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Abstract
The dynamics of innumerable real-world phenomena is represented with the help of non-
linear ordinary differential equations (NODEs). There is a growing trend of solving these
equations using accurate and easy to implement methods. The goal of this research work is
to create a numerical method to solve the first-order NODEs (FNODEs) by coupling of the
well-known trapezoidal method with a newly developed semi-analytical technique called the
Laplace optimized decomposition method (LODM). The novelty of this coupling lies in the
improvement of order of accuracy of the scheme when the terms in the series solution are
increased. The article discusses the qualitative behavior of the new method, i.e., consistency,
stability and convergence. Several numerical test cases of the non-linear differential equations
are considered to validate our findings.
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Introduction

The first-order system of ODEs are defined as

dy
dx

= ψ(x, y), (1)

with starting point
y(0) = d, d ∈ R

N , (2)

whereψ = (ψ1(x, y1), ψ2(x, y1), . . . , ψn(x, yN )) can be linear or non-linear in y. The first-
order non-linear ordinary differential equations (FNODEs) are the underlying equations in
various real-world phenomena (see [1–5]) and are at the center of our analysis. FNODEs
explain numerous relevant mechanisms, be it analysis of economic growth through Solow
models (see [6, 7], the and references therein) or predicting prey-predator population using
Lotka-Volterra equations [8, 9] and finally the Riccati equations, having applications in
conformal mapping, algebraic geometry, quantum mechanics, etc. (see [10, 11] for further
details).

NODEs and FNODEs have been solved using several numerical and semi-analytical meth-
ods. The numerical methods include the basic numerical schemes (Euler, Runge–Kutta,
multistep methods), Laplace transform-based methods, Galerkin’s method, finite difference
method (see [12–15] and their cited references), finite element method (see [16–20] for
details). Themost explored semi-analytical methods for solving the NODEs are the Adomian
decomposition method (ADM) [21, 22], homotopy methods [23–25], variational iteration
method (VIM) [26–28], Pade approximation [29, 30], Power series method [31], optimized
decomposition method (ODM) [21, 32, 33]. In the articles [21, 32], ODM is established as a
superior method over other semi-analytical techniques for the ODEs and partial-integro dif-
ferential equations, respectively. Recently in 2022, Beghami et al. [34] used a new approach
based on ODM, called the Laplace optimized decomposition method (LODM), and proved
to be very accurate for solving the fractional PDEs. In addition to the fractional PDEs, the
authors in [35] solved two integro-partial differential equations using LODM and the results
were very promising. Interestingly, LODM was able to provide the closed form solutions.
Additionally, the LODM solution was able to predict the higher order moments with excel-
lent accuracy. The use of the Laplace transform in LODM leads to better theoretical error
estimates than ODMdue to the presence of an extra time-multiplier in the convergence result.
By better theoretical error estimates, we mean the lower error values of the LODM solution
in comparison to the ODM (see [32, 35] for further details).

Patade et al. [36, 37] have worked in the direction of developing numerical methods
based on semi-analytical techniques. They have introduced a numerical method based on
the Daftardar-Gejji and Jafari (DJM) method for solving ODEs [36] and Volterra-integro
differential equations [37]. Another article [38] focuses on the development of numerical
methods based on VIM. This motivates us to develop a numerical method that is based on
the newly developed and efficient LODM. Therefore, the objective of this paper is to com-
pute solutions for FNODEs using the coupled trapezoidal scheme and LODM. In addition,
the consistency, convergence and stability of the numerical schemes are also investigated.
The article includes four test cases of the FNODEs to establish the accuracy of the results
obtained using our method. The novelty of the paper is usage of the Laplace transform based
LODM method for coupling with the trapezoidal method. In addition, the novelty lies in
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the development of two numerical schemes with consideration of three and four terms of
LODM solution. Additionally, these numerical schemes are compared theoretically as well
as numerically.

