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Abstract
Multimodal transportation systems (MTS) represent a cornerstone of modern logistics and
transportation planning. At its core, MTS involves orchestrating the movement of goods
through various transportation modes such as rail, road, air, and sea. The inherent challenges
of MTS arise from the need to seamlessly integrate these modes to ensure timely and cost-
effective transport. Decision-makers are often confrontedwith dilemmas such as determining
the best mode transitions, minimizing transshipment costs, and ensuring timely deliveries
amidst varying mode-specific constraints. These complexities necessitate advanced opti-
mization techniques to find effective solutions. In response to these challenges, this article
delves into the application of the Teaching–Learning-Based Optimization (TLBO) algo-
rithm to unravel the intricate challenges of multimodal transportation systems (MTS). In
our exploration, the TLBO algorithm emerges as a groundbreaking method. We detail the
TLBO process wherein multiple MTS solutions, stemming from varied transport mode com-
binations, are evaluated on their cost metrics. Adopting a systematic pairing, where a more
efficient “teacher” guides a less efficient “learner,” the TLBO algorithm iteratively refines its
search for the optimal solution. Two illustrative numerical examples demonstrate the robust-
ness of the TLBO approach. Moreover, for a comprehensive understanding, we juxtaposed
the TLBO results against those obtained using the genetic algorithm on the same numerical
problems. The comparative analysis revealed that the genetic algorithm yielded higher costs,
accentuating the superiority and potential of the TLBO in optimizing MTS challenges.
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Introduction

In light of the previous studies and the recognized importance of logistics optimization, it
becomes evident that tackling the intricacies of Multimodal Transportation Systems (MTS)
is paramount. The global logistics landscape has seen a surge in the utilization of multiple
transportation modes, emphasizing the need for advanced optimization techniques that can
navigate the challenges inherent to MTS.

Complex Nature of Multimodal Transportation Systems (MTS)

• MTS represents a pivotal aspect of today’s logistics, requiring efficient coordination among
diverse transport modes like rail, road, air, and sea.

• The central challenge lies in achieving a seamless, cost-effective, and timely integration of
these modes. This often places decision-makers in the throes of dilemmas such as choos-
ing optimal transitions, reducing transshipment costs, and circumventing mode-specific
constraints.

To address these challenges, this study turns its gaze towards the Teaching–Learning-
Based Optimization (TLBO) algorithm as a potential game-changer in the realm of MTS
optimization.

Introduction and Rationale for the TLBO Algorithm

• In the face of MTS complexities, the study introduces the TLBO algorithm.
• Distinct from traditional methods, TLBO employs a teacher-learner pairing approach.
Efficient solutions, dubbed “teachers”, guide and refine less efficient “learners” in an
iterative push towards optimization.

• This innovative methodology, as our findings suggest, refines the optimization process,
making it more intuitive and effective.

Further evidence of the efficacy of the TLBO algorithm is furnished by our research.
In-depth examinations and illustrative numerical examples vouch for its robustness and adapt-
ability.

Comparative Efficacy of TLBO

A juxtaposition with the Genetic Algorithm elucidates the merits of TLBO. Specifically,
the Genetic Algorithm, through our tests, consistently birthed solutions with steeper associ-
ated costs, highlighting the TLBO’s superior optimization capabilities in confronting MTS
challenges.

This article unfolds over seven meticulously crafted sections. The journey commences
with the introductory section that sets the stage. This is succeeded by a literature review in
the second section, providing insights into existing works. In the third section, we delve into
the mathematical modelling of MTS, laying down the foundational framework. The fourth
section elucidates the proposed methodology, breaking down its intricacies. The fifth section
brings this methodology to life with illustrative numerical examples. Subsequent to this,
the sixth section offers a detailed analysis and interpretation of the numerical problem. The
narrative culminates with the seventh section, drawing conclusive insights and encapsulating
the essence of our exploration.
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Review of Literature

The evolution of Multimodal Transportation Systems (MTS) signifies a transformative
approach to the movement of goods, leveraging a cohesive integration of multiple trans-
port modes, such as road, rail, air, and sea. The core attraction of MTS lies in its promise
of heightened efficiency, enabling seamless transit while navigating diverse logistical land-
scapes. But beneath this promise lies the intricate challenge of optimizing these systems-a
task that necessitates a meticulous balancing act between variables like cost, time, and the
optimal selection of transport modes.

While the endeavours to refine MTS optimization trace back to the early 1970s, with pio-
neering works like Appa’s exploration in 1973 [1], the quest for perfection remains ongoing.
Despite the passage of time and the cumulative wisdom of numerous research efforts, there
persists a tangible gap. This lacuna underscores the need for crafting algorithms that can
more adeptly navigate the multifaceted intricacies of these transport systems.

