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Abstract
Rotavirus is an entirely transmissible virus that causes diarrhea. It has the ability to weather
to attribute to the pathogens’ various modes of communication. Worldwide, toddlers and
youngsters are especially stricken by rotavirus-precipitated diarrhea. Several rotavirus vac-
cines have been developed to manage this epidemic. At some point during the outbreak of
a disorder, the media plays a critical role. We investigated the impact of the media at vari-
ous stages of rotavirus vaccination by proposing a deterministic mathematical model. The
proposed rotavirus model is characterized into four parts: susceptible (S), vaccinated (V),
infected (I), and recovered (R). Basic essential mathematical properties of the model such
as positivity and boundedness of solutions, equilibria and their stability are analysed for the
deterministic model. We also derived a basic reproduction number to illustrate the epidemi-
ological status of the proposed system. Stability analysis techniques are used to determine
the effects of model parameters on the basic reproduction number and symptomatic infected
individuals during vaccination. The stochastic model of the proposed system is also devel-
oped to capture the variation or uncertainty detected during disease transmission. We solve
the stochastic model numerically using Euler Maruyama method. In the stochastic model,
the variability in the infected population is found. We observed the variability in the infective
population and found their distribution at a particular fixed time, showing that white noise
will play an essential role for small populations.
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Introduction

Rotavirus is a double-strandedRNAvirus that is themajor cause of diarrheal disorder amongst
toddlers and older children. The viruses enter via the fecal-oral route, where it mainly poi-
sons gut cells and reasons gastroenteritis. In 1973, Ruth Bishop first detected rotavirus [1].
Rotaviruses can communicate a disease to humans in addition to different animals. Rotavirus
contamination occurs most frequently in kids below five years. The inclusive diversity of
diarrhea cases resulting from rotavirus [2] is estimated to be 151,714 in 2019. Rotavirus-
caused diarrhea is surprisingly contagious. An unmarried inflamed person can unfold greater
than 10 trillion infectious debris per gram [3], among which one hundred transmit the con-
tamination to some other prone character [4]. Because the virus survives for nine to 19 days
[5], good enough sanitization can control the rotavirus. In the year 2000, rotavirus vaccina-
tion was applied in the U.S.A., and on account of that then, hospitalization instances have
been considerably reduced [6]. There are nine forms of rotavirus, with A being the most not
unusual for rotavirus contamination, in line with Leung. Oral rehydration remedy can control
inflamed kids, and proper vaccination can prevent the disease, and a brand new infection [7].
Rotavirus contamination incidence and severity have failed in international locations that
have protected rotavirus vaccine in recurring early life immunization policies [8].

There are eight types of rotavirus species named A to H, and this result is based on the
VP6 antigen [9]. Primary rotavirus-caused diarrhea is caused by species A. Africa, Asia,
and Latin America are the most high-risk regions for rotavirus infection. Because this region
lacks proper sanitation, the health care system cites Cortese. In pathology, a polymerase
chain reaction (PCR) test is used to diagnose rotavirus infection [10]. At a very early stage,
severe symptoms are observed in children. TheWorld Health Organization recommended the
rotavirus vaccine in 2013 in all childhood immunization plans to protect from the threat of
rotavirus epidemics [11]. This results in a reduction of rotavirus cases and lowmortality rates
among infants caused by rotavirus infection. However, consistent evidence of lower vaccine
efficacy is a significant source of concern for us, according to Zaman. Many questions have
been raised on the basis of different quality rotavirus vaccines for developing and developed
countries. The significant burdens, as with other infectious diseases such as HIV, malaria, and
hepatitis, are high implementation costs and distribution system difficulties (WHO 2013).
Overcoming this hurdle is a tremendous challenge for controlling the infection, and various
research centers are working on it [12].

Amathematicalmodel plays a significant role in predicting the behaviour of epidemics, and
it also helps to take preventive measures. Mathematical modeling is a quantitative measure
that can be used to take the initiative to formulate health policy by providing conceptual
results. Mathematical modeling also helps us justify the model parameters, variables, and
contact rate. Several mathematical models have been studied to analyze the dynamics of
rotavirus infection. Chan et al. [13] established a rotavirus infectionmodel in 1998 to calculate
and estimate disease burden. Effeltrerre et al. [14] studied the dynamics of rotavirus to verify
the secondary effect of vaccination in 2009. Atchison et al. [15] formulated an age structure
model to investigate the disease transmission and impact of the rotavirus vaccine in England
and Wales in 2010. In 2014, Lin et al. [16] studied the reasons for the diarrheal infectious
disease rotavirus (Rotarix and Rotateq). In 2015, Omondi et al. [17] formulated and analyzed
a mathematical model of rotavirus to verify the effectiveness of the vaccine. The effect of
vaccination and child care is suggested by Shumetie et al. [18]. The effectiveness of the
rotavirus vaccine and immunization was presented by Payne et al. [19]. Llmi et al. [20]
investigated the dynamics of a rotavirus epidemic model with the effect of crowing infected
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people. Ahmed et al. [21] proposed a mathematical model to study the epidemic modeling of
diarrhea viruses such as rotavirus. Folorunso et al. [22] examined the oral rotavirus vaccine
for developed countries, and its implications. In 2015, Namawejje et al. formulated a three-
dose vaccination model along with a bilinear incidence rate [23]. The bilinear incidence rate
and vaccination effect have been studied by Omondi et al. [24]. Shuaib and Riyapan [25]
formulated the mathematical model incorporating breastfeeding and immunization.

The deterministic mathematical model has certain limitations. Because the real world
contains randomness, such as instabilities, a deterministic approach cannot completely pre-
dict the dynamics of the model. The stochastic modeling of the infectious disease is more
physical and realistic, enriching it with more realistic properties [26–31]. In recent years,
many mathematical models have been developed for studying stochastic contagious disease
modeling, giving good results. Beretta et al. [32] developed a SIRS stochastic model with
time delay. An SIS epidemic model with a saturation effect was developed by Liu et al. [33]
and Zhao et al. [34]. The authors investigated the system’s persistence and existence in this
study. In 2014, Zhou et al. [35] analyzed a stochastic SIR model considering the stationary
distribution of the solution under specific parameter constraints. In 2016, Zhou et al. [36]
established the stochastic SISmodel with Levy jump. Zhou et al. [37] studied a stochastic SIS
model considering the media effect and environmental variations. Ding and Zhang [38] have
considered a stochastic SIRS epidemic model with information intervention. Djordjevic et
al. [39] formulated a stochastic SICA epidemic model for HIV transmission by considering
environmental white noise.