The rest part of the paper is organized as follows: In Sect. 2, the fundamental idea of
LODMis described for the non-linear problems. Further, Sect. 3 discusses the novel numerical
method and its detailed convergence as well as the stability analysis. Finally, Sect. 4 deals
with the numerical implementation of the developed technique for the equation (1). The
results are presented in the form of tables and figures. The final section includes the paper’s
conclusions figured out from the implementation of the method.

Laplace Optimized DecompositionMethod (LODM)

The general first-order NODE is expressed as:

L[u] = N[u] + h, (3)

with the initial condition
u(0) = d, (4)

where L is linear differential operator d
dx , N is non-linear differential operator and h is

source term. Before proceeding with the explanation of LODM, we shall explain some basic
definitions and important details of ODM. also, the Laplace transform and inverse Laplace
transform of a function is defined as

L (g(x)) = G(s) =
∫ ∞

0
e−sx g(x)dx and L −1(G(s)) =

∫ ∞

0
esxG(s)ds. (5)

The core idea ofODMfor the systemof first orderODEs is thatwe take a linear approximation
of the nonlinear functions

F[L[u],u] = L[u] − N[u],
near the points d by using the first-order Taylor series expansion at t = 0 as follows:

F[L[u],u] ≈ ∂F
∂L[u] (d)L[u] + ∂F

∂u
(d)u. (6)

The above approximation gives us linear operator R defined as R[u] = R[u] + Cu, where
the functions C = (C1,C2, . . .CN ) are given by

C =
∂F
∂u (d)

∂F
∂L[u] (d)

. (7)

Applying the Laplace transform in Eq. (3) and using the differentiation property of Laplace
transform, we acquire:

L [u(x)] = d
s

+ 1

s
L [N[ u(x)]] + 1

s
L [h(x)],

which yields

u(x) = Ñ[u(x)] + h̃(x), (8)
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where Ñ[u(x)] = L −1
[ 1
sL [N[u(x)]], h̃(x) = d+L −1

[ 1
sL [h(x)]]. The LODM provides

the following series solution:

u(x) =
∞∑
k=0

uk(x), (9)

and the nonlinear terms can be approximtaed using the Adomian polynomials:

N[u(x)] =
∞∑
k=0

Ak(x), (10)

where Ak , k ≥ 0 are referred to as Adomian polynomials, see [21], and can be computed as
given below

Ak(x) = 1

k!
dk

dθk

[
N

(
k∑

i=0

θ iui (x)

)]∣∣∣∣∣
θ=0

. (11)

The component functionsuk are determinedwith the help of the following iteration formula:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L [u0(x)] = d
s + 1

sL [h(x)]
L [u1(x)] = 1

sL [A0(x)]
L [u2(x)] = 1

sL [A1(x) + Cu1(x)]
L [uk+1(x)] = 1

sL [Ak(x) + C(uk(x) − uk−1(x))], k ≥ 2.

Therefore, the required recursive relation is provided by applying the inverse Laplace
transform to the above equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0(x) = L −1
[
d
s + 1

sL [h(x)]
]

u1(x) = L −1
[
1
sL [A0(x)]

]

u2(x) = L −1
[
1
sL [A1(x) + Cu1(x)]

]

uk+1(x) = L −1
[
1
sL [Ak(x) + C(uk(x) − uk−1(x))]

]
, k ≥ 2.

(12)

Finally, if
∑∞

k=0 uk(x) converges then u(x) = ∑∞
k=0 uk(x) is the solution of the problem

(3). Hence:

u(x) = h̃(x) + L −1
[
1

s
L

[ ∞∑
k=0

Ak(x)

]]
.

