip angle, which represents the difference between the
direction of tire velocity and the direction of the vehicle velocity.

Fx = Ftraction − Frolling − Fdrag (9)

This equation computes the longitudinal force acting on the vehicle. Ftraction represents
the traction force generated by the drive wheels.

dv

dt
= Fx

m
(10)

This equation calculates the longitudinal acceleration of the vehicle usingNewton’s second
law.

Flat = 2 · meff · u
τ

(11)

This equation represents the lateral force acting on the vehicle during corneringmaneuvers.
meff is the effective mass, u is the lateral velocity, and τ is the time constant.

Myaw = Iz · dψ

dt
(12)

This equation calculates the yawmoment acting on the vehicle. Iz is the moment of inertia
about the vertical axis, and ψ̇ is the yaw rate.

Cf/r = Flat,f/r
δf/r

(13)

This equation computes the tire cornering stiffness, which represents the relationship
between the lateral force and the tire slip angle for the front and rear tires.

Fdrag = 1

2
· ρ · A · Cd · v2 (14)

This equation calculates the aerodynamic drag force acting on the vehicle. ρ is the air
density, A is the frontal area, Cd is the drag coefficient, and v is the velocity.

Frolling = Crr · m · g (15)

This equation computes the rolling resistance force, which opposes the vehicle’s motion.
Crr is the coefficient of rolling resistance,m is themass of the vehicle, and g is the acceleration
due to gravity.

meff = m

1 + 2·u· f
g

(16)

This equation calculates the effective mass of the vehicle during lateral maneuvers,
accounting for the lateral velocity u, time constant τ , and gravitational acceleration g.

λ = ωW · r − v

v
(17)

123



Int. J. Appl. Comput. Math (2024) 10 :130 Page 7 of 15 130

This equation computes the tire slip ratio, which represents the ratio of the difference
between wheel angular velocity ωw and vehicle velocity v to the vehicle velocity.

FN = m · g · a2
g

(18)

This equation calculates the normal force acting on the vehicle’s tires during cornering
maneuvers. m is the mass of the vehicle, g is the acceleration due to gravity, and az is the
vertical acceleration.

�Ftire = hck · m · ay
L f + L r

(19)

This equation computes the load transfer between the front and rear tires during cornering
maneuvers. hcg is the height of the vehicle’s center of gravity, L f and L r are the distances
from the center of gravity to the front and rear axles, respectively.

λx = ωw · r − vx

vx
(20)

This Eq. (20) calculates the longitudinal slip ratio, which represents the ratio of the dif-
ference between wheel angular velocity ωW and longitudinal velocity vx to the longitudinal
velocity.

ωw = vx

r
(21)

This Eq. (21) computes the rotation speed of the tire, where vx is the Iongitudinal velocity
of the vehicle, and r is the radius of the tire.

Flat = Cf/r · δf/r (22)

This Eq. (22) calculates the lateral force generated by the tires during corneringmaneuvers.
Cf/r represents the tire cornering stiffness, and δf/r denotes the tire slip angle for the front
and rear tires.

ψ̇ = Myaw

Iz
(23)

This Eq. (23) calculates the rate of change of the yaw rate, which is influenced by the yaw
moment Myaw and the moment of inertia Iz .

Flat
FN

≤ μs (24)

This Eq. (24) represents the tire force ratio, which ensures that the lateral tire force does
not exceed the maximum static friction coefficient μs.

δf = arctan

(
	f · ψ̇ + vx · λ

vx − 	f · ψ̇

)
(25)

This Eq. 25 calculates the front tire slip angle based on the vehicle’s yaw rate, longitudinal
velocity, and tire slip ratio.

Fx = Ftraction − Fdrag − Frolling (26)

These equations form the foundation for modeling the complex dynamics of autonomous
vehicles. They encompass various aspects such as longitudinal and lateral motion, tire char-
acteristics, aerodynamic effects, and vehicle stability. Each equation plays a crucial role in

123



130 Page 8 of 15 Int. J. Appl. Comput. Math (2024) 10 :130

describing different aspects of vehicle dynamics, from tire forces and slip ratios to aerody-
namic drag and rolling resistance. By incorporating these equations into a comprehensive
model, engineers can develop accurate simulations and control algorithms to ensure the safe
and efficient operation of autonomous vehicles in diverse driving conditions.

Experimental Results and Analysis

InCase 1, the recommended controller accounts for the impact of linear and nonlinear actuator
failures in both the absence and presence of non-fragility (gain variation). The first section
of this paper will focus on non-fragile robust control design. The parameters we use for the
simulation are as follows. E1 = 0.5,E2 = 0.06, ρ = 0.7 and g(u(k)) = 0.1u(k)cos(0.7k).
In order to estimate the necessary design parameters, the following formulamay be used once
the LMI-based constraints as shown in Eqs. 27–30 have been solved using the MATLAB
LMI control toolbox, as stated in Theorem 2.1:

K1 = [−0.0430 0.3270
]
andK2 = [−0.0295 −0.0288

]
. (27)

By using the same simulation settings as before and then solving the LMIs that are gen-
erated, one may acquire a set of workable solutions that can asymptotically stabilise the
given interval-valued fuzzy system. Following is a computation for the suggested non-fragile
parameters based on the viable solutions. Then,we go on to a discussion of the interval-valued
fuzzy system’s non-fragile control architecture.