The annals of MTS optimization literature chronicle a fascinating journey spanning over
half a century. It began with Appa’s seminal presentation of the transportation conundrum
in 1973 [1]. This initial exploration paved the way for further inquiry, with scholars like Lin
[2] introducing innovative dimensions to the discourse through the lens of multiple-objective
optimization. Yet, for all the pioneering strides, the Specter of challenges in unearthing
foolproof solutions remained, as underscored by Gass in 1990 [3].

The progression of research into the latter part of the century and beyond illuminated the
multifarious aspects of MTS optimization. Pratt and Lomax [4] articulated the pressing need
for holistic performance metrics that could gauge the efficacy of multimodal systems in their
entirety. Venturing deeper into the twenty-first century, Pedregal’s work in 2004 [5] offered
a panoramic view of the optimization techniques landscape, illuminating potential pathways
to refine and resolve transportation challenges.

Cagnina et al. [6] delved into the potential of particle swarm optimization (PSO)
as an effective tool for tackling engineering optimization challenges. Around the same
period, research into optimization algorithms was gathering momentum. A few years later,
Rao et al. [7] introduced the Teaching–Learning-Based Optimization (TLBO) algorithm,
specifically tailored for constrained mechanical design optimization problems. The TLBO
algorithm’s effectiveness was subsequently validated in various studies, from unconstrained
real-parameter optimization [8], to heat exchangers [9], and multi-objective optimization
[10]. Moreover, improvements to the original TLBO algorithm were suggested by Rao and
Patel [11], further increasing its applicability in solving a wide range of optimization prob-
lems. In the context of MTS, Rouhieh and Alecsandru [12] explored optimizing route choice,
with Shabanpour-Haghighi et al. [13] introducing a modified version of TLBO for the multi-
objective optimal power flow problem. Kengpol et al. [14] proposed a framework for route
selection, while Zhang et al. [15] developed an approach for discrete multimodal trans-
portation network design. The applicability of TLBO in MTS was emphasized by Rao and
Waghmare [16], with Zou et al. [16] enhancing the TLBO approach by incorporating the
learning experience of other learners. Chen et al. [17] and others showcased its potential in
solving optimization problems in MTS.

The Teaching Learning-Based Optimization (TLBO) algorithm has witnessed burgeon-
ing interest in recent years, a fact underscored by the myriad of survey papers that have
emerged. Notably, Rao and Rao [18] and Rao [19] contributed seminal reviews, accentuating
the algorithm’s foundational principles and its broad applicability. Concurrently, Yu et al. [20]
delved deeper into the nuances, pioneeringwork in constraints optimization and presenting an
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improved version of TLBO. As the field matured, researchers extended TLBO’s application
to diverse problems. For instance, Zheng et al. [21] ingeniously employed TLBO to tackle the
intricate multi-skill resource-constrained project scheduling problem, setting a benchmark
for subsequent studies. Additionally, Udomwannakhet et al. [22] offered a comprehensive
review of the multimodal transportation optimization model, bridging the gaps between tra-
ditional models and modern optimization techniques. The burgeoning trend continued with
works like Chen et al. [24], which manifested the versatility of TLBO in Multimodal Trans-
portation Systems (MTS). In a significant contribution in 2022, Archetti et al. [30] presented
a holistic survey on optimization techniques, with an emphasis on multimodal freight trans-
portation. The exploration of this domain was further enriched by studies like Basciftci and
Van Hentenryck [32], which proposed innovative designs for on-demand multimodal transit
systems, and Tong [33], which investigated rail consignment path planning in MTS while
factoring in time uncertainties.

In parallel, scholars like Ma et al. [27] ventured into refining the TLBO algorithm itself,
revealing nuances in its modifications tailored for specific problem-solving scenarios. Kaew-
fak et al. [28] presented a compelling case for multi-objective optimization, particularly in
the context of making freight route choices. An illustration of the algorithm’s progressive
evolution was provided by Wu et al. [29]. Their work unveiled an enhanced TLBO algo-
rithm which seamlessly integrated a reinforcement learning strategy, thereby solidifying the
algorithm’s position in the contemporary optimization domain.

Of particular interest are recent innovative studies that have contributed valuable insights
to the field. Owais et al. [26] delved into optimal metro design for transit networks, par-
ticularly focusing on existing square cities from a non-demand criterion perspective. This
research carved a niche by concentrating on sustainability, aligning MTS with eco-friendly
city design principles. Progressing into 2022, Owais and Shahin [31] unfolded precise algo-
rithms for the Screen Line Problem in expansive networks, employing a shortest path-based
column generation approach. A year later, Alshehri et al. [34] introduced the potential of
Residual Neural Networks in estimating Origin–Destination trip matrices from traffic sensor
information, augmenting the MTS optimization domain by merging it with advanced neural
network techniques.