Numerical Method Based on LODM

In this section, we shall introduce a numerical method based on LODM. In order to proceed,
we shall divide the computational interval [α, β] into subintervals α = x0 < x1 < . . . <
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xN = β such that �x = xi − xi−1 for every N ≥ i ≥ 1. The implicit trapezium formula is
given by

yi+1 = yi + �x

2

(
ψ(xi , yi ) + ψ(xi+1, yi+1)

)
. (13)

Comparing the above scheme with the Eq. (8), we obtain

u = yi+1, h̃ = yi + �x

2
ψ(xi , yi ), Ñu = �x

2
ψ(xi+1, yi+1). (14)

In order to incorporate LODM into this numerical method, the truncated series solution of
three terms, i.e., k = 2 is constructed as follows:

u = u0 + u1 + u2 = u0 + L −1
[
1

s
L [A0]

]
+ L −1

[
1

s
L [A1 + Cu1]

]

= u0 + Ñ(u0) + [Ñ(u0 + u1) − Ñ(u0) + CÑ(u0)]
= u0 + Ñ(u0 + Ñ(u0)) + CÑ(u0). (15)

Using the Eq. (14) in Eq. (15), one can obtain

yi+1 = yi + �x

2
ψ(xi , yi ) + Ñ

[
yi + �x

2
ψ(xi , yi ) + �x

2
ψ

(
xi+1, yi

+ �x

2
ψ(xi , yi )

)]
+ C

[
�x

2
ψ

(
xi+1, yi + �x

2
ψ(xi , yi )

)]

= yi + �x

2
ψ(xi , yi ) + �x

2
ψ

(
xi+1, yi + �x

2
ψ(xi , yi ) + �x

2
ψ

(
xi+1, yi + �x

2
ψ(xi , yi )

))

+ C
[

�x

2
ψ

(
xi+1, yi + �x

2
ψ(xi , yi )

)]
,

which gives the numerical scheme as

yi+1 = yi + �x

2

(
K1 + K3

) + �x

2
CK2 (16)

where

K1 = ψ(xi , yi ), K2 = ψ

(
xi+1, yi + �x

2
K1

)
, K3 = ψ

(
xi+1, yi + �x

2
K1 + �x

2
K2

)
.

In contrast to this, if the first four terms in the series solution are considered for analysis,
then a similar approach leads to

u = u0 + u1 + u2 + u3 = u0 + L −1
[
1

s
L [A0]

]
+ L −1

[
1

s
L [A1 + Cu1]

]

+ L −1
[
1

s
L [A2 + C(u2 − u1)]

]

= u0 + Ñ(u0) + Ñ(u0 + u1) − Ñ(u0) + CÑ(u0) + Ñ(u0 + u1 + u2) − Ñ(u0 + u1)

+ C(Ñ(u0 + u1) − Ñ(u0) + CÑ(u0) − Ñ(u0))

= u0 + Ñ[u0 + Ñ(u0 + Ñ(u0)) + CÑ(u0)] + C(Ñ(u0 + Ñ(u0)) − Ñ(u0) + CÑ(u0)).
(17)
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Again, using Eq. (14) in Eq. (17), it is easy to get

yi+1 = yi + �x

2

(
K1 + K4 + CK3 + (C2 − C)K2

)
, (18)

where

K1 = ψ(xi , yi ), K2 = ψ

(
xi+1, yi + �x

2
K1

)
,

K3 = ψ

(
xi+1, yi + �x

2
K1 + �x

2
K2

)
,

K4 = ψ

(
xi+1, yi + �x

2
K1 + C

�x

2
K2 + �x

2
K3

)
. (19)

Consistency and Order

Definition 3.1 A scheme is said to be consistent if the local truncation error (LTE):= y(xi +
�x) − yi+1 tends to zero as �x → 0. Furthermore, the scheme is said to be consistent of
order p if y(xi + �x) − yi+1 = O((�x)p+1) (see [1]).