In this article, we have formulated a mathematical model for the dynamics of rotavirus
infection based on the study [40]. The human population’s natural birth and death rates are
also considered here. We categorize the human population into four subcategories: suscep-
tible, infected, vaccinated, and recovered. Here we believe in the media’s impact on disease
transmission. Our model also focuses on the effects of vaccination. We have also formulate a
stochastic mathematical model to analyse the rotavirus infection during vaccination and the
effect of media awareness with parametric perturbation. Also, the parameters’ sensitivity via
the model’s stochastic extension is analyzed.

The impact of media awareness is studied in detail for the deterministic model. The
analytical studies are performedusingboundedness, reproductionnumber, equilibria and their
stability analysis. The proposed stochastic version of the model is analyzed using various
theorems. An in-depth numerical simulation is performed to verify our analytical results
and large sample based iteration method also used to study the long term dynamics of the
stochastic system.

The paper is organised in the following manner: In Section “Epidemic Modelling”, we
have formulated an ordinary differential equation model. In this section, we have also derived
the boundedness and positivity of the system and analysed the proposed model on the basis
of the basic reproduction number. In Section “Stochastic Model”, we formulated a stochastic
differential equation model with parametric perturbations. In Section “Numerical Simula-
tions”, the model results have been verified with the help of numerical simulation. Finally,
in Section “Discussion”, we have finished with a brief conclusion.

Epidemic Modelling

In this modelling S(t) be the number of susceptiable individuals, V (t) the vaccinated indi-
viduals, I (t) the infected individual and R(t) the recovered individuals at time t respectively.
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Here we assume the population mix homogeneous to formulate the system of ordinary dif-
ferential equations. Thus, our model becomes:

dS

dt
= (1 − ρ)� − βSI

1 + pI
− (ν + μ)S,

dV

dt
= ρ� + νS − εβV I

1 + pI
− μV ,

d I

dt
= βSI

1 + pI
+ εβV I

1 + pI
− (τ + κ + μ)I , (1)

dR

dt
= κ I − μR.

We assume that � is the birth rate of S(t) by adult and β is the rate of contact. Here
we introduce the media impact 1

1+pI where p denotes the strength media effect. Ic is the
threshold value which decides whether media awareness is needed or not. We also consider
ϕ(I ) = I − Ic to show the media factor. Recruitment rate of vaccination individual is denoted
as ρ. Due to vaccination the contact rate reduced at a rate ε and ν is the vaccine coverage
rate. Here μ is the natural death rate and κ is the recovery rate. τ is the death rate due to rota
virus.

Here β̂(I , p) = β
1+pI , p represents the media effects with

p =
{
0, ϕ(I ) ≤ 0;
1, ϕ(I ) > 0.

(2)

When p = 0 then the transmission rate β̂ = β, constant and when p �= 1, the transmission
rate is β̂ = β

1+pI .

Analysis

The feasible region of the model can be supported by the non negativeness of the model
variables S(t), V (t), I (t), and R(t). In this section, we discuss feasible region of the
model. Therefore, the results of the epidemic model should be bounded in the region B =
{(S, V , I , R) ∈ R4+ : N (t) ≤ �

μ
, S(t) ≥ 0, V (t) ≥ 0, I (t) ≥ 0, R(t) ≥ 0} at any time

t ≥ 0.

Non-negativity of Solutions

Theorem 1 The solution of the system (1) is positive at any time t ≥ 0 with non negative
initial condition.

Proof From (1) we can write

dS

dt
|S=0 = (1 − ρ)� ≥ 0,

dV

dt
|V=0 = ρ� + νS ≥ 0

d I

dt
|I=0 = 0,

dR

dt
|R=0 = κ I ≥ 0.

Hence, the system (1) is positive at any time with positive initial conditions.
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Boundedness

Theorem 2 The system (1) is bounded in the feasible region B.

Proof Let us consider the population density function as follows:

N (t) = S(t) + V (t) + I (t) + R(t),
dN

dt
= � − μN .

By using Gronwall’s inequality,

N (t) = N (0)e−�t + �

μ
, t ≥ 0

lim
t→∞ sup N (t) ≤ �

μ
. (3)

So, we can say that the system (1) is bounded in the region B.

Equilibria

Assuming the state variable of the system (1) are constant, we choose

(1 − ρ)� − βSI

1 + pI
− (ν + μ)S = 0,

ρ� + νS − εβV I

1 + pI
− μV = 0,

βSI

1 + pI
+ εβV I

1 + pI
− (τ + κ + μ)I = 0, (4)

κ I − μR = 0.

From Eq. (4) we get the endemic equilibrium E∗(S∗, V ∗, I ∗, R∗) where

S∗ = (1 − ρ)�(1 + pI ∗)
β I ∗ + (ν + μ)(1 + pI ∗)

, V ∗ = (ρ� + νS∗)(1 + pI ∗)
εβ I ∗ + μ(1 + pI ∗)

R∗ = κ I ∗

μ
, (5)

and I ∗ is defined as

I ∗ = a5 − (a0μ + εβρ�a5)

a0a2 + εβ(ρ�a1 + a3 p)
(6)

where

a0 = β(1 − ρ)�, a1 = β + p(ν + μ), a2 = εβ + μp,

a3 = (1 − ρ)�ν, a4 = ν + μ, a5 = τ + κ + μ. (7)

Also when I = 0, R = 0 we have the disease free equilibrium Ê(Ŝ, V̂ , 0, 0) where

Ŝ = (1 − ρ)�

ν + μ
, V̂ = (ν + ρμ)�

μ(ν + μ)
. (8)
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Reproduction Number

In this section, we investigate the reproduction number by using the next-generation matrix
method. The transmission and transition matrices (P and Q respectively) of the system (1)
after substituting the disease-free equilibrium are as follows [41]:[

I ′
R′

]
=

[
β(S + εV ) 0

0 0

] [
I
R

]
−
[

(τ + κ + μ) 0
−κ μ

] [
I
R

]
(9)

Now,

P =
[

β(S + εV ) 0
0 0

]
, Q =

[
(τ + κ + μ) 0

−κ μ

]
(10)

|Q| = μ(τ + κ + μ), Q−1 =
[

1
τ+κ+μ

0
κ

μ(τ+κ+μ)
1
μ

]

U = PQ−1 =
[

β(S + εV ) 0
0 0

]
×
[

1
τ+κ+μ

0
κ

μ(τ+κ+μ)
1
μ

]
=

[
β(Ŝ+εV̂ )
(τ+κ+μ)

0
0 0

]

|U − λI2|Ê =
∣∣∣∣∣

β(Ŝ+εV̂ )
(τ+κ+μ)

− λ 0
0 −λ

∣∣∣∣∣ = 0,


⇒ λ

(
β(Ŝ + εV̂ )

(τ + κ + μ)
− λ

)
= 0. (11)

The dominant eigenvalue of the matrix PQ−1 is called the reproduction number and is
denoted as

R0 = β(1 − ρ)�

(ν + μ)(τ + κ + μ)
+ εβ(ν + ρμ)�

μ(ν + μ)(τ + κ + μ)

= R01 + R02 (12)

R0 is a combination of two terms here. R01 refers to human-to-human transmission. The
second term, R02, represents the human to human disease transmission after vaccination. If
R0 crosses the value 1, the system transitions from disease-free to endemic.

