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Abstract
In this paper, chemical reaction of MHD Casson nanofluid flow and heat transfer over
a non-linearly stretching sheet under convective and radiative effects with velocity and
temperature slip boundary conditions have been analyzed. The governing equations have
been transformed into non-dimensional form by employing similarity transformations. Non
dimensional boundary value problem have been solved numerically using Keller Box Finite
difference scheme. Velocity, temperature, concentration profiles have been obtained and pre-
sented graphically. Illustrations for Nusselt number, skin friction coefficient and Sherwood
number etc. have been tabulated.

Keywords Stretching sheet · Casson nanofluid · MHD · Heat transfer · Finite difference
scheme · Radiation · Convection · Chemical reaction

Introduction

Mainlyfluids have been classified into two types asNewtonian and non-Newtonian.Both have
wide range of variety of applications. Several non-Newtonian fluid models are present in the
literature such as Casson,Williamson, Powel-eyring, Micro polar etc.As far researchers gone
through experiments they have found some imperfection in expectations from fluids.They
try to enhance conductivity of fluids as a result nanofluid’s discovery came into existence.
Firstly Choi [1] introduced nanofluid. To enhance the thermal conductivity nanosized metal
particles are poured into base fluid, such a mixture is referred as nanofluid. A numerical
study of nanofluid over a sheet has been done by Dodda Ramya et al. [2]. An analytical
modelling of nanofluid flow with second law analysis has been explored by Mohammad
Hossein Abolbashari et al. [3]. Zahir Shah et al. [4] have been studied radiative Casson
nanofluidwith activation energy viaHomotopy analysismethod over stretching sheet. Casson
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nanofluid flow in porous medium with chemical reaction via a fast convergent method has
been explained by Adebowale Martins Obalalu [5]

Flow due to stretched surface has variety of utilizations as extruction of plastic sheets,
paper and glass fiber generation, cooling of electronic chips and sheets of metals etc. Several
authors have been investigated flowover stretching sheetwith stretched in various dimensions
taking different type of fluids and produced useful results. Abd El-Aziz and Afify [6] have
been investigated Casson fluid flow along with entropy generation analysis and observed
effect of various parameters. Gopal et al. [7] have been explored chemically reacting Casson
fluid over stretching sheet taking into account multiple slips with Runge–Kutta method. They
have found that slip have proclivity to control the boundary layer flow. An unsteady flow of
nanofluid flow with the help of Keller-box method has been evaluated by Wasim Jamshed et
al. [8]. Boundary layer flow over inclined stretching sheet has been studied by Susmay Nandi
et al. [9] using the Runge–Kutta Cash-Karp method.

Thermal radiation is one of the mode of heat transfer. It transfer the energy in the form of
electromagnetic waves. It finds applications in various science fields as physics, engineering
science as well as industrial science. When two bodies are at large temperature difference
then we have to take non-linear radiation effect into account to explain the phenomenon of
heat transfer.At lower temperature difference between two bodies linear thermal radiation is
sufficient to describe the heat transfer phenomenon.A number of authors have been illustrated
the effect of linear radiation as well as non linear radiation on various fluids taking a plenty
of different geometries [10–13].

After reviewing the literature carefully we have noticed that convective Casson nanofluid
flow with non linear magnetic field considering radiative and chemical reaction effect with
thermal as well as velocity slip boundary condition have not been yet discovered properly.
Also we have used a finite difference scheme to tackle the problem mathematically.We have
taken stretching sheet as geometry for boundary layer flow. This study will help in several
engineering processes as we have discussed earlier in the starting of this section in the view
of geometry, fluid and other aspects. We have been explored the results with figures and
tables and disused the effect of distinct parameters in detail. All observations have been
summarized. Figure1explain the flow pattern and boundary layers.