This section is dedicated to proving that the schemes (16) and (18) are consistent and then
we proceed further to compute their order of accuracy. Note that in both these formulations,
K1, K2 and K3 are exactly the same. Using the Eq. (19), Ki ’s can be approximated using the
Taylor’s series approximation as

K2 = ψ(xi , yi ) +
(

�x
∂ψ

∂x
+ �x

2
ψ(xi , yi )

∂ψ

∂ y
+ (�x)2

2

∂2ψ

∂x2

+ (�xψ(xi , yi ))
2

8

∂2ψ

∂ y2
+ (�x)2

2
ψ(xi , yi )

∂2ψ

∂x∂ y

)∣∣∣∣
(xi ,yi )

:= ψi + �xψx + �x

2
ψiψy + (�x)2

2
ψxx + (�x)2

8
ψ2
i ψyy + (�x)2

2
ψiψxy,

K3 := ψi + �xψx + �x

2
ψy

[
2ψi + �xψx + �x

2
ψiψy + (�x)2

2
ψxx + (�x)2

8
ψ2
i ψyy

+ (�x)2

2
ψxy

]
+ (�x)2

2
ψxx + (�x)2

4
ψyyψ

2
i

+ (�x)2

2
ψxy

[
2ψi + �xψx + �x

2
ψiψy

]
+ O((�x)4),

K4 := ψi + (�x)ψx + (�x)2

2
ψxx + (�x)ψxy

[
(�x)ψi

2
+ (�x)

2

(
ψi + (�x)ψx

+(�x)ψiψy
) + C

(�x)

2

(
ψi + (�x)ψx + (�x)

2
ψiψy

)]

+ ψy

[
(�x)

2
ψi + C

(�x)

2

(
ψi + (�x)ψx + (�x)2

2
ψiψxy
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+ (�x)2

8
ψ2
i ψyy + (�x)2

2
ψxx + (�x)

2
ψiψy

)]
+ (�x)

2
ψyψi

+ ψy
(�x)

2

[
ψi + (�x)ψx + (�x)2ψiψxy + (�x)2

4
ψiψyy + (�x)2

2
ψxx

+ (�x)

2
ψy

(
(�x)

2
ψiψy + (�x)ψx + 2ψi

)]

+ ψyy

2

[
(�x)3

4

(
2C2 + 5C + 2

)
ψiψx + (�x)3

4

(
C + 2

)2
ψ2
i ψy

+ (�x)2

4

(
C + 2

)2
ψ2
i

]
+ O((�x)4).

Substituting these values in the scheme (16) gives us

yi+1 = yi + �x

2

[
2ψi + �xψx + �x

2
ψy

(
2ψi + �xψx + �x

2
ψiψy + (�x)2

2
ψxx

+ (�x)2

8
ψ2
i ψyy + (�x)2

2
ψxy

)
+ (�x)2

2
ψxx

]

+ (�x)3

16
ψyy

[
2ψ2

i +
(

�xψx + �x

2
ψiψy + (�x)2

2
ψxx + (�x)2

8
ψ2
i ψyy

+ (�x)2

2
ψxy

)2]
+ (�x)3

4
ψxy

[
2ψi + �xψx

]

+ (�x)3

4
ψxy

[
+ �x

2
ψiψy + (�x)2

2
ψxx + (�x)2

8
ψ2
i ψyy + (�x)2

2
ψxy

]

+ C
�x

2

[
ψi + �xψx + �x

2
ψiψy + (�x)2

2
ψxx

]

+ C
(�x)

2

[
(�x)2

8
ψ2
i ψyy + (�x)2

2
ψxy

]
(20)

and in the scheme (18) yields

yi+1 = yi + �x

2

[
2ψi + �xψx + �x

2
ψy

(
2ψi + �xψx + �x

2
ψiψy

)
+ (�x)2

2
ψxx

]

+ (�x)3

8
ψyyψ

2
i + (�x)3

2
ψxyψi

+ C
�x

2

[
ψi + �xψx + �x

2
ψiψy + (�x)2

2
ψxx + (�x)2

8
ψ2
i ψyy + (�x)2

2
ψxy

]

+ O((�x)4), (21)

To compute the local truncation error, let us evaluate

y(xi + �x) = yi + (�x)y′
i + (�x)2

2
y′′
j + (�x)3

6
y′′′
i + O((�x)4)

