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Abstract
In this article, the fractional model of brain tumour is investigated. The numerical solution
of this model is obtained by the modified technique called as Natural transform homotopy
perturbation technique. The existence and uniqueness of the solution is discussed with the
help of the fixed point theorem, also the stability is analysed using the Lyapunov function.
The convergence and error are also analysed with help of Cauchy sequence. Finally, the
effectiveness of the proposed technique is tested by three different test examples and the
results are compared with the existing methods.

Keywords Fractional model of brain tumour · Caputo derivative · Fixed-point theory ·
Natural transform · Homotopy perturbation transform technique · Stability analysis

Introduction

Fractional calculus (FC) is considered as the generalisation of the traditional integer order
calculus to the modern calculus that contains integrals and derivatives of fractional order.
Fractional calculus has a powerful tool to model a wide range of real-life phenomena in
wide areas of science and technology. The Caputo derivative [1] is the most helpful among
the various derivatives that are listed in the literature. Several researchers investigated many
fractional models such as the Parkinson’s disease fractional model [2–4], the fractional com-
petition model [5] of bank data, fractional order Cahn–Allen model [6], the fractional HBV
immune model [7], the fractional Lana fever model [8], the fractional Leukemia model [9],
the Caputo fractional operator is applied to the blood alcohol model [10], the fractional order
Zika virus model [11], the generalised time fractional Cattaneo model [12], the fractional
model of Babesiosis disease [13], fractional operators with Mittag–Leffler kernel [14], the
Aboodh transform is applied to solve proportional delay TFPDE [15], the time-fractional
Navier–Stokes equations [16], fractional dynamical systems [17], the non-linear fractional
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Fig. 1 Glioblastoma tumour in the
parietal lobe [20]

glucose–insulin regulatory dynamical system [18], and the fractional immunogenetic tumour
model [19].

For the sake of society, it is crucial to investigate fractional order mathematical models,
however doing so can occasionally be quite challenging. In order to obtain approximate
analytic solutions for these models, a numerical technique must be developed. Numerous
methods have been used to research these fractional models such as; ADM [20], FEM [21],
ABM [22], HATM [23], STM [24], FHPTM [25], Collocation method [26], FRDTM [27],
FVIM [28], Sumudu transform method [29], q-HAM [29], Sumudu transform perturbation
method [29], and Modified computational technique [6] etc.

For the appropriate treatment of the tumour, the information about the growth profile of the
tumour cells is very crucial. So, the studyof the fractionalmodel of brain tumour is very crucial
for the proper treatment of the patient suffering from the brain tumour. Mathematically, the
geometry of the tumour is considered as spherical as shown in Fig. 1. The two-dimensional
tumour model was investigated by many researchers [30–33], they consider the equation as:

∂t B(x, τ ) = D∇2B(x, τ ) + ρB(x, τ ).

where B(x, τ ) represents the cell density at time τ and radius x and ∇2 is the Laplacian
operator. ρ is the net rate of growth of cells and is expressed as a decimal fraction per day.
D is the diffusion coefficient, expressed as cm2 per day.

In this model, the two main key processes of a diffusive brain tumour are taken into
consideration, these are cell proliferation (ρ) and diffusion (D), and then merge to give the
form of reaction–diffusion equation [34]:

∂t B(x, τ ) = D
1

x2
∂x
(
x2∂x B(x, τ )

)+ ρB(x, τ ).

The fractional order model of brain tumour is developed by Ganzi et al. [35] in the form
of the fractional Burgess equation which is given by

c
0D

α
t Q(x, t) = 1

2
Qxx (x, t) + S(x, t), α ∈ (0, 1], (1.1)

having initial conditions Q(x, 0) = h(x). Here, Q(x, t) is growth profile and S(x, t) =
ρ−kt
2D Q(x, t), where, ρ is cell proliferation, kt is killing rate of tumour cells and x and t are
the growth profile parameter. The symbol 0cD

α
t is Caputo derivative of order α with respect

to time.
The integer order model was originally developed for simulation of a case of recurrent

anaplastic astrocytoma which is under chemotherapy and then extended to study the effects
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of the scale of surgical resection and of the variation in growth and diffusion to cover the
complete extent of glioma growth. The mathematical model with fractional derivatives seem
very helpful in explaining the growth of tumour and the interaction between tumour cells
and host cells as compared to the integer order derivatives. The use of fractional derivative
gives a possible answer to the question on how the neoplasm cells appear arbitrarily far from
the main (primary) tumour in the case of solid tumour. Mutation of single cell or groups of
cells is the cause of the generation of the tumour. Gliomas are diffusive brain tumours which
are very difficult to cure in spite of major surgical resections. The main characteristic of the
mutated cells is that they show rapid and uncontrolled growth, which is the main cause of
the malfunctioning of normal tissues.

In this article, our main objective is to analyse the fractional model of brain tumour
(glioblastomas) and analyse the variation of growth profile of tumour with respect to time.
Natural transform homotopy perturbation technique (NTHPT) is used for solving fractional
model of brain tumour. Natural transform is an advanced transformation which is a general-
isation of Laplace and Sumudu transformation. Natural transform handles the non-linearity
and other restrictions very smoothly as compared to Laplace transform. Natural transform
converges to both Laplace and Sumudu transform. So, Natural transform is more reliable and
effective than Laplace or Sumudu transform. The existence and uniqueness of the solution
are discussed by using fixed-point theorem, also the stability analysed is discussed with the
help of the Lyapunov function. The convergence and error are analysed with help of Cauchy
sequence.