Formulation

We have considered a steady and incompressible two dimensional radiative and chemically
reactive,magnetohydrodynamic flowofCasson nanofluid over a sheetwhich is stretchedwith
non-linear velocityUw = axn , where a and n denote a constant and non-linear parameter of
stretching respectively. And stretching coordinate is denoted by ′x ′. The variable magnetic
field B = B0xn−1/2 is applied in transverse (y- direction).Convective effect is also considered
in themodelling of this flow problem. u and v are velocities in x and y directions respectively.
Tw and Cw represent wall temperature and nanoparticles fraction respectively while ambient
nanoparticles fraction and temperature are represented byC∞ and T∞ respectively. Velocity,
thermal and concentration boundary layers have been shown in Fig. 1

Mathematical equations for the model are described as [follow [2, 3, 7]]-

∂u

∂x
+ ∂u

∂ y
= 0 (1)

u
∂u

∂x
+ v

∂u

∂ y
= ν

(
1 + 1

β

)
∂2u

∂ y2
− σ B2u

ρ
+ gβT (T − T∞) + gβC (C − C∞) (2)
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Fig. 1 Flow diagram of the model

u
∂T

∂x
+ v

∂T

∂ y
= α

∂2T

∂ y2
+ ν

Cp

(
1 + 1

β

) (
∂u

∂ y

)2

− 1

ρCp

∂qr
∂ y

+ τ

{
DB

∂T

∂ y

∂C

∂ y
+ DT

T∞

(
∂T

∂ y

)2}

(3)

u
∂C

∂x
+ v

∂C

∂ y
= DB

∂2C

∂ y2
+ DT

T∞

(
∂2T

∂ y2

)
− k0(C − C∞) (4)

Equation (1) represents conservation of mass. Equation (2) denotes velocity distribution in
which fluid friction, magnetic field and convective terms are included. Equation (3) is energy
equation in which last term in right hand side represents radiative term. Equation (4) denotes
mass transfer in which first term in right hand side due to Brownian motion, second due to
thermophoresis and third due to chemical reaction. Boundary conditions Dodda et al. [2] are-

u = uw + Nν
∂u

∂ y
, v = 0, T = Tw + D

∂T

∂ y
, C = Cw at y = 0 (5)

u −→ 0, T −→ T∞, C−→C∞ as y −→ ∞ (6)

Where mathematical symbols have their own meanings as β Casson Parameter, σ Stefan

Boltzmann coefficient, B = B0x
n−1
2 Variable magnetic field, g gravitational acceleration, βT

and βC are thermal and solutal expansion coefficient, α thermal diffusivity, τ = (ρC)p
(ρC) f

is the
ratio of the effective heat capacity of the nanoparticle material to the effective heat capacity of
the basefluid,Cp specific heat at constant pressure,ρ density of fluid,qr denotes radiative heat
flux, DB and DT are Brownian and thermophoretic diffusion, k0 is in reference to chemical
reaction. uw = axn is stretching velocity of sheet, N and D are velocity and thermal slip

factor respectively, both depands on x and n as N = N1x−( n−1
2 ), D = D1x−( n−1

2 ),(for no slip
case N = D = 0). Where N1 and D1 are initial values of velocity and thermal slip factors
respectively. Tw = T∞ + bx2n is the temperature of the wall i.e. sheet.

The similarity transformations for this flow problem referring Dodda et al [2] are intro-
duced as-

η = y

√
a(n + 1)

2ν f
x

n−1
2 , (7)
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u = axn f ′(η), (8)

v = −
√

(n + 1)aν f

2
x

n−1
2

[
f (η) + n − 1

n + 1
η f ′(η)

]
, (9)

T = T∞ + bx2nθ(η), (10)

φ(η) = C − C∞
Cw − C∞

(11)

Using these similarity transformations (7)–(11) Eq. (1) (continuity equation) satisfies iden-
tically and Eqs. (2)–(6) are reduced in the following equations-(

1 + 1

β

)
f

′′′ − M f ′ + f f
′′ − 2n

n + 1
f ′2 + 2

n + 1
Grθ + 2

n + 1
Gcφ = 0 (12)