= yi + (�x)ψi + (�x)2

2

(
ψx + ψiψy

) + (�x)3

6

(
ψxx + 2ψiψxy

+ ψxψy + ψiψ
2
y + ψ2

i ψyy
) + O((�x)4). (22)
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Using the Eqs. (20) and (22), LTE between the approximated and exact solutions for the
method (16) is represented by

y(xi + �x) − yi+1 = − (�x)3

12

(
ψxψy − 2ψiψ

2
y + ψxx

) + (�x)3

24
ψ2
i ψyy − (�x)3

6
ψiψxy

− C
�x

2

(
ψi + �xψx + �x

2
ψiψy + (�x)2

2
ψxx + (�x)2

8
ψ2
i ψyy

+ (�x)2

2
ψxy

)
+ O((�x)4), (23)

while Eqs. (21) and (22) yield the LTE for the technique (18) as

y(xi + �x) − yi+1 = − (�x)3

12
ψxx − (�x)3

6
ψiψxy

− (�x)3

12
ψxψy + (�x)3

6
ψiψ

2
y − (�x)3

12
ψ2
i ψyy + C

(�x)3

16
ψ2
i ψyy

− C
(�x)2

2

[
ψiψy + (�x)ψiψxy + (�x)

4
ψiψyy + (�x)

2
ψxψy

+ (�x)

4
ψiψ

2
y − (�x)2

8
ψiψ

2
y − (�x)

4
ψxψy

]

− C2 (�x)

2

[
(�x)2

2
ψiψxy + (�x)2

8
ψ2
i ψyy + (�x)2

2
ψxx + ψi

+(�x)ψx + (�x)

2
ψiψy + (�x)2

8
ψ2
i ψyy

]
. (24)

The values of LTE presented in the equations (23) and (24) go to 0 as �x → 0, hence both
the numerical schemes are consistent for any value of C. In addition to this, using Definition
3.1, the scheme (16) is of first order if �x = |C| and second order if �x = √

(|C|). It is
noteworthy that the scheme (18) is of second order when �x = |C|. This establishes that
the second scheme obtained by taking four terms is an improved numerical scheme than the
one obtained using three terms. The advantage of coupling a semi-analytical method lies
in the improvement of the scheme and its order of accuracy when the number of terms are
increased.

Convergence

The objective of this subsection is to prove that our proposed numerical schemes are conver-
gent. To achieve the desired result, the consistency established in the previous subsection is
prerequisite in addition to proving that the schemes are regular.

Definition 3.2 A scheme is said to be regular if I = (x, y,�x) := yi+1−yi
(�x) defined in the

domain [α, β]×] − ∞,∞[ is continuous and Lipshitz functions in y, i.e.,

‖I (x, y,�x) − I (x, y∗,�x)‖ ≤ k‖y − y∗‖. (25)

In addition, a scheme is said to be convergent if it is regular and consistent and the order of
convergence of the scheme is same as the order of consistency (see [2]).
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We shall now establish the result (25) for schemes (16) and (18). The idea here is to prove
thatK∗

i ’s are Lipshitz functions for every i = 1, 2, 3, 4, and for every (x, y∗) ∈ [α − x0, α +
x0]×]−∞,∞[N . Assuming thatψ(x, y) are continuous and Lipshitz in [α−x0, α+x0]×]−
∞,∞[N , we have

‖K1 − K∗
1‖ = ‖ψ(xi , yi ) − ψ(xi , y∗

i )‖ ≤ k‖yi − y∗
i ‖. (26)

Using (26), the following can be easily obtained

‖K2 − K∗
2‖ ≤ k

∥∥∥∥yi + �x

2
K1 − y∗

i − �x

2
K∗

1

∥∥∥∥
≤ k

(
‖yi − y∗

i ‖ + �x

2
‖K1 − K∗

1‖
)

≤ k
(
1 + k

�x

2

)
‖yi − y∗

i ‖, (27)

‖K3 − K∗
3‖ ≤ k

∥∥∥∥yi + �x

2
K1 + �x

2
K2 − y∗

i − �x

2
K∗

1 − �x

2
K∗

2

∥∥∥∥
≤ k

(
‖yi − y∗

i ‖ + �x

2
‖K1 − K∗

1‖ + �x

2
‖K2 − K∗

2‖
)