This work is innovative in that it makes an accurate prediction about how the tumor’s
growth profile will change over time. It has been demonstrated that the modified numerical
technique, Natural transform homotopy perturbation technique, decreases the computational
effort required to solve non-linear fractional models, which are useful in a wide range of
engineering and scientific fields. The main objective of this research is the development of
a very accurate numerical method for solving the fractional model of a brain tumour. The
findings in this research may have significant applications in biotechnology, diffusion theory,
computational biology, and medical science, among other fields. Additionally, we simulate
three separate test cases to demonstrate that the suggested technique, NTHPT, allows us
to investigate the variation of the tumor’s growth profile with regard to time much more
accurately than the other methods do.

Preliminaries

Definition 2.1 Let n be a natural number and f (t) is a continuous function in interval [0, t]
then its Riemann–Liouville derivative of the order α > 0, is defined as [1]:

Dα
t f (t) =

⎧
⎨

⎩

1
�(n−α)

dn
dtn

t∫

0
(t − s)(n−α−1) f (s)ds, if n − 1<α< n,

f (n)(t), if α= n ∈ N,

where �(α) denote Gamma function.

Definition 2.2 The Caputo derivative of function f (t), is defined as [1]:

Dα f (t) = Im−αDm f (t) = 1

�(m − α)

t∫

0

(t − x)m−α−1 f (m)(x)dx,
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where m − 1 < α ≤ m.

Definition 2.3 The Caputo integral of f (t) is defined as [36]:

c
0 I

α
t { f (t)} = 1

�(α)

t∫

0

(t − x)α−1 f (x)dx,

where 0 < α ≤ 1.

Definition 2.4 Let f (t) be a function defined on t ≥ 0. Then Natural transformation of the
function f (t) is R(s, v) and is given as [37]:

NT [ f (t)] =
∞∫

−∞
e−st f (vt)dt, s, v ∈ (−∞,∞).

Definition 2.5 If R(s, v) is the Natural transformation of f (t), then the inverse natural
transformation of R(s, v) is f (t) and given as [37]:

NT−1[R(s, v)] = 1

2π i

∞∫

−∞
e
st
v R(s, v)dt, s, v ∈ (−∞,∞).

Definition 2.6 The Natural transformation of fractional Caputo operator is given as [37]:

NT
[c
0D

α
t f (t)

] = sα

vα
N [ f (t)] −

m−1∑

k=0

s(α−k−1)

vα−k
f (k)(0), m − 1 < α ≤ m.

Definition 2.7 The Caputo operator of any constant number is always zero.

Theorem 2.1 [37] If f (t) is sectionally continuous in every finite interval 0 ≤ t ≤ k and of
the exponential order δ for t > k, then its Natural transform exists for all s > δ, v > δ.

Theorem2.2 [36] The fractional differential equation c
0D

α
t f (t) = e(t) has a unique solution

given as:

f (t) = 1

�(α)

t∫

0

(t − x)α−1e(x)dx,

where 0 < α ≤ 1.

Stability Analysis

In this segment, we analyse the asymptotically stability of the fractional model of brain
tumour with the help of the Lyapunov function.

We can rewrite the given equation (1.1) as:

c
0D

α
t Q(x, t) = ψ(x, t, Q), Q(x, 0) = h(x). (3.1)
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For analysing the stability of Eq. (3.1), we have to prove that the following equation has
positive solution and lim → 0 as t → ∞

c
0D

α
t Q = δQ, Q(0) = a, δ < 0. (3.2)

We can transform the Eq. (3.2) into an integral one

Q = Q(0) + δ Iα
0+ Q, Q(0) = a. (3.3)

Picard’s method is used to solve Eq. (3.3). The approximating formula is defined as

Qn+1 = Q0 + δ Iα
0+ Qn, 0 ≤ n, (3.4)

where Q0 = Q(0) = a, we get

Q1 = Q0 + δ Iα
0+ Q0 = Q0 + δQ0

�(1+α)
tα,

Q2 = Q0

∞∑
m=0

δm tmα

�(1+mα)
,

...

Qm = Q0

m∑

m=0
δm tmα

�(1+mα)
.

(3.5)

Hence, we get the Mittag–Leffler function as given below

Eα,1(δ, 1) =
m∑

m=0

δm
tmα

�(1 + mα)
, 0 < t . (3.6)

The one parameter Mittag–Leffler function is given by

Eα

(−tα
) =

m∑

m=0

(−1)m
tmα

�(1 + mα)
, 0 < t . (3.7)

We approximate the Mittag–Leffler function like [38]:

Eα

(−tα
) ∼ t−α

�(1 − α)
, t → ∞. (3.8)

So, we get

lim
t→∞ Eα,1(δ, t) = 0. (3.9)

Moreover, it’s clear that Eα,1(δ, t) is positive and yields the results which are monotoni-
cally identical to Eα(−tα).

Lemma 3.1 [39] Assume that x = 0, is an equilibrium point (EP). It is Luapunov stable if
∀ε > 0, there exist aλ = λ(t0, ε), s.t. if

‖x(t0)‖ < λ ⇒ ‖x(t0)‖〈ε,∀t〉t0
Lemma3.2 [39] An EP, x = 0, is asymptotically stable if ∀ ε > 0, there exist a λ = λ(t0) >

0, then

‖x(t0)‖ < λ ⇒ lim
t→∞x(t) = 0.
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Lemma 3.3 [39] For x(t), z(t)εC1[a, b], x(a) = z(a), 0 < m, s.t. if

c
a+Dα

t x(t) ≤ −kx(t), 0 < α ≤ 1, (3.10)

And

c
a+Dα

t z(t) = −kz(t), (3.11)

then x(t) ≤ z(t) hold ∀tε[a, b].

