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Abstract
The goal of the current study is to investigate an unsteady flow and heat transfer over a
stretchable rotating disk of a non-Newtonian Reiner-Rivlin (RR) fluid when the disk decel-
erates with an angular velocity that is inversely proportional to time. The partial differential
equations (PDEs) for RR fluid that govern the flow and heat transfer are converted into a set
of self-similar equations using appropriate similarity transformations. The numerical solu-
tions of the self-similar equations are computed via Matlab solver “bvp4c". Dual solution
branches are found only for negative values of the unsteadiness parameter. The effects of
non-Newtonian parameter, stretching parameter and unsteadiness parameter on the velocity
and temperature profiles and on the torque experienced by the disk are discussed in detail
and shown graphically for both the branches. The results indicated that the effect of non-
Newtonian parameter on the axial, tangential velocity and temperature fields is similar to
the steady Kármán flow for slow deceleration in upper solution branch. However, opposite
behavior is found for the fast deceleration on the axial, radial velocity and temperature fields.
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NS Navier-Stokes
ODE Ordinary differential equation
PDE Partial differential equation
RR Reiner-Rivlin
USB Upper solution branch

Greek Symbols
β Unsteadiness parameter (non-dimensional)
δij Kronecker symbol
η Similarity variable
λ Uniform stretching rate
μ Dynamic viscosity (ML−1T−1)

μc Cross viscosity coefficient (ML−1T−1)

ν Kinematic viscosity (L2T−1)
ω Constant (T−1)

�(t) Angular velocity (T−1)

ρ Fluid density (ML−3)

τ ij Stress tensor
� Temperature (non-dimensional)

Notation
F ′,G,F Self-similar radial, tangential and axial velocity components respectively
c Constant (T−1)

cp specific heat capacity (L2T−2K−1)

eij Deformation rate
K Reiner-Rivlin parameter (non-dimensional)
k Thermal conductivity (MLT−3K−1)

Nu local Nusselt number
p Pressure (ML−1T−2)

Pr Prandtl number
r , φ, z Radial, tangential and axial coordinates respectively
T Fluid temperature (K )

t Time (T−1)

t∗ Time (non-dimensional)
T∞ Ambient fluid temperature (K )

Tw Wall temperature (K )

ur , uφ, uz Velocity components along r , φ and z directions respectively

Introduction

The study of rotating disk flows has gained considerable interest among the researchers due
to the theoretical interest and practical significance in many areas, such as centrifugal force,
spinningdisk reactors, viscometers, turbo engines, atmospheric andoceanic circulations, food
processing technologies and many more. In order to convert the complete Navier-Stokes
(NS) equations into a collection of ODEs, Von Kármán [1] first addressed the important
contribution of the steady flow induced by an infinite rotating disk with a constant angular
velocity in a viscous fluid. The slight errors in Kármán’s analysis were fixed by Cochran [2].
In the extrusion processes of the metal and plastic industries, the flow created by a stretching
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sheet or disk is crucial (see Ref. [3]). In this field of research, Crane [4] first introduced the
pioneering work, and later Wang [5] extended this problem into the three-dimensional (3D)
case. After that Fang [6] studied the combined effects of disk rotating and disk stretching.
Further, Turkyilmazoglu [7] extended Fang’s problem [6] by incorporating a magnetic field,
joule heating and viscous dissipation effects. The flow between two parallel rotating discs
are found in Refs. [8–11] with diverse physical effects.

In the past several decades, there has been a lot of research done on the non-uniqueness
solutions for self-similar equations of various boundary layer flows. Libby [12] studied a
general 3D stagnation point flow and found dual solutions for negative values of the velocity
gradients ratio in a two-dimensional (2D) case. Miklavčič and Wang [13] considered the
viscous flow over a shrinking sheet for both the 2D and axisymmetric cases. For the 2D case,
they discovered dual solutions when the suction parameter value is more than 2, and for
the axisymmetric case, an infinite number of solutions for a particular value of the suction
parameter. Later, Wang [14] investigated the stagnation point flow towards a shrinking sheet
and discovered that only the shrinking case depicts dual solutions structure. Very recently,
Rehman et al. [15] analytically obtained dual solutions within a limite range of stretch-
ing/shrinking parameter through a novel least square method. Additionally, the review of the
literature shows that an effort has been made to look into the possibility of dual solutions
within the context of Von-Kármán flow (see Refs. [16, 17]). Recently, Naganthran et al. [18]
obtained dual solutions on the swirling flow over a stretching/shrinking rotating disk.