Mathematical Modelling

Mathematical Modelling of Multimodal Transportation problem

A multimodal transport problem is similar to a transportation problem, but it involves more
than one mode of transport (See Fig. 1). Multimodal transport is also referred to as combined
transportation, which allows the goods to be transported under one contract, but it must be
carried out by at least two modes of transport (e.g., road or highway automobiles, passenger
rail, air passenger service, cruise ships). It is essential to plan and provide all modes of
transportation in a systematic manner, similar to the way modern organizational structures
are managed, such as sanitation, power supply, and buildings. Not only are there multiple
modes of transportation, but transportation professionals must also plan for and ensure the
safe and intelligent movement of goods and personnel between different modes, commonly
referred to as intermodal transfer. Someof the important perspectives inMMTPare as follows:

• Minimize total transportation expenses by using each transportation method where it
excels.
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Fig. 1 Graphical representation of MMTP

• Boost financial productivity and efficacy, elevating the nation’s standing in the global
market.

• Diminish excess capacity and strain on seldom-used infrastructure assets.
• Generate better outcomes from both public and private funding,
• Enhance transportation accessibility for the elderly, remote individuals, differently abled
people, and those facing economic challenges.

• Decrease fuel usage and play a role in improving environmental health and air purity.

We have now outlined some definitions associated with our suggested Multimodal Trans-
portation Problem (MMTP).

Ground origin (GO) In logistics, locations that are able to provide items but lack the ability
to accumulate them are termed ground origins.

Final destination (FD) In logistics, points can accumulate items but aren’t equipped to.
provide they are labeled final destinations.
Supplementary origin (SO) In logistics, locations with the ability to both collect and.
distribute items are recognized as supplementary origins.
We have already seen the mathematical representation of the transportation problem (TP).

In the presence of the SO in a TP, it becomes a MMTP.

Notations

To understand the mathematical formulae of the MMTP, we once again refer to the following
notations:

m1: Total count of base start points (GOs),
n1: Total count of terminal points (FDs),
mt : Ccount of auxiliary starts (SOs) at level (t − 1), t ranging from 2 to r.
r : Total labels designated for starting points,
a1i : Goods supply at the i th start point of GO,
ati : Goods supply at the i th start of the t th level SO, where t ranges from 2 to r,
b j : Rrequirement at the j th point of FD,
α1
1: Iindividual vehicle’s max load from base origins to terminal destinations,
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αt
s : Iindividual vehicle’s max load from SO of the (t − 1)th level to SO of (s − 1)th level;

t and s both ranging from 2 to r,
c1i j1: Per unit goods movement charge from the i th starting point to j th terminal of GO to

FD,
cti j1: Per unit goodsmovement chargemoving from the i th start to j th end of SO at (t−1)th

level to FD; t ranging from 2 to r,
c1i js : Per unit goods movement charge transporting from the i th start to j th terminal from

GO at (r − s + 1)th level to SO; s ranging from 2 to r,
cti js : Per unit goodsmovement charge from the i th beginning to j th end fromSOof (t−1)th

level to SO of (r − s + 1)th level; t and s both ranging from 2 to r and t being at least
s,

x1i j1: Vehicle count needed to move from start point i to j th terminal of FD from GO,
xti j1: Vehicle count needed for movement from i th start to j th terminal from SO of (t−1)th

level to FD, t ranging from 2 to r,
x1i js : Vehicle count needed for moving from i th start to j th terminal from GO to SO at

(r − s + 1)th level; s ranging from 2 to r,
xti js : Vehicle count necessary for transport from i th beginning to j th terminal from SO of

(t − 1)th level to SO of (r − s + 1)th level; t and s both ranging from 2 to r with t
being equal to or greater than s,

z′: Target function to reduce transport charges to terminal from base start and all auxiliary
starts,

zi : Target function to cut down transport costs to (r − i + 1)th terminal points from GO
and all SOs of (t − 1)th level; i ranging from 2 to r − 1.

To build the MMTP mathematical framework, we consider the subsequent elements:
Construct the target function z1 for transit to FD from GO and SO across all designations:
The associated transportation network for z1 is depicted in Fig. 2. In this con-

text, transportation pathways include: from GO to FD with its related function being∑m1
i�1

∑n1
j�1 α1

1C
1
i j1x

1
i j1; from SO of the first designation to FD, its related function is

∑m2
i�1

∑n2
j�1 α1

1C
2
i j1x

2
i j1; and the pattern continues.

Fig. 2 Graphical representation of transportation for z1
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Fig. 3 Graphical representation of transportation for z2

Concluding, for SO of designation r-1 leading to FD, the related target function becomes∑mr
i�1

∑nr
j�1 αr

1C
r
i j1x

r
i j1. Therefore,

z1 �
m1∑

i�1

n1∑

j�1

α1
1C

1
i j1x

1
i j1 +

m2∑

i�1

n2∑

j�1

α1
1C

2
i j1x

2
i j1 + · · · +

mr∑

i�1

nr∑

j�1

αr
1C

r
i j1x

r
i j1.

Within the transport framework linked to z1, the requirements at the FD nodes must be
met. Hence, the subsequent conditions must be fulfilled.

m1∑

j�1

α1
1x

1
i j1 +

m2∑

j�1

α2
1x

2
i j1 + · · · +

mr∑

j�1

αr
1x

r
i j1 ≥ b j ( j � 1, 2, . . . , n1).