≤ k
(
1 + k(�x) + k2

(�x)2

4

)
‖yi − y∗

i ‖, (28)

and

‖K4 − K∗
4‖ ≤ k

∥∥∥∥yi + �x

2
K1 + C

�x

2
K2 + �x

2
K3 − y∗

i − �x

2
K∗

1 − C
�x

2
K∗

2 − �x

2
K∗

3

∥∥∥∥
≤ k

(
‖yi − y∗

i ‖ + �x

2
‖K1 − K∗

1‖ + �x

2
‖K3 − K∗

3‖ + C
�x

2
‖K2 − K∗

2‖
)

≤ k
[
1 + k

(�x)

2
+ k C

(�x)

2

(
1 + k

(�x)

2

)
+ k

(�x)

2

(
1 + k(�x) + k2

(�x)2

4

)]

‖yi − y∗
i ‖. (29)

Thanks to the results obtained in expressions (26)–(28), the regularity of the scheme (16) is
shown below as

‖I(x, y, �x) − I(x, y∗,�x)‖ =
∥∥∥∥12

(
K1 + K3

) + 1

2
CK2 − 1

2

(
K∗

1 + K∗
3

) − 1

2
CK∗

2

∥∥∥∥
≤ 1

2
‖K1 − K∗

1‖ + |C|∞
2

‖K2 − K∗
2‖ + 1

2
‖K3 − K∗

3‖

≤
[
k
2

+ |C|∞
2

k
(
1 + k

�x

2

)
+ k

2

(
1 + k(�x) + k2

(�x)2

4

)]

‖yi − y∗
i ‖, (30)

for k’ = k
2 + |C|∞

2 k
(
1 + k�x

2

) + k
2

(
1 + k(�x) + k2 (�x)2

4

)
, the function I(x, y,�x) is

regular. Thus, by applying the Definition 3.2, the scheme (16) is convergent.

Again, using (26)–(29), the value of the norm in Eq. (25) for the scheme (18) yields

‖I(x, y,�x) − I(x, y∗,�x)‖ =
∥∥∥∥12

(
K1 + K4 + CK3 + (C2 − C)K2

) − 1

2

(
K∗

1 + K∗
4
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+ CK∗
3 + (C2 − C)K∗

2

)∥∥∥∥
≤

[
k + k2

4
(�x)

[
1 + C

(
1 + k

(�x)

2

)
+ (1 + k(�x)

+k2
(�x)2

4

)]]
‖yi − y∗

i ‖

+
[ |C|∞k

2

(
1 + k(�x) + k2

(�x)2

4

)

+(C2 − C)
k
2

(
1 + k

�x

2

)]
‖yi − y∗

i ‖, (31)

for k′ = k + k2
4 (�x)

[
1 + C

(
1 + k (�x)

2

)
+

(
1 + k(�x) + k2 (�x)2

4

)]

+|C|∞k
2

(
1 + k(�x) + k2 (�x)2

4

)
+ (C2 − C)k2

(
1 + k�x

2

)
, the function I(x, y,�x) is

regular. Hence, the Scheme (18) is convergent and having the same order as the order of
consistency.

In the next subsection, the stability of the numerical schemes (16) and (18) are discussed.

Stability

Definition 3.3 If a numerical scheme can be represented as yi+1 = Ayi after taking
ψ(x, y) = ηy in Eq. (1), then the scheme is said to be stable if

∣∣A∣∣ ≤ 1, (32)

i.e., the absolute value of the amplification factor in yi+1 = yi is less than or equal to 1 (see
[1]).