The unsteady Kármán flow with deceleration was initially investigated by Watson and
Wang [19]. Later, this problem was extended to a porous rotating disk by Watson et al. [20].
This issue was subsequently developed to include a porous rotating disc with a magnetic
field by Chandrasekar and Nath [21]. They [21] formulated this problem into semi-similar
and self-similar cases and discussed these cases in detail. Fang and Tao [22] combined the
work of Ref. [19] and Ref. [6]. A recent investigation on the unsteady flow of nanofluid over
a rotating disk with various flow parameters was conducted by Hayat et al. [23].

In all the above investigations, the fluid has been assumed as Newtonian fluid. Non-
Newtonian fluids, however, have been found to be more useful in industries application.
In general, fluids with heavy molecular weights which are frequently used in plastic and
chemical industries do not obey the Newton’s law of viscosity. Paints, mud, oil, blood,
egg whites, softened chocolate, nylon, lubricants, colloids and so on exhibit non-Newtonian
fluid behaviour. These fluids show a unique feature known as memory effect. Due to the
intermolecular nature inside viscoelastic fluids cause sustainable stress that does not allow
it to disappear immediately upon evacuation. The non-Newtonian fluid behaviour derived
by Reiner [24] and Rivlin [25] can satisfactorily predict flow behaviors of many ploymers,
food products, biological and geological materials. For these several applications of non-
Newtonian fluids in industries, we have considered Reiner-Rivlin fluid model in this present
study. Several authors discussed the study of Von Kármán flow of various non-Newtonian
fluids with various physical characteristics. In the review article, Rajagopal [26] discussed
the flow up to 1991 of various non-Newtonian fluids caused by a revolving disk in detail.
Also the unsteady flow of RR fluid over a rotating was first quantitatively explored by Attia
[27] in 2003, and his work was further expanded by him [28] in 2005 with the inclusion of
suction/injection effect. Further, Sahoo [29] investigated the steady Kármán flow of RR fluid
with the effects of partial slip, joule heating and viscous dissipation. Recently, Tabassum and
Mustafa [30] revisited the steady Kármán flow of RR fluid with the partial slip condition and
corrected some inaccuracies of earlier reportedmomentum and heat equations. Very recently,
Naqvi et al. [31] numerically studied the steady Kármán flow of RR nanofluid over a rough
rotating disk with various slip conditions.
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Table 1 Novelty of present study

Ref. [22] Ref. [30] Ref. [32] Present study

Flow over rotating disk � � � �
Stretchable disk � × � �
Deceleration � × × �
Reiner-Rivlin fluid × � � �
Heat transfer × � � �

Keeping the applications in mind of stretchable surface in extrusion process and non-
Newtonian fluids in chemical and plastic industries, the present study is devoted to investigate
the unsteady flow and heat transfer of Reiner-Rivlin fluid over a stretchable rotating disk
with deceleration. To the best of authors knowledge, not a single attempt has so far been
communicated regarding our proposed flow model. Thus, our intention of this current study
is to fill this gap. This new problem is an extension of Fang and Tao [22] with the inlcusion of
Reiner-Rivlin fluid and heat transfer. The originality of this current study is shown in Table 1.
We solve the self-similar equations numerically and scrutiny the dual solutions characteristics
on the shear stresses, torque, nusselt number, velocity and temperature fields through graphs
and tabular forms.