(
1 + 4R

3

)
1

Pr
θ

′′ +
(
1 + 1

β

)
Ecf ′′2 + f θ ′ − 4n

n + 1
f ′θ + Nbθ

′φ′ + Ntθ
′2 = 0 (13)

φ
′′ + Nt

Nb
θ

′′ − �Sc
2

n + 1
φ + Sc f φ′ = 0 (14)

Boundary conditions become-

f ′(0) = 1 + λ f
′′
(0), f (0) = 0, θ(0) = 1 + δθ ′(0), φ(0) = 1 (15)

f ′ −→ 0, θ −→ 0, φ −→ 0 as η −→ ∞ (16)

Where,M = 2σ B2

ρaxn−1(n+1)
magnetic parameter, Gr = gβT (Tw−T∞)

a2x2n−1 thermal Grashoff num-

ber, Gc = gβc(Cw−C∞)

a2x2n−1 concentration Grashoff number, R = 4σT 3∞
k∗k radiation parameter,

Pr = ν
α
Prandtl number, Ec = u2w

Cp(Tw−T∞)
Eckert number, Nb = (ρC)p DB (Cw−C∞)

(ρC) f α
Brow-

nian diffusion coefficient, Nt = (ρC)p DT (Tw−T∞)

(ρC) f T∞α
thermal diffusion coefficient, � = k0

axn−1

chemical reaction parameter, Sc = ν
DB

Schmidth number, λ = Nx
n−1
2

√
a(n+1)ν

2 velocity

slip parameter, δ = Dx
n−1
2

√
a(n+1)

2ν thermal slip parameter.
The quantities of practical interest are as follows,
local skin friction coefficient,

C f x = τw

ρu2w

local Nusselt number,

Nux = xqw

k(Tw − T∞)

local Sherwood number,

Shx = xqm
DB(Cw − C∞)

Where, τw = μ
(
1 + 1

β

) (
∂u
∂ y

)
y=0

, qw = −k
(
1 + 16

3
σT 3∞
k∗k

) (
∂T
∂ y

)
y=0

heat flux, qm =
−DB

(
∂C
∂ y

)
y=0

mass flux at the surface, k is thermal conductivity of the nanofluid.

Using these fluxes in above formulae we get the expressions in non dimensional form as-

Re
1
2
x C fx =

√
n + 1

2

(
1 + 1

β

)
f "(0)
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Re
− 1

2
x Nux = −

√
n + 1

2

(
1 + 4R

3

)
θ

′
(0)

Re
− 1

2
x Shx = −

√
n + 1

2
φ

′
(0)

Where, Rex = uwx
ν

indicates the local Reynolds number.

Solution

The non-dimensional Eqs. (12)–(14) are non-linear in the form so it is quite difficult to solve
them manually. Consequently we have used the finite difference scheme named as ’Keller-
Box’ which was developed by Keller [14], to solve them numerically. Keller-Box method is
based on four principal steps as-

• Transformation of given non-dimensional equations into a system of first order ordinary
differential equations.

• Use of central differences to reduce them in finite differences.
• Use of Newton’s method to linearize the algebraic equations and put them into vector

form.
• Use of block tri-diagonal elimination method to solve the system of linear equations.

Solution Procedure

Conversion into System of ODE’s

In order to solve the problem via Keller-Boxmethod the first step is to reduce the transformed
non-dimensional equations into first order system of ordinary differential equations along
with boundary conditions, we introduce new variables as p(η), q(η), θ(η), t(η), φ(η), v(η)

so that the system of equations can be written as-

f ′ = p (17)

p′ = q (18)

θ ′ = t (19)

φ′ = v (20)(
1 + 1

β

)
q

′ + f q − 2n

n + 1
p2 − Mp + 2

n + 1
Grθ + 2

n + 1
Gcφ = 0 (21)