Theorem 3.1 Let us suppose that x = 0 is an EP. If there exist a + ve definite function
V (t, x(t)), t ∈ R, class −K function β1, β2 and β3 such that

β1(‖x(t)‖) ≤ V (t, x(t)) ≤ β2(‖x(t)‖), (3.12)

c
a+Dα

t V (t, x(t)) ≤ −β3‖x(t)‖, (3.13)

then EP is asymptotically stable.

Proof From the given Eqs. (3.12) and (3.13). we have.

c
a+Dα

t V (t, x(t)) ≤ −β3

(
β−1
2 V (t, x(t))

)
, (3.14)

where β2
−1 is the inverse of β2. Let us consider the given equation as

c
a+Dα

t h(t) ≤ −β3

(
β−1
2 V (t)

)
, (3.15)

having initial condition h(a) = V (a, h(a)). Eq. (3.15) have a solution similar to the Mit-
tag–Leffler function, lim

t→∞h(t) = 0, and by using lemma (3.3), it is evident that V (t, x(t))

bounded by h(t), so lim
t→∞x(t) = 0.

Lemma 3.4 [39] If c
a+Dα

t x(t) ≥ c
a+Dα

t z(t), 1 < α ≤ 2,∀t > a and x(a) = z(a) then

x(t) ≥ z(t). (3.16)

Lemma 3.5 The given below inequality always true

c
a+Dα

t x
2(t) ≤ 2x(t)ca+ Dα

t x(t). (3.17)

Proof We proceed like [40], so, we have to prove that

c
a+Dα

t x
2(t) − 2x(t)ca+ Dα

t x(t) = 1

�(1 − α)

t∫

0

dx2( f )
ds − 2x(t)dx( f )

ds

(t − f )α
d f ≤ 0. (3.18)

From definition (2.7) and putting the term dx2(t)
d f inside the integral (3.18), so

c
a+Dα

t x
2(t) − 2x(t)ca+Dα

t x(t) = 1

�(1 − α)

t∫

0

dx2( f )
d f − 2x(t)dx( f )

d f + dx2(t)
d f

(t − f )α
d f . (3.19)

Let H( f ) = (x( f ) − x(t))2, so we have

c
a+Dα

t x
2(t) − 2x(t)ca+Dα

t x(t) = 1

�(1 − α)

t∫

0

H ′( f )
(t − f )α

d f . (3.20)
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Integrating equation (3.20), we get

t∫

0

H ′( f )
(t − f )α

d f = G( f )

(t − f )α

]t

f =a
−

t∫

0

αH( f )

(t − f )α+1 d f . (3.21)

Next, we have to find the value of lim
f →t

H( f )
(t− f )α , so

lim
f →t

H( f )

(t − f )α
= lim

f →t

(x( f ) − x(t))2

(t − f )α
,

= lim
f →t

2(x( f ) − x(t))x ′( f )
α(t − f )α−1 = 0,

c
a+Dα

t x
2(t) − 2x(t)ca+Dα

t x(t) = −1

�(1 − α)

t∫

0

H(a)

(t − a)α
− α

�(1 − α)

t∫

0

H( f )

(t − f )α+1 d f .

(3.22)

Hence, proved.

Theorem 3.2 If x = 0is an EP of Eq. (1.1)and x(t)ψ(t, x(t)) < 0,then Eq. (1.1)is asymp-
totically stable.

Proof Let us consider the Lyapunov function as:

V = x2(t)

2
, (3.23)

so, we get

c
a+Dα

t V ≤ x(t)ca+ Dα
t x(t) = x(t)ψ(t, x(t)) < 0. (3.24)

Hence, form theorem (3.1), Eq. (1.1) is asymptotically stable.

Existance and Uniqueness of the solution of fractional model of Brain Tumour

The fractional model of brain tumour given by Eq. (1.1) can be transform to the following
form

c
0D

α
t Q(x, t) = ϕ(x, t, Q), (4.1)

where ϕ(x, t, Q) = 1
2Qxx (x, t) + ρ−kt

2D Q(x, t).
The e Eq. (4.1) can be converted into the Voltera equation by using the theorem (2.2) as:

Q(x, t) − Q(x, 0) = 1

�(α)

t∫

0

(t − s)α−1ϕ(x, t, Q)ds. (4.2)

Next, we have to prove that ϕ(x, t, Q) satisfy Lipschitz condition.

Theorem 4.1 The function, ϕ(x, t, Q) in the given Voltera equation satisfy the Lipschitz

condition and also satisfy the contraction if 0 < η ≤ 1, where η = δ2

2 + λ.
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Proof We suppose that the function Q(x, t) is bounded. So, we have

‖ϕ(x, t, Q) − ϕ(x, t, Q1)‖ =
∥∥
∥∥
1

2

∂2Q(x, t)

∂x2
+ ρ − kt

2D
Q(x, t) − 1

2

∂2Q(x, t1)

∂x2
− ρ − kt

2D
Q(x, t1)

∥∥
∥∥,

=
∥
∥∥
∥
1

2

∂2

∂x2
{Q(x, t) − Q(x, t1)} + ρ − kt

2D
{Q(x, t) − Q(x, t1)},

∥
∥∥
∥

≤
∥
∥∥
∥
1

2

∂2

∂x2
+ ρ − kt

2D

∥
∥∥
∥‖Q(x, t) − Q(x, t1)‖,

≤
(

δ2

2
+ λ

)
‖Q(x, t) − Q(x, t1)‖.