Local Stability

In this section, we consider two theorems for local stability. The functions X , Y , Z ,W are
considered for the system (1) given as follows:

X = (1 − ρ)� − βSI

1 + pI
− (ν + μ),

Y = ρ� + νS − εβV I

1 + pI
− μV ,

Z = βSI

1 + pI
+ εβV I

1 + pI
− (τ + κ + μ)I , (13)

W = κ I − μR.

The partial derivatives of the function regarding state variables are as follows:

∂X

∂S
= − β I

1 + pI
− (ν + μ); ∂X

∂V
= 0; ∂X

∂ I
= − βS

(1 + pI )2
; ∂X

∂R
= 0,
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∂Y

∂S
= ν; ∂Y

∂V
= − εβ I

1 + pI
− μ; ∂Y

∂ I
= − εβV

(1 + pI )2
; ∂Y

∂R
= 0;

∂Z

∂S
= β I

1 + pI
; ∂Z

∂V
= εβ I

1 + pI
; ∂Z

∂ I
= β(S + εV )

(1 + pI )2
− (τ + κ + μ); ∂Z

∂R
= 0;

∂W

∂S
= 0; ∂W

∂V
= 0; ∂W

∂ I
= κ; ∂W

∂R
= −μ.

Thus the Jacobian of the system becomes

J =

⎛
⎜⎜⎜⎜⎝

−{ β I
1+pI + (ν + μ)} 0 − βS

(1+pI )2
0

ν −{ εβ I
1+pI + μ} − βS

(1+pI )2
0

β I
1+pI

εβ I
1+pI

β(S+εV )

(1+pI )2
− (τ + κ + μ) 0

0 0 κ −μ

⎞
⎟⎟⎟⎟⎠ (14)

Theorem 3 The disease free equilibrium Ê is locally asymptotically stable if R0 < 1. Oth-
erwise the system is unstable when R0 > 1.

Proof The Jacobian matrix at Ê is as follows

J1 =

⎛
⎜⎜⎝

−(ν + μ) 0 −β Ŝ 0
ν −μ −εβ V̂ 0
0 0 β(Ŝ + εV̂ ) − (τ + κ + μ) 0
0 0 κ −μ

⎞
⎟⎟⎠ (15)

Hence, from the characteristic equation |J1 − λI | = 0, we have λ1 = −(μ + ν), λ2 =
−μ, λ3 = −μ, and λ4 < 0 if

β(Ŝ + εV̂ ) < (τ + κ + μ) 
⇒ R0 < 1. (16)

Hence the disease-free equilibrium is stable for R0 < 1.

Theorem 4 The endemic equilibrium E∗ is is locally asymptotically stable if R0 > 1.

Proof The Jacobian matrix of the system at E∗ is as follows:

JE∗ =

⎡
⎢⎢⎣
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎤
⎥⎥⎦ , (17)

where,

a11 = −
(

β I ∗

1 + pI ∗ + ν + μ

)
, a12 = 0, a13 = − βS∗

(1 + pI ∗)2
, a14 = 0,

a21 = ν, a22 = −
(

εβ I ∗

1 + pI ∗ + μ

)
, a23 = − εβV ∗

(1 + pI ∗)2
, a24 = 0,

a31 = β I ∗

1 + pI ∗ , a32 = εβ I ∗

1 + pI ∗ , a33 = β(S∗ + εV ∗)
(1 + pI ∗)2

− (τ + κ + μ), a34 = 0,

a41 = 0, a42 = 0, a43 = κ, a44 = −μ. (18)

Consequently, the characteristic equation becomes

(λ − a11)(λ
3 + b1λ

2 + b2λ + b4) = 0, (19)
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Table 1 Possible changes in the
process of the model

Transition Probability

(�G)1 = [1 0 0 0]T P1 = (1 − ρ)��t

(�G)2 = [−1 0 1 0]T P2 = βSI
1+pI �t

(�G)3 = [−1 0 0 0]T P3 = μS�t

(�G)4 = [−1 1 0 0]T P4 = νS�t

(�G)5 = [0 1 0 0]T P5 = ρ��t

(�G)6 = [0 − 1 1 0]T P6 = εβV I
1+pI �t

(�G)7 = [0 − 1 0 0]T P7 = μV�t

(�G)8 = [0 0 − 1 1]T P8 = κ I�t

(�G)9 = [0 0 − 1 0]T P9 = (τ + μ)I�t

(�G)10 = [0 0 0 − 1]T P10 = μR�t

where,

b1 = −(a11 + a22 + a33) > 0,

b2 = [a22a33 − a23a32 + a11(a22 + a33) − a13a31],
b3 = −a11(a22a33 − a23a32) − a21a13a32 + a13a31a22. (20)

Here, λ1 = a11 < 0. Now, we observe that Routh-Hurwitz criterion for the 3rd-degree
polynomial is also satisfied, since b1 > 0, b2 > 0, b1b2 − b3 > 0 for R0 > 1. Hence the
system is locally asymptotically stable.

Stochastic Model

All natural systems are mostly susceptible to stochastic perturbations. The stochastic model
exists on the basis of small changes in populations and the dynamical changes due to the
small changes in the parameters. For the initial phase of infection, the stochastic model plays
a pivotal role in small geographical regions. To get the relevant and important information,
we formulate the stochastic model of the (1)

Possible state changes in the stochastic process are based on deterministic models. Con-
sider the system (1) vector G, which is defined as G = [S, V , I , R]T . Table 1 defines
the probability of transition under the assumption that �t is very small. As a result,
�G = G(t + �t) − G(t) with t ∈ [0,∞) is obtained.