(
1 + 4R

3

)
1

Pr
t
′ +

(
1 + 1

β

)
Ecq2 + Nbtv + Nt t

2 + f t − 4n

n + 1
pθ = 0 (22)

v
′ + Nt

Nb
t
′ − 2

n + 1
�Scφ + Sc f v = 0 (23)

and boundary conditions-

at η = 0, p(0) = 1 + λq(0), f (0) = 0, θ(0) = 1 + δt(0), φ(0) = 1, (24)

at n −→ ∞ p(η) −→ 0, θ(η) −→ 0, φ(η) −→ 0 (25)
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Finite Difference Method

Now to convert into finite difference, consider

η0 = 0, η j = η j−1 + h j , η j = η∞ (26)

Where h j is the�η spacing and�η = 1, 2, ..., J is a sequence number indicating coordinate

location. η j−1/2 is the midpoint. Introducing the finite differences f
′ = f j− f j−1

h j
, f =

f j+ f j−1
2 applying these finite differences upon equations (17)–(23) we get,

f j − f j−1 − h j

2
(p j + p j+1) = 0 (27)

p j − p j−1 − h j

2
(q j + q j+1) = 0 (28)

θ j − θ j−1 − h j

2
(t j + t j+1) = 0 (29)

φ j − φ j−1 − h j

2
(v j + v j+1) = 0 (30)

(
1 + 1

β

)
(q j − q j−1) + h j

4
(q j + q j−1)( f j + f j−1) − 2n

n + 1

h j

4
(p j + p j−1)

2

− Mh j

2
(p j + p j−1) + h j

n + 1
Gr(θ j + θ j−1) + h j

n + 1
Gc(φ j + φ j−1) = 0 (31)

(
1 + 4R

3

)
1

Pr
(t j − t j−1) + h j

4

(
1 + 1

β

)
Ec(q j + q j−1)

2 + h j

4
Nb(t j + t j−1)(v j + v j−1) + h j

4

Nt (t j + t j−1)
2 + h j

4
(t j + t j−1)( f j + f j−1) − n

n + 1
(p j + p j−1)(θ j + θ j−1) = 0 (32)

v j − v j−1 + h j
Nt

Nb
− h j

n + 1
�Sc(φ j + φ j−1) + Sc

h j

4
( f j + f j−1)(v j + v j−1) = 0 (33)

and boundary conditions-

f0 = 0, p0 = 1 + λq0, θ0 = 1 + δt0, φ0 = 1, pJ = 0, φJ = 0 (34)

Newton’s Method

To linearize the non-linear system (27)–(33) we use Newton’s method-

f (k+1)
j = f (k)

j + δ f (k)
j , p(k+1)

j = p(k)
j + δ p(k)

j , q(k+1)
j = q(k)

j + δq(k)
j , θ

(k+1)
j =

θ
(k)
j + δθ

(k)
j , t (k+1)

j = t (k)j + δt (k)j , φ
(k+1)
j = φ

(k)
j + δφ

(k)
j , v

(k+1)
j = v

(k)
j + δv

(k)
j

where, k = 0, 1, 2, 3, ... after inserting these expressions i.e we insert f j + δ f j in place of
f j (we leave k here, for simplicity) and same for others, we get,

δ f j − δ f j−1 − h j

2
(δ p j + δ p j−1) = (r1) j−1/2 (35)

δ p j − δ p j−1 − h j

2
(δq j + δq j−1) = (r2) j−1/2 (36)

δθ j − δθ j−1 − h j

2
(δt j + δt j−1) = (r3) j−1/2 (37)

δφ j − δφ j−1 − h j

2
(δv j + δv j−1) = (r4) j−1/2 (38)
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(a1)δq j + (a2)δq j−1 + (a3)δ f j + (a4)δ f j−1 + (a5)δ p j + (a6)δ p j−1 + (a7)δθ j

+ (a8)δθ j−1 + (a9)δφ j + (a10)δφ j−1 = (r5) j−1/2 (39)