Next, we develop into the formulation of the objective function z2 tailored for transport to
the SO with a label of r − 1 originating from GO and SOs labeled as t � 1, 2, 3, ..., r − 2.
Refer to Fig. 3 for a visual representation of the transport network associated with z2. In this
context:

For transport from GO to SO labeled r − 1, the objective function becomes∑m1
i�1

∑mr
j�1 α1

r C
1
i jr x

1
i jr .

When transporting from SO labeled 1 to SO labeled r − 1, the objective function is
described as

∑m2
i�1

∑mr
j�1 α2

r C
2
i jr x

2
i jr .

This pattern continues, culminating in the transport from SO labeled r − 2 to SO labeled
r − 1, which can be described by the objective function

∑m2
i�1

∑mr
j�1 α2

r C
2
i jr x

2
i jr .

Hence,

z2 �
m1∑

i�1

mr∑

j�1

α1
r C

1
i jr x

1
i jr +

m2∑

i�1

mr∑

j�1

α2
r C

2
i jr x

2
i jr + · · · +

mr−1∑

i�1

mr∑

j�1

αr−1
r Cr−1

i jr xr−1
i jr

Within the transport network depicted as z2 in Fig. 3, the quantity of goods held at the SO
nodes with a label of r − 1 should exceed the goods being moved from SO with a label r − 1
to the FD nodes. Hence, certain conditions must be met to ensure this.

n1∑

j�1

αr
1x

r
i j1 ≤

m1∑

i�1

α1
r x

1
i tr +

m2∑

i�1

α2
1x

2
i t1 + · · · +

mr−1∑

i�1

αr−1
r xr−1

i t1 (t � 1, 2, . . . , mr )
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Fig. 4 Graphical representation of transportation for zr

Furthermore, the cumulative quantity of goods at the SO nodes labelled r − 1 should not
surpass their storage limits. As a result,

m1∑

i�1

α1
r x

1
i tr +

m2∑

i�1

α2
1x

2
i t1 + · · · +

mr−1∑

i�1

αr−1
r xr−1

i t1 ≤ αt
r (t � 1, 2, . . . , mr ).

In a comparable manner, we establish zi for (i � 2, 3, . . . , r − 1), culminating in
transportation from GO to the SO of the first label.

Setting up the objective function zr pertains to the transportation towards the SO of the
first label, originating from GO. Illustrated in Fig. 4 is the relevant transportation network
associated with zr . In this context, when contemplating transportation from GO to the SO of
the first label, the relevant objective function becomes:

zr �
m1∑

i�1

m2∑

j�1

α2
1C

1
i j2x

1
i j2.

Within the transportation framework represented by zr as depicted in Fig. 4, the inventory
at the nodes of SOwith label 1 should surpass the volume of goods directed to SOwith labels
t (where t ranges from 2 to r − 1) and subsequently to FD. Consequently, we account for
these conditions:

n1∑

j�1

α2
1x

2
i t1 +

mr∑

j�1

α2
r x

2
t jr + · · · +

m3∑

j�1

α2
3x

2
t j3 ≤

m1∑

i�1

α1
2x

1
i t2 (t � 1, 2, . . . , m2).

Furthermore, the cumulative volume of items held at the SO nodes with label 1 should
not exceed their storage limit. Therefore,

∑m1
i�1 α1

2x
1
i t2 ≤ α2

t (t � 1, 2, . . . , m2).

The comprehensive MMTP model, as depicted in Fig. 1, encompasses the combined net-
works through the use of objective functions zi , where i ranges from 1 to r . Accompanied
by the necessary constraints for shaping these objective functions, the mathematical repre-
sentation of MMTP can be outlined as:

Minimize z � z1 + z2 + · · · + zr ,
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z1 � ∑m1
i�1

∑n1
j�1 α1

1C
1
i j1x

1
i j1 +

∑m2
i�1

∑n2
j�1 α1

1C
2
i j1x

2
i j1 + · · · + ∑mr

i�1

∑nr
j�1 αr

1C
r
i j1x

r
i j1,

z2 �
m1∑

i�1

mr∑

j�1

α1
r C

1
i jr x

1
i jr +

m2∑

i�1

mr∑

j�1

α2
r C

2
i jr x

2
i jr + . . . +

mr−1∑

i�1

mr∑

j�1

αr−1
r Cr−1

i jr xr−1
i jr ,

zr �
m1∑

i�1

m2∑

j�1

α2
1C

1
i j2x

1
i j2. (1)

