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Abstract
Analytical investigation is held on the steady and axisymmetric flow model in a porous
mediumcontaining amicropolar fluid between twodisks.Using the proper similarity transfor-
mation, the system of velocity and microrotation partial differential equations is transformed
into a non-dimensional form. The differential transform technique, which produces an output
in the form of a series, is used to determine the estimated solution to these equations. On this
spot, there is a detailed discussion and visual representation of how the micropolar param-
eter, Reynolds number, and magnetic field parameter affect the velocity and microrotation
profiles. The numerical values of couple stress and the skin friction are compared to data that
have already been published. The findings produced by DTM are compared with the data
acquired by numerical techniques to verify the method’s correctness and validity. It can be
found that the behavior of the microrotation profile is very close to the normal graph from the
lower to the upper disk. The magnetic field effect will assist in improving the performance of
oil extraction drilling systems used in mining industry and the other geothermal applications.

Keywords Differential transform method · Porous disks · Magnetohydrodynamics ·
Micropolar fluids

Introduction

The flow of fluid between two porous disks has a huge application in industries. This type of
flow has been used in the manufacturing of semiconductors, in the engines of gas turbines,
storage devices for computers, etc. Researchers have too much interest in this area because of
the theoretical and practical importance. Eringen [1] was the first who proposed the basics of
micropolar fluids. Such fluids are a subclass of microfluids. The model micropolar fluids are
used to define the flow of liquid crystals, flow of blood, flow in capillaries andmicrochannels,
porous medium, etc. Eringen [2] updated his theory of micropolar fluid in the year 1966.
Eringen [3] and Lukaszewicz [4] have also discussed micropolar fluid. Rashidi et al. [5]
studied nanofluid flow in the model of rotating porous disks. They discussed the effect of
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different physical parameters of the flow andmagnetic field.Mahanthesh et al. [6] highlighted
hydromagnetic nanofluid in their study. They represented the effects of physical constraints
by graphs and discussed them in detail. Soid et al. [7] analyzed MHD flow in a stretching
and shrinking disk. They adopted the MATLAB software tool for solving equations. They
analyzed the impact of the magnetic field parameter and suction parameter on the shear
stress. Aziz et al. [8] modelled MHD 3D flow in a rotating disk. They adopted the ND
solve mechanism for solving the equations. Agarwal and Mishra [9] presented MHD forced
flow and heat transfer in the problem of rotating disks by using HPM. They also compared
HPM results with numerical results to prove the accuracy of HPM. Krishna and Chamkha
[10] discussed MHD squeezing flow of nanofluid between parallel disks. They adopted
Galerkin’s optimal homotopy asymptotic method. They examined the consequence of the
key parameters and showed them with graphs. Ibrahim [11] chose time-dependent viscous
fluid in the study of the rotating disks. He solved the equations numerically by using the
finite difference method. Gupta [12] studied flow due to disk rotation. They used the HPM
method in their model. Turkyilmazoglu [13] developed the fluid flow and heat transfer in
the problem of the rotating disk. Agarwal [14] analyzed flow between parallel disks with
uniform porosity. Venerus [15] studied squeeze flow between porous disks. He considered
flow in the liquid films. Waqas et al.[16], Asma et al. [17], Devaki et al. [18], Upadhya [19],
and Lin and Ghaffari [20] have also discussed the model of disks in a different manner.

Recently, many researchers devoted their time to researching the micropolar fluid flow
property but few of them have discussed the flow ofmicropolar fluid in rotating disks because
of the complexity of obtained differential equations. Agarwal [21] discussed the micropolar
fluid in her problem. She analyzed heat mass transfer with flow profile on various parameters.
Doh andMuthtamilselvan [22], Takhar et al. [23], Sajid et al. [24], Sadiq et al.[25], Mohyud-
Din et al. [26], Bhat and Katagi [27, 28], Pasha et al. [29], Gupta [30], Ahmad et al. [31] and
Kushal et al. [32–38] used micropolar fluid as a source fluid in their studies.

Mostly, in the above-mentioned research, equations are solved numerically by using dif-
ferent numerical methods. Few of them used the analytical method for solving equations.
Here the author used the differential transform method (DTM) to obtain the solution for
ODEs. Zhou [39] introduced the theory of DTM on linear and nonlinear equations in the
experiment of electric circuits. Usman et al. [40], Keimanesh et al. [41], Hatami and Jing
[42], Agarwal [43], Gupta et al. [44], Balazadeh et al. [45], and Gupta and Agarwal [46]
applied DTM in their research. Awati et al. [47] applied the homotopy analysis method to
get the approximate solution in their model. Agarwal [48], Gupta [49], and Ganji et al. [50]
used HAM and HPM to obtain the solution.