Now by letting η = δ2

2 + λ, we get

‖ϕ(x, t, Q) − ϕ(x, t, Q1)‖ ≤ η‖Q(x, t) − Q(x, t1)‖. (4.3)

Thus, ϕ(x, t, Q) meet the requirement of the Lipschitz condition and contraction if 0 <

η ≤ 1.
The iterative formula taken for the existence of the solution is given below

Qn+1(x, t) = 1

�(α)

t∫

0

(t − s)α−1ϕ(x, t, Qn)ds, (4.4)

with initial condition as Q(x, 0) = Q(x, t0).
The difference between two consecutive terms is given by

ϕn(x, t) =Qn(x, t) − Qn−1(x, t),

= 1

�(α)

t∫

0

(t − s)α−1{ϕ(x, t, Qn−1) − ϕ(x, t, Qn−2)}ds. (4.5)

It can be observed that

Qn(x, t) =
n∑

i=0

ϕi (x, t), (4.6)

so, from Eq. (4.5), we have

‖ϕn(x, t)‖ = ‖Qn(x, t) − Qn−1(x, t)‖. (4.7)

Now, we apply the triangular inequality on Eq. (4.4), we get

‖ϕn(x, t)‖ ≤ 1

�(α)
η

∥∥∥∥∥∥

t∫

0

(t − s)α−1ϕn−1(x, s)ds

∥∥∥∥∥∥
. (4.8)

Theorem 4.2 The solution of fractional Burgess equation exist if ∃,t0,which satisfy.

1

�(α)
ηtα0 ≤ 1.
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Proof Let Q(x, t) is a bounded function that also satisfies the Lipschitz condition then from
Eq. (4.8) we have.

‖ϕn(x, t)‖ ≤ ‖ϕn(x, t)‖
[

1

�(α)
η.tα

]n
. (4.9)

So, the existence and continuousness of the obtained solution is established.

Q(x, t) − Q(x, 0) = Qn(x, t) − χn(x, t). (4.10)

Here, we consider that

‖χn(x, t)‖ =
∥
∥
∥
∥
∥
∥

1

�(α)

t∫

0

(t − s)α−1{ϕ(x, t, Qn) − ϕ(x, t, Qn−1)}ds
∥
∥
∥
∥
∥
∥
,

≤ 1

�(α)

∥
∥
∥
∥
∥
∥

t∫

0

(t − s)α−1{ϕ(x, t, Qn) − ϕ(x, t, Qn−1)}ds
∥
∥
∥
∥
∥
∥
,

≤ 1

�(α)
η‖Qn(x, t) − Qn−1(x, t)‖t .

In the same way at t0, we obtain

‖χn(x, t)‖ ≤
[

1

�(α)
tα0

]n+1

ηn+1M, (4.11)

as n → ∞, we can clearly see that ‖χn(x, t)‖ → 0.

Theorem 4.3 The fractional Burgess equation possesses a unique solution if the following
condition holds

(
1 − 1

�(α)
ηtα

)
> 0.

Proof Suppose Q∗(x, t) is another solution of the given fractional brain tumour model, then

∥∥Q(x, t) − Q∗(x, t)
∥∥ =

∥∥∥∥∥∥

1

�(α)

t∫

0

(t − s)α−1{ϕ(x, t, Q) − ϕ
(
x, t, Q∗)}ds

∥∥∥∥∥∥
,

≤ 1

�(α)
η
∥∥Q(x, t) − Q∗(x, t)

∥∥. (4.12)

Now, on simplifying above equation, we gethence, if

∥∥Q(x, t) − Q∗(x, t)
∥∥
(
1 − 1

�(α)
ηtα

)
≤ 0,

(
1 − 1

�(α)
ηtα

)
> 0, (4.13)

so, Q(x, t) = Q∗(x, t).
Which shows the uniqueness condition of the solution of the fractional model of brain

tumour.
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Description of Proposed Technique NTHPT

The fractional-order model of brain tumour is given by

c
0D

α
t Q(x, t) = 1

2
Qxx (x, t) + S(x, t), (5.1)

with initial condition Q(x, 0) = h(x).
Now, we apply Natural transform on Eq. (5.1), we get

NT
[c
0D

α
t Q(x, t)

] =NT

[
1

2
Qxx (x, t)

]
+ NT [S(x, t)],

( s
v

)α

NT [Q(x, t)] − sα−1

vα
[Q(x, 0)] =NT

[
1

2
Qxx (x, t)

]
+ NT [S(x, t)],

( s
v

)α

NT [Q(x, t)] − sα−1

vα
h(x) =NT

[
1

2
Qxx (x, t)

]
+ NT [S(x, t)],

NT [Q(x, t)] =1

s
h(x) +

(v

s

)α

NT

[
1

2
Qxx (x, t) + S(x, t)

]
.