Here the expectation and variance are defined as E∗[�G] and E∗[�G�GT ] where,
• Expectation:

E∗[�G] = 10
i=1Pi (�G)i

=

⎡
⎢⎢⎢⎣

(1 − ρ)� − βSI
1+pI − (ν + μ)S

ρ� + νS − εβV I
1+pI − μV

βSI
1+pI + εβV I

1+pI − (τ + κ + μ)I
κ I − μR

⎤
⎥⎥⎥⎦�t;
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• Variance=

E∗[�G�GT ] = 10
i=1Pi [(�G)i ][(�G)i ]T

=
⎡
⎣

P1 + P2 + P3 + P4 −P4 −P2 0
−P4 P4 + P5 + P6 + P7 −P6 0
−P2 −P6 P2 + P6 + P8 + P9 −P8
0 0 −P8 P8 + P10

⎤
⎦�t

=
⎡
⎣

M11 M12 M13 M14
M21 M22 M23 M24
M31 M32 M33 M34
M41 M42 M43 M44

⎤
⎦�t,

where,

M11 = (1 − ρ)� + βSI

1 + pI
+ (ν + μ)S; M12 = −νS; M13 = − βSI

1 + pI
; M14 = 0

M21 = −νS; M22 = ρ� + νS + εβV I

1 + pI
+ μV ; M23 = − εβV I

1 + pI
; M24 = 0

M31 = − βSI

1 + pI
; M32 = − εβV I

1 + pI
; M33 = βSI

1 + pI
+ εβV I

1 + pI
+ (τ + κ + μ)I ;

M34 = −κ I ; M41 = 0; M42 = 0; M43 = −κ I ; M44 = κ I + μR.

Now, we define

Dri f t = C(G, t) = E∗[�G]
�t

=

⎡
⎢⎢⎢⎣

(1 − ρ)� − βSI
1+pI − (ν + μ)

ρ� + νS − εβV I
1+pI − μV

βSI
1+pI + εβV I

1+pI − (τ + κ + μ)I ,
κ I − μR

⎤
⎥⎥⎥⎦ , (21)

and the diffusion is defined as

Di f f usion = D(G, t)

=
√

E∗[�G�GT ]
�t

=

√√√√√√√

⎡
⎢⎢⎣
M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

⎤
⎥⎥⎦. (22)

Using (24) and (22), we have the stochastic differential equation as follows:

dG(t) = C(G, t) + D(G, t)dB(t),

d

⎡
⎢⎢⎣

S
V
I
R

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

(1 − ρ)� − βSI
1+pI − (ν + μ)S

ρ� + νS − εβV I
1+pI − μV

βSI
1+pI + εβV I

1+pI − (τ + κ + μ)I

κ I − μR

⎤
⎥⎥⎥⎦ dt

+

√√√√√√√√

⎡
⎢⎢⎢⎣

(1 − ρ)� + βSI
1+pI + (ν + μ)S −νS − βSI

1+pI 0

−νS ρ� + νS + εβV I
1+pI + μV − εβV I

1+pI 0

− βSI
1+pI − εβV I

1+pI
βSI
1+pI + εβV I

1+pI + (τ + κ + μ)I −κ I

0 0 −κ I κ I + μR

⎤
⎥⎥⎥⎦dB(t)

(23)
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Here, B(t) is the Brownian motion with the initial condition G(0) = G0, 0 ≤ t ≤ G.

Euler Maruyama Scheme

In this section, we utilize the Euler Maruyama scheme to determine the numerical solution
of the stochastic differential equation (23). The employed model parameters are reported in
Table 2. The following computational procedure holds:

dGn(t) = C(Gn, t) + D(Gn, t)dB(t),

d

⎡
⎢⎢⎣

Sn+1

V n+1

I n+1

Rn+1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Sn

V n

I n

Rn

⎤
⎥⎥⎦ +

⎡
⎢⎢⎢⎣

(1 − ρ)� − βSI
1+pI − (ν + μ)S

ρ� + νS − εβV I
1+pI − μV

βSI
1+pI + εβV I

1+pI − (τ + κ + μ)I
κ I − μR

⎤
⎥⎥⎥⎦ dt

+

√√√√√√
⎡
⎢⎣

(1 − ρ)� + βSI
1+pI + (ν + μ)S −νS − βSI

1+pI 0

−νS ρ� + νS + εSI
1+pI + μV − εβV I

1+pI 0

− βSI
1+pI − εβV I

1+pI
βSI
1+pI + εβV I

1+pI + (τ + κ + μ)I −κ I

0 0 −κ I κ I + μR

⎤
⎥⎦δBn,

where �t stands for the discretization parameter.

Parametric Perturbation of theModel

In what follows, we introduce parametric perturbation in the system (23). In this way, the
epidemic model (23) with a saturated transmission rate and stochastic fluctuations will be
reduced to the following form:

dS(t) = {(1 − ρ)� − βSI

1 + pI
− (ν + μ)S}dt + σ1(S − S∗)dB(t),

dV (t) = {ρ� − νS − εβV I

1 + pI
− μV }dt + σ2(V − V ∗)dB(t),

d I (t) = { βSI

1 + pI
+ εβV I

1 + pI
− (τ + κ + μ)I }dt + σ3(I − I ∗)dB(t), (24)

dR(r) = {κ I − μR}dt + σ4(R − R∗)dB(t),

where σ1, σ2, σ3, σ4 are real constants and known as the intensity of the stochastic envi-
ronment and B(t) standard Brownian motion.

Positivity and Boundedness of the Stochastic Model

Let (ϒ,F,D) be a complete probability space with a filtration {Ft }t∈R+ satisfying the usual
conditions; that is, it is right continuous and increasing while F0 contains all D-null sets.
Denote

�(t) = (S(t), V (t), I (t), R(t)) � (ψ1(t), ψ2(t), ψ3(t), ψ4(t)) (25)

and the norm |�(t)| = √
S2(t) + V 2(t) + I 2(t) + R2(t).

Let C2,1(R3 × (0,∞);R+) as the family of all nonnegative functions V (�, t) defined on
R
3 × (0,∞) such that they are continuously twice differentiable in � and once in t .

123



Int. J. Appl. Comput. Math (2024) 10 :53 Page 11 of 27 53

Table 2 Variables and biological relevant parameters values used for numerical simulations of the system (1)

Param- Biological Assigned value
eters meaning (unit)day−1

� Recruitment rate of human 0.5–1.8

ρ Recruitment rate of vaccination individual 0.008

β Effective contact rate 0.0005–0.01

ν vaccine converge rate 0.002

μ Natural death rate 0.018

κ Recovery rate 0.02

τ Death rate of children due to virus 0.0045

ε Effect of vaccination 0.0005

p Media effects 0–1

We define the differential operator L associated with four-dimensional stochastic differ-
ential equation

d� = G(�, t)dt + H(�, t)dB(t), (26)

where G and H are defined as

G =

⎛
⎜⎜⎜⎝

(1 − ρ)� − βSI
1+pI − (ν + μ)S

ρ� − νS − εβV I
1+pI − μV

βSI
1+pI + εβV I

1+pI − (τ + κ + μ)I
κ I − μR

⎞
⎟⎟⎟⎠ (27)

and

H = diag
(
σ1(S − S∗), σ2(V − V ∗), σ3(I − I ∗), σ4(R − R∗)

)
(28)

We have

L = ∂

∂t
+ 4

i=1Gi (�, t)
∂

∂ψi
+ 1

2
4
i=1(H

T (�, t)H(�, t))i, j
∂2

∂ψi∂ψ j
(29)

The action of the operator L on a function χ ∈ C2,1(R4 × (0,∞) : R4+) then we have

Lχ(�, t) = χt (�, t) + χψ(�, t)G(�, t)

+1

2
trace(HT (�, t)χψψ(�, t)H(�, t)) (30)

T means transposition.
In this subsection, we first show the existence of a unique positive global solution of the

stochastic model (24).