(b1)δt j + (b2)δt j−1 + (b3)δ f j + (b4)δ f j−1 + (b5)δ p j + (b6)δ p j−1 + (b7)δθ j + (b8)

δθ j−1 + (b9)δv j + (b10)δv j−1 + (b11)δq j + (b12)δq j−1 = (r6) j−1/2 (40)

(c1)δv j + (c2)δv j−1 + (c3)δ f j + (c4)δ f j−1 + (c5)δt j + (c6)δt j−1

+ (c7)δφ j + (c8)δφ j−1 = (r7) j−1/2 (41)

Where,

(a1) j =
(
1 + 1

β

)
+ h j

2
f j−1/2, (a2) j = −

(
1 + 1

β

)
+ h j

2
f j−1/2,

(a3) j = h j

2
q j−1/2,

(a4) j = (a3) j , (a5) j = − 2n

n + 1
h j p j−1/2 − M

h j

2
, (a6) j = (a5) j ,

(b1) j =
(
1 + 4R

3

)
1

Pr
+ Nb

h j

2
v j−1/2 + h j Nt t j−1/2 + h j

2
f j−1/2,

(b2) j = −
(
1 + 4R

3

)
1

Pr
+ Nb

h j

2
v j−1/2 + h j Nt t j−1/2 + h j

2
f j−1/2,

(b3) j = h j

2
t j−1/2, (b4) j = (b3) j ,

(b5) j = − 2n

n + 1
h jθ j−1/2, (b6) j = (b5) j , (b7) j = − 2n

n + 1
h j p j−1/2,

(b8) j = (b7) j , (b9) j = h j

2
Nbt j−1/2, (b10) j = (b9) j ,

(b11) j =
(
1 + 1

β

)
h j Ecq j−1/2, (b12) j = (b11) j ,

(c1) j = 1 + Sc
h j

2
f j−1/2, (c2) j = (c1) j − 2, (c3) j = Sc

h j

2
v j−1/2,

(c4) j = (c3) j ,

(c5) j = Nt

Nb
, (c6) j = −(c5) j , (c7) j = − 1

n + 1
h j�Sc, (c8) j = (c7) j

(r1) j−1/2 = f j−1 − f j + h j p j−1/2,

(r2) j−1/2 = p j−1 − p j + h jq j−1/2,

(r3) j−1/2 = θ j−1 − θ j + h j t j−1/2,

(r4) j−1/2 = φ j−1 − φ j + h jv j−1/2,

(r5) j−1/2 =
(
1 + 1

β

)
(q j−1 − q j ) − h j ( f q) j−1/2 + 2n

n + 1
h j p

2
j−1/2

+ Mh j p j−1/2 − 1

n + 1
h jGrθ j−1/2 − 1

n + 1
h jGcφ j−1/2,

(r6) j−1/2 =
(
1 + 4R

3

)
1

Pr
(t j−1 − t j ) − h j

(
1 + 1

β

)
Ecq2j−1/2 − h j ( f t) j−1/2

− h j Nb(tv) j−1/2 − h j Nt t
2
j−1/2 + 4n

n + 1
(pθ) j−1/2,
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and the boundary conditions become-

δ f0 = 0, δ p0 = 0, δq0 = 0, δθ0 = 0, δφ0 = 0, δ pJ = 0, δθJ = 0,

δφJ = 0

Block Elimination Method

To solve the linearized finite difference equations (35)–(41) numerically we use the block
tridiagonal elimination method which was described by Cebeci and Bradshaw [15] as-

Aδ = r , (42)

Where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[A1] [C1]
[B2] [A2] [C2]

.

.

.

.

.

.

.

.

.

[Bj−1] [A j−1] [C j−1]
[Bj ] [A j ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, δ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

[δ1]
[δ2]
.

.

.

[δ j−1]
[δ j ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, r =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

[r1]
[r2]
.

.

.