Now, we apply inverse Natural transform to above equation, we get

Q(x, t) = h(x) + NT−1
{(v

s

)α

NT

[
1

2
Qxx (x, t) + S(x, t)

]}
. (5.2)

Next, we use the Homotopy perturbation technique to solve the above equation, so for the
linear term we put

Q(x, t) =
∞∑

m=0

pmQm(x, t), (5.3)

and the nonlinear term N {Q(x, t)} is decomposed by the use of He’s polynomial as

N {Q(x, t)} =
∞∑

m=0

pmHm(Q), (5.4)

where

Hm(Q) = 1

n!
dm

dpm

⎡

⎣ f

⎛

⎝
m∑

j=0

p j Q j (x, t)

⎞

⎠

⎤

⎦

p=0

. (5.5)

Here if S(x, t) is linear in Q(x, t) then it is replaced by using Eq. (5.3) and if it is nonlinear
in Q(x, t) then it is replaced by using Eq. (5.4).

Case-I When S(x, t) is linear. So, we can write S(x, t) = c.Q(x, t), here c is a constant.
Now using Eq. (5.3) in Eq. (5.2), we get

∞∑

m=0

pmQm(x, t) = h(x) + NT−1

[(v

s

)α

NT

(( ∞∑

m=0

pm
1

2
(Qm)xx +

∞∑

m=0

c.Qm

))]

.

(5.6)

Now, we compare coefficients of equal power of p, so

Q0(x, t) = h(x),
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Q1(x, t) = NT−1
[(v

s

)α

NT

(
1

2
(Q0)xx + c.Q0

)]
,

Q2(x, t) = NT−1
[(v

s

)α

NT

(
1

2
(Q1)xx + c.Q1

)]
,

...

Qm(x, t) = NT−1
[(v

s

)α

NT

(
1

2
(Qm−1)xx + c.Qm−1

)]
,

and the final solution is given by

Q(x, t) = lim
k→∞

k∑

m=0

Qm(x, t).

Case-II When S(x, t) is nonlinear. So, we can write S(x, t) = N {Q(x, t)}.
Now usingEq. (5.4) in Eq. (5.2) we get

∞∑

m=0

pmQm(x, t) = h(x) + NT−1

[
(v

s

)α

NT

( ∞∑

m=0

pm
1

2
(Qm)xx +

∞∑

m=0

pmHm

)]

. (5.7)

Now, we compare coefficients of equal power of p, soand the final solution is given by

Q0(x, t) = h(x),

Q1(x, t) = NT−1
[(v

s

)α

NT

(
1

2
(Q0)xx + H0

)]
,

Q2(x, t) = NT−1
[(v

s

)α

NT

(
1

2
(Q1)xx + H1

)]
,

...

Qm(x, t) = NT−1
[(v

s

)α

NT

(
1

2
(Qm−1)xx + Hm−1

)]
,

Q(x, t) = lim
k→∞

k∑

m=0

Qm(x, t). (5.8)

Convergence and Error Analysis

For the given NTHPT technique, the convergence and error can be analysed from the follow-
ing theorem.

Theorem 6.1 The NTHPT is applied to get the solution of Eq. (1.1) is similar to the given
below sequence.

Ai = Q1 + Q2 + Q3 + . . . Qi ,

A0 = Q0.

By the iterating scheme

Ai+1 = NT−1

[(v

s

)α

NT

( ∞∑

m=0

pm
1

2
(Qm)xx +

∞∑

m=0

pmHm

)]

. (6.1)
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Proof For i = 0, eEq. (6.1). gives.

A1 = NT−1
[(v

s

)α

NT

(
1

2
(Q0)xx + H0

)]
.

then as A1 = Q1, so we have

Q1 = NT−1
[(v

s

)α

NT

(
1

2
(Q0)xx + H0

)]
.

Now for i = 1, we have

A2 =NT−1
[(v

s

)α

NT

(
1

2
(Q0 + Q1)xx + H0 + H1

)]

= NT−1
[(v

s

)α

NT

(
1

2
(Q0)xx + H0

)]
+ NT−1

[(v

s

)α

NT

(
1

2
(Q1)xx + H1

)]
,

as, A2 = Q1 + Q2, so we have

Q1 + Q2 = A1 + NT−1
[(v

s

)α

NT

(
1

2
(Q1)xx + H1

)]
,

thus,

Q2 = NT−1
[(v

s

)α

NT

(
1

2
(Q1)xx + H1

)]
.

Proceeding in the same way, we get

Qk = NT−1
[(v

s

)α

NT

(
1

2
(Qk−1)xx + Hk−1

)]
,

where k = 1, 2, 3 . . . . . . i, so we get

Ai+1 = NT−1

[(v

s

)α

NT

(
m∑

i=0

1

2
(Qi )xx +

m∑

i=0

Hi

)]

,

= NT−1
[(v

s

)α

NT

(
1

2
(Q0)xx + H0

)]

+ NT−1
[(v

s

)α

NT

(
1

2
(Q1)xx + H1

)]

+ NT−1
[(v

s

)α

NT

(
1

2
(Q2)xx + H2

)]

+ NT−1
[(v

s

)α

NT

(
1

2
(Q3)xx + H3

)]

...

+ NT−1
[(v

s

)α

NT

(
1

2
(Qi−1)xx + Hi−1

)]

+ NT−1
[(v

s

)α

NT

(
1

2
(Qi )xx + Hi

)]

Ai+1 = Q1 + Q2 + Q3 + . . . Qi + NT−1
[(v

s

)α

NT

(
1

2
(Qi )xx + Hi

)]
,
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as we know that

Ai = Q1 + Q2 + Q3 + . . . Qi ,

so, we get

Qi+1 = NT−1
[(v

s

)α

NT

(
1

2
(Qi )xx + Hi

)]
.

Which is identical to the solution given by NTHPT and hence proved.