Description of the Problem

Consider an unsteady flow of RR fluid over a stretchable rotating disk that coincides with the
plane z = 0 and flow occupies in the area z > 0. The physical sketch of the flow configuration
is shown in Fig. 1. Let ur , uφ and uz be the velocity components in the directions of the
cylindrical coordinate system r , φ and z respectively. Assume that the angular velocity �(t)
of the disk is inversely proportional to time and has the form �(t) = ω

1−ct , where c and
ω(> 0) are constants with dimension (time)−1. Following, Fand and Tao [22], we consider
uφ(r , φ, 0) = �(t)r and ur (r , φ, 0) = �(t)λr , where λ is a uniform stretching rate in radial
direction and t is the time. The ambient fluid temperature T∞ and wall temperature Tw are
taken to be constants. The following equation is the constitutive equation for RR fluid:

τ ij = −pδij + μeij + μce
i
ke

k
j ; e jj = 0, (1)

where p denotes the pressure, δij denotes the Kronecker symbol, μ and μc denote the coeffi-
cient of viscosity and cross viscosity respectively. Under these assumptions, the equation of
continuity, momentum and linear heat transfer equations of an unsteady flow over a rotating
disk are given below (see Refs. [27, 28, 30]):

∂

∂r
(rur ) + ∂

∂z
(ruz) = 0, (2)

ρ

(
∂ur
∂t

+ ur
∂ur
∂r

+ uz
∂ur
∂z

− u2φ
r

)
= ∂τ rr

∂r
+ ∂τ rz

∂z
+ τ rr − τ

φ
φ

r
, (3)

ρ

(
∂uφ

∂t
+ ur

∂uφ

∂r
+ uz

∂uφ

∂z
+ uruφ

r

)
= 1

r2
∂

∂r

(
r2τφ

φ

)
+ ∂τ z

φ

∂z
+ τ rφ − τ

φ
r

r
, (4)
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Fig. 1 Flow configuration

ρ

(
∂uz
∂t

+ ur
∂uz
∂r

+ uz
∂uz
∂z

)
= 1

r

∂(rτ rz )

∂r
+ ∂τ z

z

∂z
, (5)

ρcp

(
∂T

∂t
+ ur

∂T

∂r
+ uz

∂T

∂z

)
= k

∂2T

∂z2
, (6)

where ρ, cp and k are the fluid density, specific heat capacity and thermal conductivity
respectively. The components of strain rate tensor are given below:

err = 2
∂ur
∂r

, eφ
φ = 2

ur
r

, ezz = 2
∂uz
∂z

,

erφ = eφ
r = r

∂

∂r

(uφ

r

)
, ezφ = eφ

z = ∂uφ

∂z
, erz = ezr = ∂ur

∂z
+ ∂uz

∂r
.

⎫⎪⎪⎬
⎪⎪⎭ (7)

From Eq. (1), the components of τ ij are written as follow:

τ rr = −p + μ

(
2
∂ur
∂r

)
+ μc

{
4

(
∂ur
∂r

)2

+
(

∂uφ

∂r
− uφ

r

)2

+
(

∂ur
∂z

+ ∂uz
∂r

)2
}

, (8)

τ z
r = μ

(
∂ur
∂z

+ ∂uz
∂r

)

+μc

{(
2
∂ur
∂r

) (
∂ur
∂z

+ ∂uz
∂r

)
+

(
∂uφ

∂r
− uφ

r

)(
∂uφ

∂z

)
+

(
∂ur
∂z

+ ∂uz
∂r

)(
2
∂uz
∂z

)}
(9)

τ
φ
φ = −p + μ

(
2ur
r

)
+ μc

{
4u2r
r2

+
(

∂uφ

∂r
− uφ

r

)2

+
(

∂uφ
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)2
}

(10)
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τ rφ =μ

(
∂uφ

∂r
− uφ

r

)
+ μc

{(
2
∂ur
∂r

)(
∂uφ

∂r
− uφ

r

)

+
(

∂uφ

∂r
− uφ

r

) (
2ur
r

)
+

(
∂ur
∂z

+ ∂uz
∂r

) (
∂uφ

∂z

)} (11)

τ z
φ =μ

(
∂uφ

∂z

)