[r j−1]
[r j ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and the elements of the matrices are given as-

[A1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0
−h j
2 0 0 0

−h j
2 0 0

0
−h j
2 0 0 0

−h j
2 0

0 0
−h j
2 0 0 0

−h j
2

(a2)1 0 0 (a3)1 (a1)1 0 0
(b12)1 (b2)1 (b10)1 (b3)1 (b11)1 (b1)1 (b9)1
0 (c6)1 (c2)1 (c3)1 0 (c5)1 (c1)1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[A j ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−h j
2 0 0 1 0 0 0

−1 0 0 0
−h j
2 0 0

0 −1 0 0 0
−h j
2 0

0 0 −1 0 0 0
−h j
2

(a6) j (a8) j (a10) j (a3) j (a1) j 0 0
(b6) j (b8) j 0 (b3) j (b11) j (b1) j (b9) j
0 0 (c8) j (c3) j 0 (c5) j (c1) j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[Bj ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −1 0 0 0

0 0 0 0
−h j
2 0 0

0 0 0 0 0
−h j
2 0

0 0 0 0 0 0
−h j
2

0 0 0 (a4) j (a2) j 0 0
0 0 0 (b4) j (b12) j (b2) j (b10) j
0 0 0 (c4) j 0 (c6) j (c2) j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[C j ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−h j
2 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

(a5) j (a7) j (a9) j 0 0 0 0
(b5) j (b7) j 0 0 0 0 0
0 0 (c7) j 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
;

1 ≤ j ≤ J − 1
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[δ1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

δq0
δθ0
δφ0

δ f1
δq1
δt1
δv1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

[δ j ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

δq j−1

δθ j−1

δφ j−1

δ f j
δq j

δt j
δv j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 2 ≤ j ≤ J [r j ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(r1) j−1/2

(r2) j−1/2

(r3) j−1/2

(r4) j−1/2

(r5) j−1/2

(r6) j−1/2

(r7) j−1/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

by factorizing A as a lower and an upper triangular matrices as- A = LU where,

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[α1]
[β2] [α1] [c2]

.

.

.

.

.

.

[α j−1]
[β j ] [α j ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[I1] [� j−1]
[I1]

.

.

.

.

.

.

[I j−1] [� j−1]
[I ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where [I ] is a 7 × 7 identity matrix, while [αi ] and [�i ] are 7 × 7 matrices in which the
aforementioned equations determine components:

[αi ] = [A1] (43)

[A1][�1] = [C1] (44)

[αi ] = [A1] − [Bj ][� j−1], j = 2, 3, ....J (45)

[α j ][� j ] = [C j ], j = 2, 3, ....J − 1 (46)

substituting Eq (43) into (42), we obtain LUδ = r if we let,

Uδ = W (47)

then Eq. (47) becomes

LW = r where, W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

[W1]
[W2]

.

.

.

[Wj−1]
[Wj ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The following relations can be used to derive the components of W : [α1][W1] =
[r1], [αi ][Wj ] = [r j ] − [Bi ][Wj−1], 2 ≤ j ≤ J

Once the components of W have been identified, the equation above provides the delta
solution in which the components are identified from the relationships shown below: [δJ ] =
[WJ ], [δi ] = [WJ ] − [� j ][δ j+1], 1 ≤ j ≤ J − 1

These calculations are repeated until some convergence criterion is satisfied and calcula-
tions are stopped when |δν0| ≤ ε1 where ε1 is a very small prescribed value. The precision
of the method’s early estimations is one of the elements influencing accuracy. Choosing the
right first assumptions will determine how accurate the process is. The boundary conditions
and convergence criteria both influence the first predictions that are made.
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In this study, we used a uniform grid of size �η = 0.006 which is found to fulfil conver-
gence and yield solutions with an error tolerance of 10−5 in all circumstances.

Results and Analysis

The governing equations along with variable slip boundary conditions of the present
mathematical model under the effect of various parameters as Casson, velocity and ther-
mal slip,magnetic, chemical reaction, radiation, thermophoresis, convection etc. have been
solved using finite difference scheme. The results of this study have been described by
Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 and 23 and Tables
1, 2 and 3.