Theorem 6.2 Let Qi (t)and Q(t)are defined in Banach space (C[0, 1], ‖.‖). If ∃0 < δ < 1,
such that ‖Qi+1(t)‖ ≤ δ‖Qi (t)‖,∀i ∈ N then the NTHPT solution

∑∞
i=0 Qi (t)converges

to the solution Q(t)of the fractional model of the brain tumour (1.1).

Proof Assume that the sequence of partial sums of the series (5.8) is represented by {ui },
then.

‖ui+1 − ui‖ = ‖Qi+1‖ ≤ δ‖Qi‖ ≤ δ2‖Qi+1‖ ≤ . . . ≤ δi+1‖Q0‖.
For any i, j ∈ N , i ≥ j ,

∥∥ui − u j
∥∥ = ∥∥(ui − ui−1) + (ui−1 − ui−2) + . . . + (

u j+1 − u j
)∥∥

≤ ‖(ui − ui−1)‖ + ‖(ui−1 − ui−2)‖ + . . . + ∥∥(u j+1 − u j
)∥∥

≤ δi‖Q0‖ + δi−1‖Q0‖ + . . . + δ j+1‖Q0‖

≤ δ j+1
(
1 + δ + δ2 + . . . + δi− j−1

)
‖Q0‖ ≤ 1 − δi− j

1 − δ
δ j+1‖Q0‖,

since 0 < δ < 1, we have 1 − δ j−i < 1, then

ui − u j ≤ δ j+1

1 − δ
Q0, (6.2)

so, ‖ui − u j‖ → 0 as i, j → ∞ as Q0 is bounded. So, {ui } is the Cauchy sequence in the
Banach space and is convergent. So, ∃Q(t) ∈ B such that

∑∞
i=0 Qi (t) = ϕ(t).

Theorem 6.3 If ∃0 < δ < 1 in such a manner that ‖Qi+1(t)‖ ≤ δ‖Qi (t)‖,∀i ∈ N then the
truncation error of the NTHPT solution (5.8)of the system (1.1)is estimated as

∣∣∣∣∣∣
Q(t) −

j∑

i=0

ϕi (t)

∣∣∣∣∣∣
≤ δ j+1

1 − δ
‖Q0‖.

Proof From equation (6.2) and theorem (6.2) as j → ∞, ui → Q(t), we have
∣∣∣∣∣∣
Q(t) −

j∑

i=0

ϕi (t)

∣∣∣∣∣∣
≤ δ j+1

1 − δ
‖Q0‖.
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Fig. 2 Variation of initial growth profile Q(x, 0) with x for Ex. 7.1

Fig. 3 Absolute Error at x = 1 for distinct values of α, for Ex. 7.1
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Numerical Simulation

In this section, to show the effectiveness of the proposed technique, NTHPT, we simulate
three types of fractional Burgess equations (Fig. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12, Table 1).

Example 7.1 Let us consider S(x, t) = 1
2Q(x, t) then, Eq. (1.1) becomes.

c
0D

α
t Q(x, t) = 1

2
Qxx (x, t) + 1

2
Q(x, t). (7.1)

The exact solution of equation (7.1) for α = 1 is Q(x, t) = e(x+t).

Solution From the exact solution Q(x, 0) = ex . Now, we apply NTHPT to equation (7.1)
so, we have Q0(x, t) = ex . Therefore

Q0(x, t) = ex ,

Q1(x, t) = ex
tα

�(α + 1)
,

Q2(x, t) = ex
t2α

�(2α + 1)
,

Q3(x, t) = ex
t3α

�(3α + 1)
,

Fig. 4 Absolute Error at x = 1 for different values of α, for Ex. 7.1
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Fig. 5 Approximate growth profile Q(x, t) at x = 1 for different values of α, for Ex. 7.1

...

Qm(x, t) = ex
tmα

�(mα + 1)
.

Hence, the solution by NTHPT is given by

Q(x, t) = lim
k→∞

k∑

m=0

ex
tmα

�(mα + 1)
.

Example 7.2 Let us consider S(x, t) = Q(x, t) then, Eq. (1.1) becomes.

c
0D

α
t Q(x, t) = 1

2
Qxx (x, t) + Q(x, t). (7.2)

The exact solution of equation (7.2) for α = 1 is Q(x, t) = xet .

Solution From the exact solution, Q(x, 0) = x . Now, applying NTHPT to Eq. (7.2) so,
we have Q0(x, t) = x , (Figs. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 and 23, Tables 2 and 3)
therefore

Q0(x, t) =x,

Q1(x, t) =x
tα

�(α + 1)
,
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Fig. 6 Approximate growth profile Q(x, t) at x = 1 for distinct values of α, for Ex. 7.1

Fig. 7 Approximate growth
profile Q(x, t) at α = 0.25, for
Ex. 7.1

Q2(x, t) =x
t2α

�(2α + 1)
,

Q3(x, t) =x
t3α

�(3α + 1)
,
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Fig. 8 Approximate growth
profile Q(x, t) at α = 0.50, for
Ex. 7.1

Fig. 9 Approximate growth
profile Q(x, t) at α = 0.75, for
Ex. 7.1

Fig. 10 Approximate growth
profile Q(x, t) at α = 0.90, for
Ex. 7.1
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Fig. 11 Approximate growth
profile Q(x, t) at α = 1, for Ex.
7.1