GO and SO’s limitations on all label’s availability

s.t. +
n1∑

j�1

α1
1x

1
i j1 +

mr∑

j�1

α1
1x

1
i jr + · · · +

m2∑

j�1

α1
2x

1
i j2 ≤ α1

i (i � 1, 2, . . . , m1), (2)

n1∑

j�1

α2
1x

2
i j1 +

mr∑

j�1

α2
r x

2
i jr + · · · +

m3∑

j�1

α2
3x

2
i j3 ≤ α2

i (i � 1, 2, . . . , m2), (3)

n1∑

j�1

α3
1x

3
i j1 +

mr∑

j�1

α3
r x

3
i jr + · · · +

m4∑

j�1

α3
4x

3
i j4 ≤ α3

i (i � 1, 2, . . . , m3), (4)

n1∑

j�1

αr
1x

r
i j1 ≤ αr

i (i � 1, 2, . . . , mr ), (5)

The restrictions on minimum demands at the FD
m1∑

i�1

α1
1x

1
i j1 +

m2∑

i�1

α2
1x

2
i j1 + · · · +

mr∑

i�1

αr
1x

r
i j1 ≥ b j ( j � 1, 2, . . . , n1), (6)

the restrictions on distributing and storing items at SO nodes for all labels

n1∑

j�1

α2
1x

2
i j1 +

mr∑

j�1

α2
r x

2
i jr + · · · +

m3∑

j�1

α2
3x

2
i j3 ≤

m1∑

i�1

α1
2x

1
i t2 (t � 1, 2, . . . , m2), (7)

n1∑

j�1

α3
1x

3
i j1 +

mr∑

j�1

α3
r x

3
i jr + · · · +

m4∑

j�1

α3
4x

3
i j4 ≤

m1∑

i�1

α1
3x

1
i t3 +

m2∑

i�1

α2
3x

2
i t3 (t � 1, 2, . . . , m3),

(8)
n1∑

j�1

αr
1x

r
i j1 ≤

m1∑

i�1

α1
r x

1
i tr +

m2∑

i�1

α2
r x

2
i tr · · · +

mr−1∑

i�1

αr−1
r xr−1

i tr ≤ αt
r (t � 1, 2, . . . , mr ), (9)

x (s)
i j p ≥ 0∀i , j , s and p (10)

Furthermore, to achieve a viable solution for this model, it is crucial to ensure that the
quantity of goods needed at the FD nodes doesn’t surpass the total available at the GO nodes.
Consequently, the condition for the model’s viability is defined as:

m1∑

i�1

a1i ≥
n1∑

j�1

b j

In the MMTP framework, the decision variables amount to the product of (m1 × m2 ×
. . . × mr and n1. The feasibility space for this model is built upon the ensuing premises:

There are m1 constraints, denoted as (2), related to the capacity of the primary origins. n1
constraints, denoted as (3), correspond to the requirements of the final destinations. Given
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the storage restrictions at supplementary origins, we introduce a total of (m1 +m2 + · · ·+mr )
inequalities, spanning from (4) to (6).

Moreover, it is imperative that the quantity of goods dispatched from the supplementary
origins does not surpass what’s provisioned to these very origins. To capture this, we include
another set of (m1 + m2 + · · · + mr ) inequalities, ranging from (7) to (9).

In total, this model encompasses (m1 × m2 × · · · × mr × n1) variables and a combined
[2(m1 + m2 + · · · +mr ) +m1 + n1] constraints, in addition to ensuring non-negativity. Model
2 stands as a fully-fledged linear programming problem (LPP), solvable using techniques
such as the Big-M method, revised simplex method, Vogal’s approximation method, among
others.

TLBO

This optimization method views a set of learners as a collective and the different topics
introduced to them as unique parameters in an optimization challenge. A learner’s result is
comparable to the ’performance’ metric in optimization, with the top solution deemed the
‘educator’. Parameters are linked to a specific goal function in an optimization scenario, and
the ‘optimal solution’ corresponds to the ‘peak value’ of that function. The operation of this
method is split into two stages: the ‘educator stage’ and the ‘student stage’. The mechanisms
of both stages are detailed subsequently.

Teacher Phase

This is the preliminary phase of the method, where students gather knowledge from the
educator. This stage embodies the students’ learning process under the guidance of educators.
Here, an educator endeavours to enhance the collective performance of a topic they teach
by leveraging their expertise. During iteration i , let’s assume there are ‘m’ different topics
(i.e., parameters), and ‘n’ distinct students (i.e., sample size, k � 1, 2, ..., n), with xmean

representing the average performance of a student in a given topic ( j � 1, 2, ..., m). The
optimal collective performance, xbest , encompassing all topics among all students, can be
determined from the top-performing student, denoted as k-best. But since educators are
conventionally perceived as experts aiming to guide students towards superior outcomes, in
this method, the top-performing student is viewed as the educator. The discrepancy between
the prevailing average score for each topic and the corresponding score of the educator for
the same topic is represented by,

xdi f f erence_mean � ri
(
xbest − T f xmean

)
(11)

In this context, xmean signifies the performance of the top student in topic j . The factor
T f plays a pivotal role in determining the shift in the mean value, while ri is a random digit
within the [0,1] spectrum. The factor T f could assume values of 1 or 2. Its value is chosen
at random, with an equal likelihood, as follows:

T f � round [1 + rand (0, 1) {2 − 1}] (12)

T f is intrinsic to the TLBO method and is not an external parameter. While it’s not
directly fed into the algorithm, its value is deduced through Eq. (12). Testing on a range
of benchmark functions showed optimal performance when T f varied between 1 and 2.
The most pronounced improvements were seen for values T f � 1 or 2. Thus, for a more
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streamlined approach, the teaching factor is best set to either 1 or 2, adhering to the criteria in
Eq. (12). The teacher phase then updates the present solution based on the Mean Difference.

xnew � xcurrent + xdi f f erence_mean (13)

The updated value is represented by xnew, which is derived from xcurrent . If xnew yields
a more favorable function outcome, it is accepted. Once the teacher phase wraps up, all
endorsed function values are preserved and transition to the learner phase, which builds upon
the outcomes of the teacher phase.

Learner Phase

After the teacher phase, this stage emulates the learners’ knowledge acquisition through
mutual interactions. Here, a learner absorbs new insights when another learner possesses a
more profound understanding. Given a population size ’n’, the subsequent learning process
is depicted in this phase.

Choose two learners, P and Q, ensuring that xtotal−P , i ′ is not equal to xtotal−Q, i ′. These
values represent the revised values of xtotal−P , i ′ and xtotal−Q, i ′ for P and Q at the close of
the teacher phase.

For minimization problems:

x
′′
j , P , i � x j , P , i ′ + ri

(
x j , P , i ′ − x j , Q, i ′

)
, if xtotal−P , i ′ < xtotal−Q, i ′ (14)

x
′′
j , P , i � x j , P , i ′ + ri

(
x j , Q, i ′ − x j , P , i ′

)
, if xtotal−Q, i ′ < xtotal−P , i ′ (15)

If x
′′
j , P , i yields an improved function value, it’s accepted.

For maximization problems:

x
′′
j , P , i � x j , P , i ′ + ri

(
x j , P , i ′ − x j , Q, i ′

)
, if xtotal−Q, i ′ < xtotal−P , i ′ (16)

x
′′
j , P , i � x j , P , i ′ + ri

(
x j , Q, i ′ − x j , P , i ′

)
, if xtotal−P , i ′ < xtotal−Q, i ′ (17)

Teaching–Learning-Based Optimization (TLBO) is an optimization method inspired by
classroom learning dynamics. Instead of using unique control parameters, it utilizes common
parameters like the size of the group and iteration count.

The flowchart of TLBO is shown inn Fig. 5.

Operational Procedure

Let’s assume any shipping company want to ship a batch of goods from a warehouse to a
delivery centre.Wemay havemode of transportation options are road transport, rail transport,
and air transport etc. Each mode of transport has its cost ci $ and time ti hr required. The
objective is to deliver goods in less than t hours, and we want to minimize the cost C . Where
i � 1, 2, ..., n.

Let’s now use TLBO to solve this problem:
Our decision variable is the mode of transport. The time constraint is that total transport

time must be less than or equal to t hours. Each potential solution is represented as a vector
of modes v of transport.

Initialization: We randomly initialize a population of n solutions. Each solution is a vector
of modes of transport. Tabular form is shown in Table 1.

123



18 Page 12 of 21 Int. J. Appl. Comput. Math (2024) 10 :18

Set the number of learners (population size), the number of 
topics (design parameters), and the stopping condition. 

Compute the average for each design parameter 

Determine the optimal solution and its associated variable values 

Adjust the variable values using the optimal solution as a 
reference. 

_

 )
= +

_

Is the outcome related 
to  superior to that of 

? 
Admit Discard 

Replace the previous Keep the previous 

Choose two outcomes  and  randomly 

Does  outperform 
 ? 

))

Does  yield better 
results than ? 

Admit Discard 

Substitute the preceding save the preceding 

Has the stopping condition 
been met? 

Describe the outcome 

YesNo 

Yes No 

Yes 

NoYes 

No 

Fig. 5 Flowchart of TLBO
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Table 1 Initial Population of
Transportation problem Vector of modes of transport (v) Cost ($) Time (h)

v1 c1 t1
v2 c2 t2
v3 c3 t3

...
...

...

...
...

...

vn cn tn

Teacher Phase: We calculate the cost for each solution and check if it satisfies the time
constraint. The solution with the minimum cost is considered as the teacher. Next, update
the other solutions using insights from the teacher.

Learner Phase: Choose two solutions at random. If the latter outperforms the former,
refine the initial solution using insights from the second one.

Convergence Check: The procedure persists until the optimal solution remains relatively
unchanged across multiple cycles.

Solution Extraction: The optimal solution is derived from the most favourable outcome
within the group.

Validation and Verification: The solution should meet the time constraint, and check it is
feasible in the real-world context or not.

Flowchart of complete process is shown in Fig. 6.