Figures2, 3 and 4 describes the effect of Casson parameter on velocity, temperature and
concentration respectively. Natural phenomena decrease in velocity with respect to Casson
parameter is observed clearly, because fluid become more viscous with increase in Casson
parameter so less movable while we observe that thermal and concentration boundary layer
enhances via enhancing Casson parameter. We also noticed a very natural phenomena with
magnetic parameter i.e. decrease in velocity profile with enlarged magnetic parameter due
to Lorentz force Fig. 5. On the another side we observed that concentration and temperature
profiles are showing directly proportional behaviour with magnetic parameter shown via
Figs. 6 and7.

Influence of velocity slip parameter λ on velocity has been portrayed by Fig. 8 and it is
concluded that velocity profile receives a decrement with increasing velocity slip parameter.
This happen because when we apply slip condition then the velocities of stretching sheet and
flownear the sheet are not same. Temperature and concentration profiles have been plotted via
Figs. 9 and10 and found an increasing nature with respect to velocity slip parameter. Thermal
slip parameter δ downturn the dimensionless temperature and concentration profiles. Even
when just a little quantity of heat is transported from the sheet to the fluid, the thermal
boundary layer thickness falls as the value of the thermal slip parameter rises.

Fig. 2 Velocity distribution with respect to Casson parameter
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Fig. 3 Temperature distribution with respect to Casson parameter

Fig. 4 Concentration distribution with respect to Casson parameter

Gr thermal Grashoff number illustrate the ratio of the buoyancy to viscous force acting on
fluid. Higher Gr denotes the laminar flow and vice versa. In fact enhanced Gr add up more
thermal energy into the fluid molecules, make weaker the intermolecular forces within the
fluid particles and therefore accelerate the fluid velocity Fig. 13 and local rate of heat transfer
of the fluid. Samebehavior of velocity profile is noticedwith respect to concentrationGrashoff
number Gc i.e proportional nature Fig. 14.

Physically larger Nb is referred to produce the collision between nanoparticles. Due to this
phenomena the species between nanoparticles diminishes which are responsible for decrease
in concentration profile Fig. 15 and because collision in fluid enhances due to high Nb, it leads
to increase in temperature profile showed in Fig. 16. Increment in Nt means increase of the
thermophoretic phenomena. Thermophoresis enhances the concentration and temperature

123



134 Page 12 of 23 Int. J. Appl. Comput. Math (2023) 9 :134

Fig. 5 Velocity distribution with respect to magnetic parameter

Fig. 6 Temperature distribution with respect to magnetic parameter

profiles showed via Figs. 17, 18 respectively. For increasing values of Eckert number Ec
thermal boundary layer thickness increases plotted via Fig. 19. Eckert number is a useful
factor in the view of the study of thermal behaviour of the fluid flow. Thermal boundary layer
reduces the heat dissipation.

We know that increasing Schmidt number Sc means lesser or lower mass diffusivity
so concentration profile declines portrayed by Fig. 20. Temperature profile for constituted
model shows decreasing relation with increasing values of Prandtl number Pr Fig. 21. Effect
of radiation parameter on thermal profile have been shown by Fig. 22 it is concluded that
temperature profile rises when radiation is increased as thermal radiation supplies more heat
into the fluid and consequently thermal boundary layer intensified.
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Fig. 7 Concentration distribution with respect to magnetic parameter

Fig. 8 Velocity distribution with respect to velocity slip parameter

Concentration profile with respect to chemical reaction parameter is sketched in Fig.23
illustrates an inversely proportional relationship. The reasoning behind this is that increase
in chemical reaction parameter enlarges the number of solute molecules in chemical reaction
which give rise to decrement in concentration profile.