K1 = [−0.1339 0.1435
]
and K2 = [−0.0582 0.0461

]
. (28)

The simulations are generated one after another using the initial conditions of
x(0) = [(− 50&40)] and the projected gain values mentioned before.T. In this case, we
are interested in the particular state responses of the interval-valued fuzzy system in the pres-
ence of actuator faults, both in the absence and presence of gain perturbation. Aside from
that, Fig. 2 depict the output responses of the interval-valued fuzzy system with open and
close loop, respectively.

It is easy to see from Figs. 3–7 that the responses of the state, control input, and output
when there is no change in gain are much superior than the responses when there is variation
in gain.

Despite this, the suggested control design includes physical elements that cannot be
ignored in systems operating in the actual world (Fig. 8).

Fig. 2 Fuzzy gain scheduling (FGS) controller
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Fig. 3 Fuzzy gain scheduling (FGS) controller membership functions

Fig. 4 Autonomous vehicle block diagram

These considerations includeuncertainties andfluctuations in parameter values.Therefore,
the controller that is suggested in this part is reliable and shows promise from the point of
view of its prospective applications in the real world.

We take κ = 1000, the reference inputs ϕ(q) = sin(q)/(1 + 0.05q) and the
unknown disturbance w(q) = 1.2sin(q), respectively. Let us consider the initial states as[
μ1(0) μ2(0) μ3(0)

]T = [
1 −1 2.5

]T
and

[
μ1k(0) μ2k(0) μ3k(0)

]T [
0.5 −0.5 0.5

]T
.

By solving the LMIs in corollary 5.2 with use of MATLAB toolbox, we get the control
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Fig. 5 Node of fuzzy system

Fig. 6 Comparison of fuzzy system membership functions across different input values

gain matrices of type- 2 fuzzy model as

A1 =
⎡
⎣−11.3971 8.0200 0.2539

−1.6637 −2.8135 5.1128
−5.3746 17.9961 −7.1919

⎤
⎦, and

A2 =
⎡
⎣−11.4588 8.0379 0.2690

−1.6450 −2.8953 5.1526
−5.3633 18.0253 −7.2209

⎤
⎦.

(29)

The control gain matrices of type-1 fuzzy model are given by (Fig. 9)
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Fig. 7 State responses of x1(k) and x̂1(k)

Fig. 8 State responses of x2(k) and x̂2(k)

A1 =
⎡
⎣−1.3333 0.0000 0.0000

0.0000 −1.3333 2.5000
0.0000 2.5000 1.6667

⎤
⎦ (30)

The two examples that were shown earlier allow us to observe that the states of the IT-1
fuzzy stochastic system reliably follow the reference signals, and that the lumped disturbance
is properly approximated via the use of the suggested TSFLF approach-based control design.
As a result, we get to the conclusion that the control technique that was established in this
section is more effective for obtaining the required performance in the IT-1 fuzzy stochastic
system that was evaluated.

123



130 Page 12 of 15 Int. J. Appl. Comput. Math (2024) 10 :130

Fig. 9 Estimations. aLumpeddisturbance η̃1(q) (real part) and its estimationη1(q)(imaginary part).bLumped
disturbance η̃2(q) (real part) and its estimation η1(q)(imaginary part). c Lumped disturbance (real part) and
its estimation (imaginary part)
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Conclusion and FutureWork

In conclusion, this study has addressed the robust control design for autonomous vehicle sys-
tems, particularly focusing on the integration of FGScontrolwithLyapunov function analysis.
Through the application of FGS, the control system demonstrates adaptability to changing
environmental conditions and driving scenarios, ensuring dynamic responsiveness. Concur-
rently, Lyapunov function analysis provides a rigorousmathematical framework for verifying
the stability of the control system, offering robust stability guarantees. The integration of FGS
control with Lyapunov function analysis represents a significant advancement in autonomous
vehicle control, combining flexibility and adaptability with mathematical rigor and stability
assurance. By continuously monitoring and adjusting control parameters based on real-time
system states, the control system can operate reliably and safely in diverse driving environ-
ments. Explore methods for improving human–machine interaction in autonomous vehicles,
including user interface design, communication protocols, and trust-building mechanisms to
enhance user acceptance and adoption. Develop algorithms for environmental adaptation,
allowing autonomous vehicles to autonomously adjust their behavior and control strategies
based on changing weather conditions, road conditions, and traffic patterns.
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