+ μc

{(
∂uφ

∂r
− uφ

r

) (
∂ur
∂z

+ ∂uz
∂r

)
+ 2

(ur
r

) (
∂uφ

∂z

)
+ 2

(
∂uφ

∂z

)(
∂uz
∂z
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τ z
z = −p + μ

(
2
∂uz
∂z

)
+ μc

{(
∂ur
∂z

+ ∂uz
∂r

)2

+
(

∂uφ

∂z

)2

+ 4

(
∂uz
∂z

)2
}

(13)

subject to the boundary conditions (BCs)

ur = �(t)λr , uφ = �(t)r , uz = 0, T = Tw at z = 0, (14a)

ur → 0, uφ → 0, T → T∞ as z → ∞. (14b)

Follwing Ref. [33], the angular velocity �(t) is defined by �(t) = ω
1−βt∗ , where t∗ =

ωt, 1 − βt∗ > 0. Then we present the subsequent similarity transformations:

η = (�(t)/ν)1/2z, ur = �(t)rF ′(η), uφ = �(t)rG(η),

uz = −2(�(t)ν)1/2F(η), p = −�ρνP(η), T = T∞ + (Tw − T∞)�(η).

}
(15)

After substituting the stress tensors τ ij and the similarity transformations (15) into the Eqs. (2)
to (6), we obtain the following set of ODEs as follow:

F ′′′ + 2FF ′′ − F ′2 + G2 + K
(F ′′2 − 2F ′F ′′′ − G′2) − β

(η

2
F ′′ + F ′) = 0, (16)

G′′ − 2F ′G + 2FG′ + 2K
(F ′′G′ − F ′G′′) − β

(η

2
G′ + G

)
= 0, (17)

�′′ + Pr
(
2F − β

η

2

)
�′ = 0. (18)

and the relevant no-slip BCs (14) reduced to

F(0) = 0, F ′(0) = λ, G(0) = 1, �(0) = 1, (19a)

F ′(∞) = 0, G(∞) = 0, �(∞) = 0. (19b)

where β = c
ω
and K = μc

μ
�(t) denote the non-dimensional unsteadiness parameter and

cross-viscous parameter respectively, Pr = μcp
k denotes the Prandtl number, λ (> 0)

denotes the disk stretching parameter and β > or < 0 corresponding to disk acceleration or
deceleration.

It is noted that for K = 0, Eqs. (16) and (17) with the BCs (19) recover the governing
equations of Fang and Tao [22] for Newtonian fluid. On the other hand, β = 0 recover
the governing equations of Tabassum and Mustafa [30] for RR fluid. Thus our obtained
self-similar Eqs. (16) to (18) are new and accurate.

From the point of engineering prospective, the most important physical quantities are the
torque, skin friction coefficient and the rate of heat transfer. For a region of radius R, the
torque T̄ is defined by (Refs. [19, 30])

T̄ = 2π
∫ R

0
τ z
φ |z=0r

2dr = πρ(ν)1/2(�(t))3/2

2
(1 − 2KF ′(0))R4G′(0). (20)
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The skin friction coefficient C f is defined by (Ref. [30])

C f =
√

τ 2r + τ 2φ

ρ(r�(t))2
, (21)

where τr and τφ are radial and tangential shear stresses respectively. Using the similarity
variables (15), we obtain

Re1/2x C f =
√
F ′′(0)2 + G ′(0)2. (22)

The heat transfer rate from the wall surface of the disk to the fluid can be obtained using the
Fourier’s law, q = −k ∂T

∂z

∣∣
z=0

and the local Nusselt number Nux is defined by

Nux = rq

k(Tw − T∞)
. (23)

Again using the similarity variables (15) into (23) yields

Re−1/2
x Nux = −θ ′(0), (24)

where Rex = �(t)r2

ν
is the local Reynolds number.