In order to test the stability of the concerned methods, the standard procedure is to consider
a test equation dy

dx = ηy so that ψ(x, y) = ηy. Thus, values of K1,K2,K3 and K4 are
computed as

K1 = ηyi ,

K2 = η

(
1 + η(�x)

2

)
yi ,

K3 = η

[
1 + η(�x)

2
+ η(�x)

2

(
1 + η(�x)

2

)]
yi

K4 = η

[
1 + η(�x)

2
+ C

η(�x)

2

(
1 + η(�x)

2

)
+ η(�x)

2

(
1 + η(�x) + η2(�x)2

4

) ]
yi .

(33)

Using the values of K′
i s, the techniques (16) and (18) can be interpreted as:

yi+1 =
[
1 + (�x)

2

[
η + η

(
1 + η(�x)

2
+ η(�x)

2

(
1 + η(�x)

2

))
+ Cη

(
1 + η(�x)

2

)]
yi

]
,
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and

yi+1 = yi + (�x)

2

[
ηyi + η

[
1 + η(�x)

2
+ C

η(�x)

2

(
1 + η(�x)

2

)

+η(�x)

2

(
1 + η(�x) + η2(�x)2

4

)]
yi

]

+ (�x)

2

[
C2η

(
1 + η(�x)

2

)
yi + Cη

[
η(�x)

2

(
1 + η(�x)

2

)]
yi

]
,

respectively. Hence, it is easy to see that our approach (16) is stable if∣∣∣∣1 + (�x)

2

[
η + η

(
1 + η(�x)

2
+ η(�x)

2

(
1 + η(�x)

2

))
+ Cη

(
1 + η(�x)

2

)] ∣∣∣∣ ≤ 1,

(34)

while scheme (18) is stable if
∣∣∣∣1 + (�x)

2

[
η + η

[
1 + η(�x)

2
+ C

η(�x)

2

(
1 + η(�x)

2

)
+ η(�x)

2

(
1 + η(�x) + η(�x)2

4

) ]]

(�x)

2
C2η

(
1 + η(�x)

2

)
yi + Cη

[
η(�x)

2

(
1 + η(�x)

2

)]∣∣∣∣ ≤ 1. (35)

Hence, one can establish the stability of the schemes after computing the values of C using
the Eq. (7).

Numerical Implementation

In this section, four simple examples of first order non-linear differential equations are
considered to analyze the validity of our numerical schemes.

Example 4.1 Consider the non-linear ODE

dy

dx
= −y2, y(0) = d = 1/16, (36)

and the exact solution for this problem is

y(x) = 1

x + 16
. (37)

In order to compute the value of the numerical solution using our numerical schemes, we
need the value of parameter C . For that, define

F[L[u], u] = du

dx
+ u2,

and therefore using the Eq. (7), we have

C =
∂F
∂u (d)

∂F
∂L[u] (d)

= 2d = 1

8
.

The Fig. 1 depicts the solution and absolute error plots for the problem (36). It is noteworthy
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Fig. 1 Comparison of our numerical solutions with exact solution for Example 4.1

Fig. 2 Stability region of
different methods for Example
4.1

that the four term numerical technique provides better accuracy than the three term scheme.
TheFig. 1 clearly shows that our four termnumerical scheme coincideswith the exact solution
and is behaving at par with the trapezoidal scheme. Here, we have used�x = √

1/8 = 0.125
for obtaining the results. It can be observed that the maximum absolute error is 10−3 obtained
using the three term scheme and minimum error is 10−4 obtained using the trapezoidal
method. The advantage of using our proposed numerical algorithms over the trapezoidal and
Runge–Kutta third order (RK-3) methods is justified by looking at the stability region plot
for these methods in Fig. 2. It is evident from this plot that our schemes have wider stability
region than the trapezoidal and the RK-3methods. So, in conclusion, the four-term numerical
method is the best method to solve this problem, if we factor in both error and stability.

Example 4.2 Consider another interesting ordinary differential equationwith cubic non-linear
term

dy

dx
= −y − 0.25y3, y(0) = d = 0.25

2
, (38)
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Fig. 3 Comparison of our numerical schemes with Trapezoidal method for Example 4.2

and the exact solution for this problem is given as

y(x) = d exp(−x)√
(1 + 0.25d2(1 − exp(−2x))

. (39)

The function F is expressed as

F[L[u], u] = du

dx
+ u + 0.25u3, and C = 1 + (0.75)u2|t=0 = 1.01.