Theorem 5 The system (24) with the initial conditions (S(0), V (0), I (0), R(0)) ∈ R4+ there
is a unique solution (S(t), V (t), I (t), R(t)), t ≥ 0 which remain R4+ having probability is
one.

Proof Using Ito’s formula, (24) admits a non-negative solution in the form of unique local
on (0, τe), where explosion time is denoted τe due to the local Lipschitz coefficients of the
model.
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Next, we shall prove that the Eq. (24) assume this solution in a global sense - meaning
that τe = ∞.

Let q0 > 0 is sufficiently large for (S(0), V (0), I (0), R(0)) lying with in the interval
[1/q0, q0]. For each integer q ≥ q0, define a sequence of stopping times by

τq = in f

{
t ∈ [0, τe] : S(t) ∈

(
1

q
, q

)
or V (t) ∈

(
1

q
, q

)

or I (t) ∈
(
1

q
, q

)
or R(t) ∈

(
1

q
, q

)}
(31)

We set φ = ∞ where φ is an empty set. τq is non decreasing as q → ∞ we get

τ∞ = lim
q→∞ τp; (32)

Thus τ∞ ≤ τe. Now, we would like to verify τ∞ = ∞. There exist T > 0 and j ∈ (0, 1)
such that

P{τ∞ ≤ T } > j,∀q ≥ q1

P{τq ≤ T } ≥ j,∀q ≥ q1 (33)

Let us consider a function χ : R3+ → R+ defined as

χ(S, V , I , R) = (S − 1 − ln S) + (V − 1 − ln V )

+(I − 1 − ln I ) + (R − 1 − ln R), (34)

a nonnegative function. If (S(t), V (t), I (t), R(t)) ∈ R4+, by using Ito’s formula, we compute

dχ(S, V , I , R) = (
1 − 1

S

)
dS + (

1 − 1

V

)
dV + (

1 − 1

I

)
d I + (

1 − 1

R

)
dR

+(σ 2
1

2

(
1 − S∗

S

)2 + σ 2
2

2

(
1 − V ∗

V

)2 + σ 2
3

2

(
1 − I ∗

I

)2 + σ 2
4

2

(
1 − R∗

R

)2)
dt

+(
σ1
(
1 − 1

S

)
(S − S∗) + σ2

(
1 − 1

V

)
(V − V ∗)

+σ3
(
1 − 1

I

)
(I − I ∗) + σ4

(
1 − 1

R

)
(R − R∗)

)
dB(t)

= (
� + ν + τ + κ + 4μ + σ 2

1

2

(
1 − S∗

S

)2 + σ 2
2

2

(
1 − V ∗

V

)2

+σ 2
3

2

(
1 − I ∗

I

)2 + σ 2
4

2

(
1 − R∗

R

)2 − μ(S + V + I + R)

−τ I − (1 − ρ)�

S
− β

1 + pI
(S + εV ) + β I

1 + pI
(1 + ε)

)
dt

+(
σ1
(
1 − 1

S

)
(S − S∗) + σ2

(
1 − 1

V

)
(V − V ∗)

+σ3
(
1 − 1

I

)
(I − I ∗) + σ4

(
1 − 1

R

)
(R − R∗)

)
dB(t)

≤ (
� + ν + τ + κ + 4μ + σ 2

1

2

(
1 − S∗

S

)2 + σ 2
2

2

(
1 − V ∗

V

)2

+σ 2
3

2

(
1 − I ∗

I

)2 + σ 2
4

2

(
1 − R∗

R

)2)
dt
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+(
σ1
(
1 − 1

S

)
(S − S∗) + σ2

(
1 − 1

V

)
(V − V ∗)

+σ3
(
1 − 1

I

)
(I − I ∗) + σ4

(
1 − 1

R

)
(R − R∗)

)
dB(t). (35)

Considering

� = � + ν + τ + κ + 4μ + σ 2
1

2

(
1 − S∗

S

)2 + σ 2
2

2

(
1 − V ∗

V

)2

+σ 2
3

2

(
1 − I ∗

I

)2 + σ 2
4

2

(
1 − R∗

R

)2
,

we have

dχ(S, V , I , R) ≤ �dt + (
σ1
(
1 − 1

S

)
(S − S∗) + σ2

(
1 − 1

V

)
(V − V ∗)

+σ3
(
1 − 1

I

)
(I − I ∗) + σ4

(
1 − 1

R

)
(R − R∗)

)
dB(t) (36)

Where � is positive constant.
Integrating (36) yields

∫ τq∧T

0
dχ(S, V , I , R) ≤

∫ τq∧T

0
�ds +

∫ τq∧T

0

(
σ1
(
1 − 1

S

)
(S − S∗) + σ2

(
1 − 1

V

)
(V − V ∗)

+σ3
(
1 − 1

I

)
(I − I ∗) + σ4

(
1 − 1

R

)
(R − R∗)

)
dB(t), (37)

where, τq ∧ T = min(τq , T ). Then taking the expectations leads to

Eχ(S(τq ∧ T ), V (τq ∧ T ), I (τq ∧ T ), R(τq ∧ T )) ≤ χ(S(0), V (0), I (0), R(0)) + �T
(38)

Setting ζq = {τq ≤ T } for q > q1 and taking into account we have P(ζq ≥ j). For every
ζ1 ∈ ζq there are some I such that �i (τq , ζ1) equals either q or 1/q for i = 1, 2, 3, 4. Hence
we have

� = χ(S(τq , ζ1), V (τq , ζ1), I (τq , ζ1), R(τq , ζ1)). (39)

It is less than min(q − 1 − ln q, 1
q − 1 − ln 1

q ), then we have

χ(S(0), V (0), I (0), R(0)) + �T ≥ E
(
Iζqχ(S(τq), V (τq), I (τq), R(τq))

)

≤
{
min

{
q − 1 − lnq,

1

q
− 1 − ln

1

q

}}
(40)

Here Iζ of ζq is an indicator function. Consider q → ∞ leads to the contradiction ∞ =
χ(S(0), V (0), I (0), R(0)) + �T < ∞, as desired. This completes the proof.