Numerical Computations

Problem 1 Let’s assume we are a shipping company and we want to ship a batch of goods
from a warehouse to a delivery centre. We have three options: road transport, rail transport,
and air transport (Table 2). Each mode of transport has its cost and time required, which is
as follows:

We have to deliver goods in less than 18 h, and we want to minimize the cost.
Let’s now use TLBO to solve this problem:
Our decision variable is the mode of transport. The time constraint is that total transport

time must be less than or equal to 18 h. Each potential solution can be represented as a vector
of modes of transport. For example, [Road, Road, Air] means we first use road transport,
then again road transport, and finally air transport.

Initialization:We randomly initialize a population of 21 solutions in Table 3. Each solution
is a vector of modes of transport.

Teacher Phase: We calculate the cost for each solution and check if it satisfies the time
constraint. The solution with the minimum cost is considered as the teacher. Then, based on
the teacher, more solutions are updated.

Learner Phase: Two solutions are randomly selected and the best (teacher) solution among
these two solutions will be replaced in the second solution. The updated solutions are shown
in Table 4.

Utilizing the learner phase, we obtained the subsequent solution presented in Table 5.
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Initialization of n solutions 

Calculate the cost for each solution and check if it satisfies 
the time constraint. The solution with the minimum cost is 
considered as the teacher.

Two solutions are randomly selected and the best (teacher) 
solution among these two solutions will be replaced in the 
second solution.

The procedure persists until the 
optimal solution remains relatively 
unchanged across multiple cycles

The optimal solution is derived from the 
most favourable outcome within the group

The solution should meet the time 
constraint, and check it is feasible 
in the real-world context or not

STOP

Feasible

Not Feasible 

Fig. 6 Flowchart of working procedure

Table 2 Cost and time for
different mode of Transport Mode Cost ($) Time (h)

Road 500 8

Rail 700 5

Air 1000 3

In Table 5, we arrived at convergence solution.
Solution Extraction: The best solution we found is [Rail, Rail, Road] or [Rail Road Rail]

or [Road Rail Rail] with a cost of 1900$.
Validation and Verification: We confirm that this solution meets the time constraint (18 h),

and we check it is feasible in the real-world context.

Problem 2 Assuming we are dispatching a consignment of goods from our warehouse to
a delivery centre, we are presented with four transportation alternatives: road, rail, air, and
sea. Each mode comes with its own associated costs and delivery times (Table 6), detailed
as follows:
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Table 3 Initialization Population of 10 solutions

Vector of Modes of Transport Cost ($) emiT (h)
810091]daoRliaRliaR[
310042]riAliaRliaR[
810091]liaRdaoRliaR[
310042]liaRriAliaR[
410022]daoRriAliaR[
110072]liaRriAriA[
410052]riAdaoRriA[
110022]riAliaRdaoR[
810091]liaRliaRdaoR[
410052]riAriAdaoR[

Table 4 Updated solutions after teacher and learner phases

Vector of Modes of Transport Cost Time
810091]daoRliaRliaR[
810091]liaRdaoRliaR[
410022]daoRriAriA[
410022]riAdaoRriA[
810091]liaRliaRdaoR[

Table 5 Updated solutions after
teacher and learner phases Vector of modes of transport Cost Time

[Rail Rail Road] 1900 18

[Rail Road Rail] 1900 18

[Road Rail Rail] 1900 18

Table 6 Cost and time for
different modes of transport Mode Cost ($) Time (h)

Road 700 10

Ship 1905 12

Rail 850 7

Air 2550 2

We have to deliver goods in less than 36 h, and we want to minimize the cost & first
shipment will be done through road transport.

Initialization:We randomly initialize a population of 21 solutions in Table 7. Each solution
is a vector of modes of transport.

Teacher Phase: We calculate the cost for each solution and check if it satisfies the time
constraint. The solution with the minimum cost is considered as the teacher. Then, based on
the teacher, more solutions are updated.
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Table 7 Initialization Population of 21 solutions

Vector of Modes of Transport Cost ($) Time (h)
[Road Road Road Air] 4650 32
[Road Road Air Road] 4650 32
[Road Air Road Road] 4650 32
[Road Road Rail Rail] 3100 34
[Road Road Air Air] 6500 24

[Road Road Ship Air] 5156 34
[Road Road Air Rail] 4800 34
[Road Road Air Ship] 4300 34
[Road Rail Rail Rail] 5855 34

[Road Air air Air] 3250 31
[Road Ship Air Air] 8350 16

[Road Ship Ship Air] 7060 36
[Road Air Air Ship] 7705 26
[Road Air Air Rail] 6650 21

[Road Rail Rail Ship] 4305 35
[Road Rail Rail Air] 4950 26
[Road Ship Air Air] 7705 26

[Road Ship Rail Rail] 4305 36
[Road Air Ship Ship] 7060 36
[Road Air Rail Rail] 4950 26
[Road Rail Air Air] 6650 21

Learner Phase: Two solutions are randomly selected and the best (teacher) solution among
these two solutions will be replaced in the second solution. The updated solutions are shown
in Table 8.