The main goal of this research is to examine the MHD flow of a micropolar fluid, which
is filled between two disks. The nonlinear partial differential equations are reformed into
a system of nonlinear ODEs by suitable transformation. Such obtained ODEs are solved
analytically by using the differential transform method. The effect of Reynolds number,
micropolar parameter, andmagnetic field parameter on flowprofile is discussed and presented
by graphs. The values of skin friction and couple stress is compared with numerical method
results and literature, which are displayed in tabular form. The novelty of the current study
is to discuss the magnetic field effect on velocity and microrotation profiles.
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Mathematical Formulation

An axisymmetric, laminar, and steady flow of a micropolar fluid, which is filled between
two porous disks is considered. Both disks are resting on the plane z � −d and z � d
respectively. A micropolar fluid is chosen as an electrically conducting fluid in the presence
of a transverse magnetic field, which is applied perpendicularly on the disks. Let u, v, w be
the radial, transverse, and axial velocity and N1, N2, N3 be microrotation components in the
cylindrical coordinate system as shown in Fig. 1.

The velocity and microrotation profiles are taken as follows [23]:

u � u(r , z), v � 0, w � w(r , z)

N1 � 0, N2 � N (r , z), N3 � 0. (1)

The equations of continuity, flow, and microrotation are given by [23]
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where η � z
d be the variable of similarity, B be the strength of the magnetic field, ρ is

the density of fluid, p be the pressure, j be the micro inertia, μ be the viscosity, κ be the
gyro-viscosity, α1 be the coefficient of gyro-viscosity.

Fig. 1 Flow geometry
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The boundary conditions of the problem are as follows:

u(r , 1) � 0, u(r , −1) � 0, w(r , 1) � −V

w(r , −1) � V , N (r , 1) � 0, N (r , −1) � 0 (6)

A stream function defined by [23] is as follows:

�(r , η) � V

2
r2 f (η), (7)

Therefore u(r , η) and w(r , η) is defined by

u(r , η) � Vr

2d
f ′(η) (8)

w(r , η) � −V f (η) (9)

Let

N (r , η) � Vr

2d2
g(η) (10)

Now substitute the values of u, w, N from Eqs. (8)-(10) into Eqs. (3)-(5). After simplifi-
cation and eliminating p, we get
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be the micropolar variables.

From Eq. (6), the reduced form of boundary conditions is given by

f (1) � 1, f (−1) � −1, f ′(1) � 0,

f ′(−1) � 0, g(1) � 0, g(−1) � 0. (13)

The shear stress and couple stress on the disks is calculated by
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From Eqs. (11), (12) and (13), it is clear that f ′ is even and g is odd function so that
we can say that axial velocity is symmetric along the central line and the microrotation is
asymmetric. Therefore, we can consider this model under the region 0 ≤ η ≤ 1.

So reduced boundary conditions can be written as

f (0) � 0, f (1) � 1, f ′(0) � 0,

f ′(1) � 0, g(0) � 0, g(1) � 0. (16)
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Methodology of DTM

k Times differentiation of f (x) in this method is given by
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Which represents the Taylor series form of f (x) at x � x0. Following theorems Ti (i ≤ 10)
can be concluded from Eq. (17) and Eq. (18):

T1: If f (x) � g(x) ± h(x) then F (λ) � G(λ) ± H (λ).
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Application of DTM

Initially, we will transform Eqs. (11) and (12) under the above-mentioned theorem. Then we
get the following iterative equations:
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The transformed boundary conditions are as follows:

F(0) � 0, F(1) � a, F(2) � 0,

F(3) � b, G(0) � 0, G(1) � c. (22)

where a, b, c can be evaluated by using appropriate boundary conditions mentioned in
Eq. (16). We will get the approximate solution of f (η) and g(η) by using iteration from Eqs.
(20) and (21).

Results and Discussion

In this division, the author highlights the impact of the different physical factors on the radial
velocity f ′(η), the axial velocity f (η) and the microrotation profile g(η). For the validation
of the differential transform method, the author presented comparative data of the outcomes
achieved by DTM with the outcomes evaluated by the numerical method as well as results
available in previous studies. This comparison is tabulated in Tables 1, 2 and 3.

In the Fig. 2, f ′(η) is discussed for various numeric values of magnetic field parameter
Mn , by assigning other variables as a fixed value like micropolar variables α � 1, β � 0.001
micropolar parameter R � 1 and the Reynolds number Ro � 1. The figure shows the

Table 1 Comparison between DTM and NM results, when α � 1, β � 0.001, R � 1, Ro � 1, Mn � 2

f ′ f −g

η DTM NM DTM NM DTM NM

0.1 1.565464 1.565714 0.157906 0.157932 0.047141 0.047184

0.2 1.504863 1.505080 0.311752 0.311801 0.091159 0.091243

0.8 0.475429 0.475154 0.952253 0.952299 0.129602 0.129824

0.9 0.239237 0.238963 0.988036 0.988053 0.075901 0.076070
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Fig. 2 Radial velocity graph for
different Mn

decreasing behavior of the radial velocity from the lower to the upper disk. In addition,
the radial velocity is increasing with a rise in the value of Mn up to approximately the
middle of both the disks and decreases with a rise in the numeric value of Mn thereafter. The
reason behind is that, on increasing the magnetic field parameter, Lorentz force increases
automatically which create resistive force within the fluid, hence velocity decreases near the
upper disk. In Fig. 3, the effect ofMn on f (η) is displayed on the same above-mentioned fixed
values. This figure illustrates that f (η) is increasing throughout the gap length. One more
observation can be seen from this figure which is, that the axial velocity has an increasing
behavior with a rise in the values of Mn in the entire gap length. Figure 4 elucidates the