Theorem 5 shows that the solution to model (24) will remain in R4+.The property makes us
continue to discuss how the solution varies in R3+ in more detail. Here, we present that the
definition of stochastic ultimate boundedness [5] is one of the important topics in population
dynamics and is defined as follows.

Definition 1 The solutions �(t) = (S(t), V (t), I (t), R(t)) of the model (24) are said to be
stochastically ultimately bounded, if for any ε ∈ (0, 1) there is a positive constant δ = δ(ε),
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such that for any initial value (S(0), V (0), I (0), R(0)) ∈ R4+ the solution �(t) of the model
(24) has the property that

lim
t→∞ sup P{|�(t)| > δ} < ε. (41)

Theorem 6 The solutions of model (24) are stochastically ultimately bounded for any initial
value (S(0), V (0), I (0), R(0)) ∈ R4+.

Proof Define a function

χ(S, V , I , R) = et (Sω + V ω + Iω + Rω) (42)

for (S, I , R, V ) ∈ R4+ and ω > 1. By Ito’s formula

dχ(S, V , I , R) = et
(
ωSω−1

(
(1 − ρ)� − βSI

1 + pI
− (ν + μ)S

)

+ωV ω−1
(

ρ� − νS − εβV I

1 + pI
− μV

)

+ωIω−1
(

βSI

1 + pI
+ εβV I

1 + pI
− (τ + κ + μ)I

)

+ωRω−1 (κ I − μR) (43)

+ω(ω − 1)

2

(
σ 2
1 S

ω
(
1 − S∗

S

)2 + σ 2
2 V

ω
(
1 − V ∗

V

)2

+σ 2
3 I

ω
(
1 − I ∗

I

)2 + σ 2
4 R

ω
(
1 − R∗

R

)2)
dt

+etω
(
σ1S

ω
(
1 − S∗

S

)
+ σ2V

ω
(
1 − V ∗

V

)

+σ3 I
ω
(
1 − I ∗

I

)
+ σ4R

ω
(
1 − R∗

R

))
dB(t)

≤ Ketdt + etω
(
σ 2
1 S

ω
(
1 − S∗

S

)
+ σ 2

2 V
ω
(
1 − V ∗

V

)

+σ 2
3 I

ω
(
1 − I ∗

I

)
+ σ 2

4 R
ω
(
1 − R∗

R

))
dB(t)

where K is a constant.
Based on Theorem (5) and from (43), we have

E
(
eτq∧T χ

(
S(τq ∧ T ), V (τq ∧ T ), I (τq ∧ T ), R(τq ∧ T )

))
≤ χ

(
S(0), V (0), I (0), R(0)

)

+KE
∫ τq∧T

0
esds. (44)

Letting t → ∞, we have

et Eχ(S(t), V (t), I (t), R(t)) ≤ χ(S(0), V (0), I (0), R(0)) + K(et − 1), (45)

which implies

Eχ(S(t), V (t), I (t), R(t)) ≤ e−tχ(S(0), V (0), I (0), R(0)) + K. (46)

Note that

|�(t)|ω = (S2(t) + V 2(t) + I 2(t) + R2(t))
ω
2
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≤ 3
ω
2 max

(
Sω(t) + V ω(t) + Iω(t) + Rω(t)

)
(47)

≤ 3
ω
2

(
Sω + V ω + Iω + Rω

)
.

Then we have

E |�(t)|ω ≤ 3ω/2
(
e−tχ

(
S(0), V (0), I (0), R(0)

)
+ K

)
, (48)

which means

lim
t→∞ sup E |χ(t)|ω ≤ 3ω/2K < ∞. (49)

Therefore, there exist a positive constant δ̂ such that

lim
t→∞ sup E |√χ(t)| < δ̂. (50)

For any ε > 0, set δ = δ̂2/ε2, then according to Chebyshev’s inequality,

P{χ(t) > δ} ≤ E |√χ(t)|√
δ

. (51)

Then we have

lim
t→∞ P{χ(t) > δ} <

δ̂√
δ

= ε. (52)

Which proves the theorem.

Generally speaking, the nonexplosion property, the existence, and the uniqueness of the
solution are not enough but the property of permanence is more desirable since it means the
long time survival in a population dynamics. Now, the definition of stochastic permanence
[39] will be given below.

Theorem 7 The solution of the system (S(t), V (t), I (t), R(t)) with the initial condition
(S(0), V (0), I (0), R(0)) and μ < � satisfies

lim
t→∞ sup E(|χ(t)|−ω) ≤ �, (53)

where ω is an arbitrary positive constant satisfying

ω + 1

2
max{σ 2

1 , σ 2
2 , σ 2

3 , , σ 2
4 } < � − μ, (54)

where,

� = 3ω(4ω�1 + �2)

4ω�1
× max

{
1,
(2�1 + �2 +

√
�2

2 + 4�1�2

2�

)ω−1}
, (55)

in which ξ is an arbitrary positive constant satisfying

ξ < � − μ − ω + 1

2
max{σ 2

1 , σ 2
2 , σ 2

3 , σ 2
4 }

�1 = � − μ − ω + 1

2
max{σ 2

1 , σ 2
2 , σ 2

3 , σ 2
4 } − ξ (56)

�1 = μ + max{σ 2
1 , σ 2

2 , σ 2
3 , σ 2

4 } + 2ξ
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Proof Define function

χ(S, V , I , R) = 1

S + V + I + R
, (57)

for (S(t), V (t), I (t), R(t)) ∈ R4+, using Ito’s formula, we get

dχ(S, V , I , R) = −χ2(� − μ(S + V + I + R))dt + χ3
(
σ 2
1 (S − S∗)2 + σ 2

2 (V − V ∗)2

+σ 2
3 (I − I ∗)2 + σ 2

4 (R − R∗)2
)
dt (58)

−χ2
(
σ1(S − S∗) + σ2(V − V ∗) + σ3(I − I ∗) + σ4(R − R∗)

)
dB(t)

Choosing a positive constant ω that satisfies and applying Itˆo’s formula, we obtain

L(1 + χ)ω = ω(1 + χ)ω−1 ×
(

− χ2(� − μ(S + V + I + R))(
σ 2
1 (S − S∗)2 + σ 2

2 (V − V ∗)2 + σ 2
3 (I − I ∗)2 + σ 2

4 (R − R∗)2
)

+ω(ω − 1)

2
χ4(1 + χ)ω−2

(
σ 2
1 (S − S∗)2 + σ 2

2 (V − V ∗)2

+σ 2
3 (I − I ∗)2 + σ 2

4 (R − R∗)2
)

= ω(1 + χ)ω−2 ×
(

− χ2(� − μ(S + V + I + R)) − χ3(� − μ(S + V + I + R))