Fig. 12 Exact growth profile
Q(x, t) at α = 1, for Ex.7.1

Table 1 Absolute error for distinct values of α at x = 1, for Ex. 7.1

α t = 0.1 t = 0.3 t = 0.5 t = 0.7 t = 0.9

0.8 2.282 e−01 4.990 e−01 7.593 e−01 7.652 e−01 8.137 e−01

0.9 9.698 e−02 2.191 e−01 3.364 e−01 4.652 e−01 2.909 e−01

0.95 4.489 e−02 1.031 e−01 1.591 e−02 2.204 e−01 9.584 e−02

0.99 8.458 e−03 1.970 e−02 3.049 e−02 4.230 e−02 5.588 e−02

0.999 8.347 e−05 1.950 e−03 3.020 e−03 4.192 e−03 5.538 e−03

0.9999 8.336 e−06 1.948 e−04 3.018 e−04 4.188 e−04 5.533 e−04

1 0 0 8.881 e−16 1.776 e−15 1.776 e−15
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Fig. 13 Variation of initial growth profile (x, 0) with x, for Ex. 7.2

...

Qm(x, t) =x
tmα

�(mα + 1)
.

Hence, the solution by NTHPT is given by

Q(x, t) = lim
k→∞

k∑

m=0

x
tmα

�(mα + 1)
.

Example 7.3 Let us consider S(x, t) = e−Q(x,t) + 1
2e

−2Q(x,t) then, Eq. (1.1) becomes

c
0D

α
t Q(x, t) = 1

2
Qxx (x, t) + e−Q(x,t) + 1

2
e−2Q(x,t). (7.3)

The exact solution of equation (7.3) for α = 1 is Q(x, t) = log(x + t + 2).

Solution From the exact solution, Q(x, 0) = log(x + 2). Now, we apply NTHPT to
equation (7.3) so, we have Q0(x, t) = log(x + 2).

The two nonlinear terms in the equation (7.3) are e−Q(x,t) and e−2Q(x,t) are replaced by
using He’s polynomials Hm and H∗

m, respectively. (Figs. 24, 25, 26, 27, 28, 29, 30, 31, 32,
33 and 34, Tables 4 and 5) Some of them are given below

H0 = 1

x + 2
,

H1 = −1

(x + 2)2
tα

�(α + 1)
,
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Fig. 14 Absolute Error at x = 1 for distinct values of α, for Ex. 7.2

H2 = −1

2(x + 2)3
t2α

�(2α + 1)
,

and

H∗
0 = 1

(x + 2)2
,

H∗
1 = −2

(x + 2)3
tα

�(α + 1)
,

H∗
2 = 6

(x + 2)4
t2α

�(2α + 1)
.

So, after putting all these values, we get

Q0(x, t) =log(x + 2),

Q1(x, t) = 1

x + 2

tα

�(α + 1)
,

Q2(x, t) = −1

(x + 2)2
t2α

�(2α + 1)
,

Q3(x, t) = 1

(x + 2)3
t3α

�(3α + 1)
,

...
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Fig. 15 Absolute Error at x = 1 for different values of α, for Ex. 7.2

Fig. 16 Approximate growth
profile Q(x, t) at α = 0.25, for
Ex. 7.2

Qm(x, t) = (−1)m+1

(x + 2)m
tmα

�(mα + 1)
.

Hence, the solution by NTHPT is given by

Q(x, t) = lim
k→∞

k∑

m=0

(−1)m+1

(x + 2)m
tmα

�(mα + 1)
.
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Fig. 17 Approximate growth
profile Q(x, t) at α = 0.50, for
Ex. 7.2

Fig. 18 Approximate growth
profile Q(x, t) at α = 0.75, for
Ex. 7.2

Fig. 19 Approximate growth
profile Q(x, t) at α = 0.90, for
Ex. 7.2
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Fig. 20 Approximate growth
profile Q(x, t) at α = 1, for Ex.
7.2

Fig. 21 Exact growth profile
Q(x, t) at α = 1, for Ex. 7.2

Numerical Result Discussion

The variation of the initial growth profile Q(x, 0) for Ex. 7.1, 7.2 and 7.3 is illustrated in
Figs. 2, 13 and 24, respectively. The absolute error for distinct values of α and t at x = 1
for Ex. 7.1 and 7.2 is demonstrated in Figs. 3, 4 and 14, 15, respectively, and for Ex. 7.3 at
x = 25 in Figs. 25, 26. The approximate and exact growth profile Q(x, t) for different values
of α for Ex. 7.1, Ex. 7.2, and Ex. 7.3 is demonstrated through 2D graphical representation
in Figs. 5, 6, 22, 23 and 33, 34, respectively, and through 3D graphical representation in
Figs. 7, 8, 9, 10, 11, 12, 16, 17, 18, 19, 20, 21 and 27, 28, 29, 30, 31, 32, respectively. From
the graphical representation of the approximate and exact growth profile, it is observed that
for α = 1 the approximate growth profile is almost similar to the exact growth profile.