Tables 1 and 2 represent the comparison of our present results with Dodda et al [2] and
Hammad et al [16] for−φ′(0),−θ ′(0) and− f ′′(0) respectively in no slip case. This validate
the accuracy of our present results. Table 3 illustrates some numerical values of skin friction
coefficient, local Nusselt number and Shrewood number with variation in magnetic and
Casson parameter for the present research problem. By calculating these quantities we get
the rate of heat and mass transfer of the flow. We observed that for higher Casson parameter
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Fig. 9 Temperature distribution with respect to velocity slip parameter

Fig. 10 Concentration distribution with respect to velocity slip parameter

i.e. when fluid gets more viscous a least change is observed in numerical values of velocity,
temperature and concentration.

Conclusion

In this article, the numerical study of MHD Casson nanofluid havebeen pursued over a non-
linear stretching sheet and some very useful outcomes are concluded and these are listed
below-
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Fig. 11 Temperature distribution with respect to thermal slip parameter

Fig. 12 Concentration distribution with respect to thermal slip parameter

Table 2 Comparison of results
for − f ′′(0) when Sc = 1, Pr =
6.8, Nb = Nt, Ec = λ = δ =
M = Gr = Gc = R = � = 0

n − f ′′(0)

Dodda et al. [2] Hammad et al. [16] Present

0.0 0.6283 0.6283 0.6272

0.2 0.7675 0.7674 0.7665

0.5 0.8901 0.8901 0.8891

3.0 1.1490 1.1489 1.1480

10 1.2352 1.2352 1.2343

20 1.2578 1.2577 1.2568
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Fig. 13 Velocity distribution with respect to thermal Grashoff number

Fig. 14 Velocity distribution with respect to concentration Grashoff number

• Casson nanofluid parameter andmagnetic parameter exhibit same attitude towards veloc-
ity, temperature and concentration profiles show inversely relation with velocity and
directly proportional relation with temperature and concentration profiles.

• Velocity slip parameter declines velocity profile but enhances thermal and concentration
distribution profiles.

• Thermal slip parameter diminish the temperature and concentration profiles.
• Velocity profile raises with raised thermal and concentration Grashoff numbers.
• Concentration profiles diminishes with increasing Brownian motion parameter while

shows opposite nature with thermophoresis parameter.
• Temperature profile shows a very slight increment with respect to increasing Brownian

motion and thermophoresis parameter.
• Thermal boundary layer enhances with Eckert number.
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Fig. 15 Concentration distribution with respect to Nb

Fig. 16 Temperature distribution with respect to Nb

• Concentration profile shows decrement with respect to Schmidt number.
• Prandtl number reduces temperature profiles while Radiation Parameter enhances the

thermal profile.
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Fig. 17 Concentration distribution with respect to Nt

Fig. 18 Temperature distribution with respect to Nt
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Fig. 19 Temperature distribution with respect to Eckert number

Fig. 20 Concentration distribution with respect to Schmidt number
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Fig. 21 Temperature distribution with respect to Prandtl number

Fig. 22 Temperature distribution with respect to radiation parameter
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Fig. 23 Concentration distribution with respect to chemical reaction parameter

Table 3 Results for − f ′′(0), −θ ′(0), −φ′(0) when Sc = 1, Pr = 0.5, Nb = Nt = 0.3, Ec = 0.1 = λ =
δ = R,Gr = Gc = 0.3, � = 0.2 and varying values of β and M

M β Re1/2x C fx Re−1/2
x Nux Re−1/2

x Shx

0.5 0.5 −2.3717 1.1281 0.2284

1.0 0.5 −2.7039 1.0864 0.2217

1.5 0.5 −3.2668 1.2355 1.0901

0.5 0.5 −2.3717 1.1281 0.2284

0.5 1.0 −1.8790 1.0857 0.2116

0.5 2.0 −1.8031 1.0521 0.2023

0.5 10 −1.3223 1.0136 0.1953

0.5 100 −1.2567 1.0027 0.1939

0.5 1000 −1.2499 1.0016 0.1938
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