+χ3(χ2
1 (S − S∗)2 + χ2

2 (V − V ∗)2 + χ2
3 (I − I ∗)2 + χ2

4 (R − R∗)2)
ω + 1

2
χ4(χ2

1 (S − S∗)2 + χ2
2 (V − V ∗)2 + χ2

3 (I − I ∗)2 + χ2
4 (R − R∗)2)

)

= ω(1 + χ)ω−1W, (59)

where

W =
(

− χ2(� − μ(S + V + I + R)) − χ3(� − μ(S + V + I + R))

+χ3(χ2
1 (S − S∗)2 + χ2

2 (V − V ∗)2 + χ2
3 (I − I ∗)2 + χ2

4 (R − R∗)2)
ω + 1

2
χ4(χ2

1 (S − S∗)2 + χ2
2 (V − V ∗)2 + χ2

3 (I − I ∗)2

+χ2
4 (R − R∗)2)

)
(60)

Numerical Simulations

In this section, we perform numerical simulations to support our analytical findings. The
parameters used for simulation (see Table 2) are taken from the study [40]. The newly
introduced parameter p (media effect) takes the value in [0,1]. For p = 0 i.e. no media
effect leads to transmission rate (β) and for p = 1 i.e. maximum media effect reduces
transmission rate ( β

1+I ). In our study, we have analyzed the system with several values of
p, from very small (0.01) to small (0.1) to moderate (0.5) to high value (0.9) so that the
entire scenario can be studied with respect to this parameter. We have taken most of the
parameter values from Table 2 and demonstrated the system dynamics for both R0 greater
and less than 1. For the parameter set � = 1, β = 0.005, p = 0.5, it is observed that
R0 = 5.835(> 1) which implies the disease persist in the deterministic system (1). First,
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Fig. 1 The relationship between S, I and g(S, I ) = βSI
1+pI for� = 1, β = 0.005 where a p = 0.5, b p = 0.9,

c p = 0.1. The other parameters are same as in Table 2

we have plotted the function g(S, I ) = βSI
1+pI concerning S, I for various values of the

parameters p. We fixed � = 1, β = 0.005 and took other parameter values from Table 2.
This g(S,I) shows the spread pattern of infection with respect to S, I. This surface plot mainly
visualize the spread of disease for different values of the media parameter p. We have drawn
the relationship for p = 0.5, 0.9, 0.1 in Fig. 1a–c, respectively. It is observed that the curve
is sigmoidal for I and exponential for S. For the above mentioned parameter values together
with p = 0.5, two equilibrium exists: disease free equilibrium (DFE) E ′(49.6, 5.96, 0, 0) and
endemic equilibrium (EE) E∗(35.89, 4.43, 6.45, 7.16). Similarly, for p = 0.1, 0.01 theDFE
are same and EE are (20.24, 2.69, 13.82, 15.35), (10.08, 1.56, 18.6, 20.67) respectively. As
R0 = 5.835 in all the cases, so by Theorems 3 and 4 the DFE unstable and EE stable
for all the case i.e. p = 0.5, 0.1, 0.01. We have drawn a time series diagram to visualize
these three scenario in Fig. 2a–c. The Runge-Kutta (RK) method (of order 4) is used to
simulate the deterministic model. For the high order RK methods it is possible to obtaining
good accuracy even if for a moderate step size but algorithms stability requires the step
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Fig. 2 The time series plot of the model (1) for a p = 0.5, b p = 0.1, and c p = 0.01. The other parameters
are same as in Table 2 with A = 1, β = 0.005

size not becomes large [42]. Here it is clear that all four compartments go towards a stable
equilibrium. So in Fig. 2a, the susceptible population (green) goes to stable equilibrium
density 35.89, the vaccinated population (purple) goes to stable equilibrium density 4.43,
infected population (red) goes to stable equilibrium density 6.45 and recovered population
(blue) goes to stable equilibrium density 7.16. Similarly, in Fig. 2b, the susceptible population
(green) goes to stable equilibrium density 20.24, the vaccinated population (purple) goes to
stable equilibrium density 2.69, the infected population (red) goes to stable equilibrium
density 13.82 and recovered population (blue) goes to stable equilibrium density 15.35.
In Fig. 2c, the susceptible population (green) goes to stable equilibrium density 10.08, the
vaccinatedpopulation (purple) goes to stable equilibriumdensity 1.56, the infectedpopulation
(red) goes to stable equilibrium density 18.6 and recovered population (blue) goes to stable
equilibrium density 20.67. In Fig. 2, we have observed that for low value of media effect
parameter the infected component dominant the susceptible. As we increase the impact of
media effect, we notice that the susceptible component get higher equilibrium density than
the infected equilibrium. So the media effect significantly impact the spread of rotavirus
infection.

Next, we have simulated the stochastic version of the model (23) through the Euler
Maruyama method. It is the simplest stochastic numerical approximation method for the
Ito scheme. The convergence and accurace for this scheme requires a small step size
[43]. This scheme represents the order 0.5 strong Taylor scheme [43]. For the stochas-
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Fig. 3 The path S(t), V (t), I (t)
and R(t) for the stochastic model
(23) with initial values
(S(0), V (0), I (0), R(0)) =
(2, 1.5, 1, 0.5). The parameters
are taken from Table 2 and
A = 1, β = 0.005 with a)
σ1 = 0.1, σ2 = 0.2, σ3 =
0.1, σ4 = 0.1, b) σ1 = 0.1, σ2 =
0.3, σ3 = 0.1, σ4 = 0.3, c)
σ1 = 0.3, σ2 = 0.3, σ3 =
0.2, σ4 = 0.3 and d)
σ1 = 0.3, σ2 = 0.1, σ3 =
0.3, σ4 = 0.1

tic model, we have used several values of intensity parameter (σi ) ranges from [0.1,0.3].
However, in most of the case we have fixed three (or, two) intensity parameters at the
same value and study the dynamics of sample path due to the non-fixed parameter(s).
To simulate the path of S(t), V (t), I (t) and R(t) for the model (23), we fixed the ini-
tial values (S(0), V (0), I (0), R(0)) = (2, 1.5, 1, 0.5) throughout the stochastic simulation.
The parameter values are taken from Table 2 with A = 1, β = 0.005. In Fig. 3a, we
consider the intensity parameters σ1 = 0.1, σ2 = 0.2, σ3 = 0.1, σ4 = 0.1 and gener-
ated the stochastic densities for susceptible (green), vaccinated (purple), infected (red) and
recovered population (blue). We further generated the stochastic densities corresponding to
σ1 = 0.1, σ2 = 0.3, σ3 = 0.1, σ4 = 0.3 in Fig. 3b; σ1 = 0.3, σ2 = 0.3, σ3 = 0.2, σ4 = 0.3
Fig. 3c and σ1 = 0.3, σ2 = 0.1, σ3 = 0.3, σ4 = 0.1 in Fig. 3d. We observed that all the
Fig. 3a–d are stochastically bounded (Theorem 6) and have positive, unique solution con-
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Fig. 4 The four different sample
paths and their average path of
S(t), V (t), I (t) and R(t) for the
stochastic model (23). The
parameters are taken from Fig. 3
with σ1 = 0.2, σ2 = 0.2, σ3 =
0.1, σ4 = 0.2