Fig. 3 Axial velocity graph for
different Mn
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Fig. 4 Microrotation graph for
different Mn

variation of the microrotation g(η) for various values of Mn for the same fixed parameters.
One observation can bemade that the behavior of themicrorotation is very close to the normal
graph. In addition, increasing the value of Mn , it has an increasing behavior. The results of
Figs. 3 and 4 are in the good agreement with the physical reason due to the applied magnetic
field in the transverse direction which promotes both the velocity and the microrotation
profiles.

Figures 5, 6 and 7 displays the variation of both profiles for distinct values of themicropolar
parameters R after keeping other variables as constant like micropolar variables α � 1,
β � 0.001,micropolar parameter R � 1, themagnetic field parameterMn � 3, the Reynolds

Fig. 5 Radial velocity graph for
different R when Ro � −1
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Fig. 6 Axial velocity graph for
different R when Ro � −1

Fig. 7 Microrotation graph for
different R when Ro � −1

number Ro � −1. We can observe from Fig. 5 that the radial velocity is falling continuously
from η � 0 to η � 1. One more thing can be observed that the radial velocity profile is
increasing from the lower disk to the approximately middle of both the disks as we increase
the value of R but as the velocity crosses its middle its behavior is reversed. The variation
of f (η) is reflected in Fig. 6. A continuous increasing behavior of velocity can be seen from
η � 0 to η � 1. In addition, the axial velocity also rises with a rise in the values of R in the
entire gap. The nature of g(η) can be seen in Fig. 7. As per the graph, g(η) has incremental
nature with an increase in the micropolar parameter. One more observation can be made that
the peak of the graph is shifting towards the upper disk on increasing the values of R.
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The variation of R when the Reynolds number is fixed at Ro � 1, on different profiles
are reflected in Figs. 8, 9 and 10 when other variables are having a fixed value mentioned
above. The falling behavior of the radial velocity is displayed in Fig. 8. It is also clear from
figure that the radial velocity profile is decreasing with rise in R in the neighbourhood of
the lower disk but it has reversing nature thereafter. Figure 9 presents the variation of f (η)
for various value of the micropolar parameter. As per this figure, the value of the velocity
profile is rising rapidly from the lower boundary to the upper boundary. Onemore observation
can be made that velocity is decreasing with rise in R in the entire gap. The nature of the
microrotation profile is shown in Fig. 10. This figure explains that g(η) increases rapidly up

Fig. 8 Radial velocity graph for
different R when Ro � −1

Fig. 9 Axial velocity graph for
different R when Ro � 1
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Fig. 10 Microrotation graph for
different R when Ro � 1

to the approximate middle of the path and decreases up to the upper disk thereafter. It can also
be analyzed that on rising the values of the micropolar parameter, the microrotation profile
is also rising.

The impact of Ro on the radial, axial velocity and microrotation profile are displayed in
Figs. 11, 12 and 13. The variation of the radial velocity f ′(η) is reflecting in Fig. 11 for
various values of Ro by choosing other variables as a constant. This figure describes that the
radial velocity is falling rapidly from η � 0 to η � 1. It can also be depicted that velocity
is increasing with rising the values of Ro near the lower disk while decreasing with rising
the values of Ro near the upper disk. The variation of the axial velocity f (η) can be seen in

Fig. 11 Radial velocity graph for
different Ro
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Fig. 12 Axial velocity graph for
different Ro

Fig. 13 Microrotation graph for
different Ro

Fig. 12. This figure explaining the rising behavior of the axial velocity in the entire gap length
as well as with respect to the distinct values of Ro. The variation of g(η) for different values
of Ro is presenting in Fig. 13. This graph describes the approximately normal behavior of
the microrotation profile. It can also be depicted that the microrotation profile is increasing
with rising the values of Ro.
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Conclusion

The MHD flow of a micropolar fluid between two porous disks is discussed. The obtained
higher-order nonlinear ODEs are evaluated by using DTM. The obtained outcomes are com-
pared with the formerly available work which verifies the exactness and validity of the DTM.
The author makes the following conclusions:

• The nature of the radial and the axial velocities are similar for the entire gap length. Its
behavior is similar concerning the different parameters except for the distinct values of
microrotation parameter while Ro � 1.

• The nature of the microrotation profile is very close to the normal graph from the lower to
the upper disk. Also, it has an increasing behavior with respect to all physical parameters.

• The comparison of numeric values with literature shows that DTM is a better way for
evaluating nonlinear ODEs.

In future study, wemay generalize this model for the micropolar nanofluid with the effects
of the magnetic fields.
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