It is observed that the four term numerical scheme (18) is showing very nice agreement with
the exact solution. The Fig. 3 is symbolic of the fact that the three term scheme gave higher
error than the trapezoidal method but the results obtained using the four term scheme are
better than the trapezoidal method which claims the superiority of our numerical scheme.
It should be mentioned here that we have taken �x = 1 for computing the results. The
comparison of the region of stability obtained after plotting the solutions of the amplification
factor after taking η�x as a single variable is presented in the Fig. 4. It is observed here that
both the schemes 16 and 18 have bigger stability region than the trapezoidal one. In addition
to this, the three term scheme here has the biggest stability region but generates highest error.
Therefore, the four-term scheme is superior among the three techniques.

Example 4.3 Let us solve the non-linear Riccati differential equation

dy

dx
= 1 − y2, y(0) = d = 0.25

2
, (40)

using the proposed numerical schemes and compare our results with the exact solution

y(x) = tanh(x) + d

d tanh(x) + 1
, (41)

as presented in [21].

Here, we have

F[L[u], u] = du

dx
+ u2 − 1, C = 2u|t=0 = 0.25.

The Fig. 5 depicts the solution plots for the problem (40) calculated using the proposed
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Fig. 4 Stability region of
different methods for Example
4.2

Fig. 5 Comparison of our numerical schemes with Trapezoidal method for Example 4.3

numerical schemes and display excellent accuracy. Our schemes give better results than
the trapezoidal scheme that was initially used as a numerical method to create these novel
techniques. It is worthy to mention that the behaviour of the numerical solution is improved
by adding an extra term computed using the semi-analytical technique. In order to obtain
the results, �x = 0.5 is taken. It is interesting to note that the parameter C aids in selecting
a suitable mesh width to achieve higher accuracy. In conclusion, our proposed four term
numerical scheme is an efficient method to solve the famous Riccati equation. This statement
is strengthened by visualizing the stability range for the numerical schemes through the Fig. 6.

Example 4.4 Let the FNODE be taken as

dy

dx
= y − y2, y(0) = d = 0.75, (42)
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Fig. 6 Stability region of
different methods for Example
4.3

Fig. 7 Comparison of our numerical schemes with trapezoidal method for Example 4.4

and the exact value of y be

y(x) = 0.75

(0.75 + 0.25 exp(−x))
. (43)

In this case, we can easily obtain

F[L[u], u] = du

dx
+ u2 − u, and C = 2d − 1 = 0.5, �x = 0.25.

The Fig. 7 validates the numerical results while comparing them with the exact solution
and at the same time shows its comparison with the numerical solution obtained using the
trapezoidal scheme. The absolute error plot confirms our findings that the proposed four term
scheme coincides with the exact solution. The Fig. 8 shows the plot of the imaginary part of
η�x against its real part for four numerical methods. It should be mentioned here that fixing
η gives the range of the mesh length for which the method is stable.
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Fig. 8 Stability region of
different methods for Example
4.4

Conclusions

This researchwork developed a numericalmethod through a novel coupling of the trapezoidal
method and the Laplace optimized decompositionmethod. To understand the relevance of the
number of terms of LODM solution to consider, the paper developed two numerical schemes
(three term and four term) and compared the numerical results for both the schemes. The
theoretical convergence, consistency and stability results were also discussed to validate the
schemes. In addition, the physically relevant examples of the FNODEs were solved using the
proposed schemes. It is evident from all the examples that our four-term numerical scheme is
highly accurate and efficient in dealing with FNODEs. Also, it should be mentioned here that
this technique of developing numerical methods based on semi-analytical techniques paved
the way for improving the accuracy of the algorithm by increasing the number of terms in
the semi-analytical approximations. The future scope of this work is the development of
the numerical method for higher order non-linear problems, and the authors are currently
exploring that area.
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