verges in probability (Theorem 5). Figure4a–d represents four different sample path and their
average path of S(t), V (t), I (t) and R(t) respectively for the stochastic model (23). The
parameters are taken from Fig. 3 with σ1 = 0.2, σ2 = 0.2, σ3 = 0.1, σ4 = 0.2. In Fig. 4a
(i.e. stochastic densities with respect to S), we observed that the second sample path (purple)
goes to extinction. The other paths have positive flow, as does the middle path (black). Note
that, as other compartment does not solely depend upon S, they don’t need to be extinct due
to S. However, they can be extinct due to stochastic fluctuations. Similarly, in Fig. 4b (i.e.,
stochastic densities with respect to V ), we observed that the fourth sample path (blue) might
undergo extinction after some time. The other paths have positive flow, as does the aver-
age path (black). We observed non-extinct sample paths for the I and R compartments (see
Fig. 4c, d). To get more detailed on the distribution of the densities of various compartments,
we have drawn histograms (see Fig. 5a–d) of the densities at the time point 200 for 5000 runs
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Fig. 5 Histogram of the densities
at the time point 200 of the
system (23). The parameters are
taken from Fig. 3 with
σ1 = 0.1, σ2 = 0.2, σ3 =
0.1, σ4 = 0.1

of the system (23). These histograms show the distribution of densities at a particular time
point for a large number of sample path simulation. The parameters are taken from Fig.3
with σ1 = 0.1, σ2 = 0.2, σ3 = 0.1, σ4 = 0.1. We have observed that maximum extinction
occurs on S and R population. The average densities lies in the approximate range (1.5, 3),
(1, 2), (0.75, 1.25) and (0.25, 0.75) for S, V , I and R respectively. For V and I the histogram
shows a near symmetric distribution. However, for S and I it shows a skewed distribution due
to a large times of extinction in samle path near or, before the mentioned time point.

We again simulate the deterministicmodel (1) and stochasticmodel (23) for the parameters
taken from Table 2 with A = 0.8, β = 0.001, p = 0.5. It is observed that R0 = 0.934(< 1),
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Fig. 6 The time series plot of the
model (1) and the path
S(t), V (t), I (t) and R(t) for the
stochastic model (23) with initial
values
(S(0), V (0), I (0), R(0)) =
(10, 2, 5, 3). The parameters are
taken from Table 2 with
A = 0.8, β = 0.001, p = 0.5
and σ1 = 0.3, σ2 = 0.1, σ3 =
0.3, σ4 = 0.1

123



Int. J. Appl. Comput. Math (2024) 10 :53 Page 23 of 27 53

Fig. 7 The four different sample
paths and their average path of
S(t), V (t), I (t) and R(t) for the
stochastic model (23). The
parameters are taken from Fig. 6

which implies the disease dies out in the deterministic system (1). These histograms show
the distribution of densities at a particular time point for a large number of sample path
simulation.

Only disease-free equilibrium (DFE) E ′(39.7, 4.76, 0, 0) for the parameter mentioned
above. As R0 = 0.934, so by Theorem 3, the DFE is stable. We have drawn the time series
diagram to visualize the scenario in Fig. 6a. Here it is clear that the S, V compartments
go towards a stable equilibrium concerning time, and I , R compartments go to zero. To
simulate the path of S(t), V (t), I (t) and R(t) for the stochastic model (23), we fixed
the initial values (S(0), V (0), I (0), R(0)) = (10, 2, 5, 3) throughout the simulation with
σ1 = 0.3, σ2 = 0.1, σ3 = 0.3, σ4 = 0.1. We have simulated three different runs (see
Fig. 6b–d) to observe any similar phenomena like the deterministic system.We observed that
the I , R simultaneously do not reveal any kind of extinction in all runs.We also simulate four
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Fig. 8 Histogram of the densities
at the time point 200 of the
system (23). The parameters are
taken from Fig. 6

different sample paths and their average path of S(t), V (t), I (t), and R(t) for the stochastic
model (23). It reveals there is no extinction scenario on the average run (see Fig. 7b–d),
although a downward trend is observed in the average run of I (t). Also, various histograms
of the densities (see Fig. 8a–d) at the time point 200 shows S and R compartments have more
chance to extinct in the present scenario.
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Discussion

In this article, our main focus is to study the SVIR epidemic model for rotavirus and the
role of media awareness for vaccination and rotavirus infection. The deterministic model
has two solutions, which are disease-free equilibrium and endemic equilibrium. The basic
reproduction number of the system has two parts: one is after vaccination, and another is after
vaccination. It is established that when R0 < 1, the system becomes virus-free and returns
to its disease-free state. But when R0 > 1, the virus’s extinction probability becomes less
than one. Thus, the system moves to its endemic state.

We have also investigated an stochastic SVIR model of the proposed SVIR ODE model.
We demonstrated that for relatively small noise, the solution of the stochasticmodel oscillates
around the solution of the ODE model. In this context, we would like to mentioned that most
of previous studies [44–46] mainly focused on the vaccine efficiency. Some recent studies
[47–49] focused onmodelling the breast feeding and vaccine efficiency through ordinary and
fractional differential equation. However, the impact of media is missing and we have studied
this part to enrich the rotavirus model. Specific impact of media on the system dynamics has
been studied through deterministic as well as stochastic setup.

So the important findings of our study includes the analysis of boundedness, reproduction
number, equilibriumpoint and their stability analysis for the deterministic system. The impact
of media on the spread of rotavirus transmission also investigated and we concluded that
media awareness has a great potential to control the disease. The stochasticmodel is designed
for the dynamics of rotaviruses. We use the Euler–Maruyama scheme to find the solution to
the stochastic differential equation. Theorems 5 and 6 show the positivity and bounds of the
stochastic system. Our analysis suggests that media campaigns can be used to understand the
present condition of the rotavirus infection and the effective inhibition and control measures
proposed by experts. Additionally, the numerical simulation suggests that as the intensity of
informational intervention increases, the infected population diminishes.

Also, analysis of the dynamics of the stochasticmodel suggests that it does not fully depend
on R0 like the deterministic model. The present study confirms a significant advantage over
the other methods in effectiveness and unconditional convergence. However, the optimal cost
of rapid disease control due to the combined effect of media awareness and vaccination will
be an interesting area of study in our future work.
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