The effectiveness and accuracy of the proposed technique, NTHPT, are shown in the
Tables 1, 2 and 4, by computing absolute error for distinct values of α and t for Ex. 7.1,
7.2 and 7.3. Here, we have observed that the absolute error is very less and the numerical
solution is almost equal to the exact solution. In the Table 3 we compare the absolute error
of the proposed technique, NTHPT, and Collocation method for Ex. 7.1 and Ex. 7.2, and
it is observed that the proposed technique, NTHPT, gives a more accurate solution than the
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Fig. 22 Approximate growth profile Q(x, t) at x = 1 for distinct values of α, for Ex. 7.2

Fig. 23 Approximate growth profile Q(x, t) at x = 1 for distinct values of α, for Ex. 7.2
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Table 2 Absolute error for distinct values of α at x = 1, for Ex. 7.2

α t = 0.1 t = 0.3 t = 0.5 t = 0.7 t = 0.9

0.8 5.796 e−02 1.183 e−02 2.793 e−01 3.849 e−01 5.071 e−01

0.9 3.567 e−02 8.063 e−02 1.237 e−01 1.711 e−01 2.257 e−01

0.95 1.615 e−02 3.795 e−02 5.239 e−02 7.597 e−02 9.584 e−02

0.99 3.070 e−04 3.603 e−03 5.579 e−03 1.086 e−02 1.641 e−02

0.999 3.066 e−05 3.585 e−04 5.553 e−04 7.706 e−04 1.629 e−03

0.9999 3.066 e−07 3.583 e−05 5.551 e−05 1.540 e−04 1.017 e−04

1 0 4.551 e−14 1.276 e−11 5.258 e−10 8.494 e−09

Table 3 Comparison of absolute error between NTHPT and Collocation method atx = 1, andα = 1, for Ex.
7.1, and Ex .7.2

t Absolute error for Ex. 7.1 Absolute error for Ex. 7.2

NTHPT Collocation Method NTHPT Collocation Method

0.1 0 1.701 e−08 0 1.91539 e−10

0.3 0 1.530 e−06 4.551 e−14 1.4277 e−08

0.5 8.881 e−16 1.585 e−05 1.276 e−11 1.03097 e−07

0.7 1.776 e−15 7.912 e−05 5.258 e−10 4.00837 e−07

0.9 1.776 e−15 2.730 e−04 8.494 e−09 1.14035 e−06

Fig. 24 Variation of initial growth profile Q(x, 0) with x, for Ex. 7.3
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Fig. 25 Absolute Error at x = 25 for distinct values of α, for Ex. 7.3

Fig. 26 Absolute Error at x = 25 for distinct values of α, for Ex. 7.3
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Fig. 27 Approximate growth
profile Q(x, t) at α = 0.25, for
Ex. 7.3

Fig. 28 Approximate growth
profile Q(x, t) at α = 0.50, for
Ex. 7.3

Fig. 29 Approximate growth
profile Q(x, t) at α = 0.75, for
Ex. 7.3
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Fig. 30 Approximate growth
profile Q(x, t) at α = 0.90, for
Ex. 7.3

Fig. 31 Approximate growth
profile Q(x, t) at α = 1, for Ex.
7.3

Fig. 32 Exact growth profile
Q(x, t) at α = 1, for Ex. 7.3
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Fig. 33 Approximate growth profile Q(x, t) at x = 25 for different values of α, for Ex. 7.3

Fig. 34 Approximate growth profile Q(x, t) at x = 25 for different values of α, for Ex. 7.3
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Table 4 Absolute error at x = 1, and distinct values of α, for Ex. 7.3

α t = 0.1 t = 0.3 t = 0.5 t = 0.7 t = 0.9

0.8 4.638 e−04 5.283 e−04 3.091 e−04 5.249 e−05 5.078 e−04

0.9 2.045 e−04 2.353 e−04 1.161 e−04 8.407 e−05 3.420 e−04

0.95 9.576 e−05 1.061 e−04 3.567 e−05 8.281 e−05 2.369 e−04

0.99 1.713 e−05 1.007 e−05 2.243 e−05 7.401 e−05 1.421 e−04

0.999 3.976 e−07 1.069 e−05 3.473 e−05 7.109 e−05 1.195 e−04

0.9999 1.258 e−06 1.275 e−05 3.594 e−05 7.078 e−05 1.172 e−04

1 1.442 e−06 1.298 e−05 3.608 e−05 7.075 e−05 1.170 e−04

Table 5 Absolute Error for
different values of α and x at
t = 0.1 for, Ex. 7.3

α Absolute error

x = 20 x = 30 x = 40

0.95 4.154 e−04 2.933 e−04ara> 2.266 e−04

0.97 2.310 e−04 1.661 e−04 1.294 e−05

0.99 5.479 e−05 4.438 e−05 3.651 e−05

0.999 2.202 e−05 8.650 e−06 3.978 e−06

0.9999 2.962 e−05 1.389 e−06 7.983 e−06

1 3.046 e−06 1.447 e−06 8.427 e−06

existing technique. In the Table 5 , it can be clearly seen that proposed technique, NTHPT,
also gives very less error for the higher values of x = 20, 30 and40. Hence, the effectiveness
of the proposed techniques is illustrated and it can be applied to solve non-linear fractional
models with high accuracy.

Conclusion

In this work, we investigate the potential of theNTHPT to investigate the non-linear fractional
model of brain tumour. The existence and uniqueness of the solution of the fractional model
of brain tumour are analysed with the help of fixed point theory, also the stability analysis is
discussed with the help of Lyapunov function. The convergence and error are also discussed
by usingCauchy sequence.Also,we solve three examples, and it is observed that the proposed
technique, NTHPT, gives more accurate solution than the existing techniques. So, we can
study the variation of growth profile of tumour with respect to time very accurately than
the other existing methods. It has been demonstrated that combining the numerical method
with the Natural transform speeds up the computation required to solve non-linear fractional
models.

Hence, it is proved that the proposed technique, NTHPT, is a powerful technique which
can be applied to solve the non-linear fractional model of natural phenomena of science and
engineering.
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