Utilizing the learner phase, we obtained the subsequent solution presented in Table 9.
Utilizing the learner phase, we obtained the subsequent solution presented in Table 10.
Utilizing the learner phase, we obtained the subsequent solution presented in Table 11.
Utilizing the learner phase, we obtained the subsequent solution presented in Table 12.
In Table 12, we arrived at convergence solution.
Solution Extraction: The best solution we found is [Road, Road, Rail, Rail] with a cost of

3100 $.

Table 8 Updated solutions after teacher and learner phases

Vector of Modes of Transport Cost Time
[Road Road Air Road] 4650 32
[Road Road Rail Rail] 3100 34
[Road Road Ship Air ] 5855 34
[Road Road Air Rail] 4800 34
[Road Rail Rail Rail] 3250 31
[Road Ship Ship Air] 7060 36
[Road Air Air Rail] 6630 21

[Road Rail Rail Ship] 4305 36
[Road Ship Rail Rail] 4305 36
[Road Air Rail Rail] 4950 26
[Road Rail Air Air] 6650 21
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Table 9 Updated solutions after teacher and learner phases

Vector of Modes of Transport Cost Time
[Road Road Rail Rail] 3100 34
[Road Road Air Rail] 4800 34
[Road Rail Rail Rail] 3250 31
[Road Rail Rail Ship] 4805 36
[Road Ship Rail Rail] 4305 36
[Road Rail Air Air] 6650 21

Table 10 Updated solutions after teacher and learner phases

Vector of Modes of Transport Cost Time
[Road Road Rail Rail] 3100 34
[Road Rail Rail Rail] 3250 31
[Road Ship Rail Rail] 4305 36

Table 11 Updated solutions after teacher and learner phases

Vector of Modes of Transport Cost Time
430013]liaRliaRdaoRdaoR[
130523]liaRliaRliaRdaoR[

Table 12 Updated solutions after
teacher and learner phases Vector of modes of transport Cost Time

[Road Road Rail Rail] 3100 34

Validation and Verification: We confirm that this solution meets the time constraint (36 h),
and we check it is feasible in the real-world context.

Results Interpretation

In our study, we initially explored a transportation model involving three modes of trans-
portation and subsequently expanded our analysis to incorporate a fourth mode. By adeptly
applying the Teaching–Learning Best Algorithm to these multifaceted transportation chal-
lenges, we pinpointed the most efficient solution from a wide range of potential options.
The comparative analysis of the optimal costs for both configurations is vividly illustrated
in Figs. 7 and 8, set against a timeline. To provide a comprehensive view, one axis in these
figures delineates cost, while the other succinctly captures the time dimension.

In our extensive analysis of the problems at hand, bothwere subjected to optimization using
the genetic algorithm (GA). Our findings indicated that the costs incurred when utilizing GA
were notably higher than those achieved with the Teaching–Learning-Based Optimization
(TLBO) algorithm. Specifically, for problem 1, the GA produced a cost of 2500, while for
problem 2, it resulted in a cost of 6650.Furthermore, the application of the GA presented
inherent complexities, especially when determining the appropriate pairing method for the
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Fig. 8 Cost and time comparison

crossover operation. The selection between one-point, two-point, or more intricate crossover
mechanisms compounded the computational intricacy of the GA. Conversely, the TLBO
algorithm, with its straightforward approach of substituting the higher cost vector mode of
transport with the lower cost vector, proved to be more intuitive and less computationally
demanding. This inherent simplicity positions the TLBO as amore user-friendly and efficient
option within the context of these specific problems. For a visual representation and detailed
comparison of the costs associated with the TLBO and GA approaches, readers are directed
to Figs. 9 and 10.
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Fig. 9 Costs comparison between
TLBO and GA
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between TLBO and GA
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Conclusion

In conclusion, this study has demonstrated the successful application of the
Teaching–Learning-Based Optimization (TLBO) algorithm to the challenging field of multi-
modal transportation Systems (MTS). The algorithmwas used to determine the optimalmode
of transport by iteratively comparing pairs of solutions, assigning the role of “teacher” to the
lower-cost solution and “learner” to the higher-cost one. By transferring the teacher’s cost to
the learner, we were able to effectively improve the learner’s cost, leading to the discovery of
an optimal solution. This study showcases the capability of the TLBO algorithm to address
the complex problems associated with MTS by considering both cost and time as significant
factors. The two numerical examples presented in the article further serve to illustrate the
versatility and effectiveness of the TLBO algorithm in the field of transportation system opti-
mization. The results of this study are expected to contribute to the design and development of
more efficient, cost-effective, and time-saving transportation solutions, aiding both industry
professionals and policymakers alike in their efforts to optimize transportation systems. In
future research, the incorporation of additional constraints and factors such as environmental
impact and passenger preferences may be explored to enhance the scope of the model further
and provide a more comprehensive view of the MTS optimization process.
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