Numerical Method

The set of highly nonlinear ODEs (16) to (18) along with BCs (19) may solve either by some
series solutions or by shooting method, but both methods are very tedious. The Matlab pack-
age “bvp4c” is one of the most popular modern-day software tools that can solve nonlinear
BVPs with high accuracy with multi-point BCs. In fact, this code has capable to find multiple
solutions (if exists) with the aid of appropriate initial guesses. The reader may consult with
the brief note reported by Shampine et al. [34] for further details. In this study, Eqs. (16)
to (19) are solved using the “bvp4c” Matlab solver. The infinite domain [0,∞) is replaced
by a finite domain [0, η∗] and the relative tolerance is fixed to 10−7. Dual solutions exist of
the obtained self-similar equations only for negative values of the unsteadiness parameter, β.
The value of η∗ ∼ 8 is found sufficient for both the solution branches to satisfy the far-field
BCs (19b). To initiate the “bvp4c” routine in Matlab, we have to first convert the self-similar
Eqs. (16) to (18) into a system of (3+2+2) first order ODEs given below:

f ′(1) = f (2),
f ′(2) = f (3),

f ′(3) =
β

(
η
2 f (3)+ f (2)

)
−2 f (1) f (3)+ f (2)2− f (4)2−K

(
f (3)2− f (5)2

)
1−2K f (2) ,

f ′(4) = f (5),

f ′(5) =
β

(
η
2 f (5)+ f (4)

)
+2 f (2) f (4)−2 f (1) f (5)−2K f (3) f (5)

1−2K f (2) ,

f ′(6) = f (7),

f ′(7) = Pr
(
β

η
2 − 2 f (1)

)
f (7),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(25)
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Table 2 Comparison table of
F ′′(0) and G′(0) with the
available data in literature for
various values of β with K = 0
and λ = 2

β Present study Fang and Tao [22]

F ′′(0) G′(0) F ′′(0) G′(0)

−0.1 U −3.117751 −2.053026 −3.1178 −2.0530
L −3.223521 −2.002248 −3.2235 −2.0022

−0.2 U −3.078402 −2.037318 −3.0784 −2.0373
L −3.232752 −1.968730 −3.2328 −1.9687

−0.5 U −2.960118 −1.990107 −2.9601 −1.9901
L −3.246316 −1.903646 −3.2463 −1.9036

−1.0 U −2.762241 −1.911147 −2.7622 −1.9111
L −3.279848 −1.830721 −3.2798 −1.8307

−2.0 U −2.364082 −1.752315 −2.3641 −1.7523
L −3.412362 −1.747937 −3.4124 −1.7479

−5.0 U −1.154881 −1.270107 −1.1549 −1.2701
L −4.182872 −1.793147 −4.1829 −1.7931

−10.0 U 0.893510 −0.453191 0.8935 −0.4532
L −6.064994 −2.343257 −6.0650 −2.3432

−20.0 U 5.062768 1.210669 5.0627 1.2108
L −10.503482 −3.989312 −10.5035 −3.9896

U Upper branch
L Lower branch

where F = f (1), F ′ = f (2), F ′′ = f (3), G = f (4), G′ = f (5), � = f (6), �′ = f (7)
and the BCs (19) are inserted in the following form

fa(1),
fa(2) − λ,

fa(4) − 1,
fa(6) − 1,
fb(2),
fb(4),
fb(6),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(26)

where the subscripts “a” and “b” denote the initial and terminal points of the domain [0, η∗].
To verify the accuracy of our numerical technique, comparative data for the Newtonian fluid
(K = 0) with the results published by Fang and Tao [22] have been shown in Table 2. It is
discovered that the comparisons are in perfect agreement.

Results and Discussion

The variations of F ′′(0), G′(0) and −�′(0) with the unsteadiness parameter β for several
values of the stretching parameter λ are depicted in Figs. 2, 3 and 4when K = 0.2 for both the
solution branches. For better understanding, some numerical values are given in Table 3 for
several combinations of the governing parameters. In upper solution branches (USB), each
curve of F ′′(0) and G′(0) are monotonically increasing with an increase in |β| for any fixed

123



Int. J. Appl. Comput. Math (2023) 9 :97 Page 9 of 18 97

Fig. 2 Plot of F ′′(0) with β for
various λ at K = 0.2
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Fig. 3 Plot of G′(0) with β for
various λ at K = 0.2
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λ. Furthermore, it is observed that values of G′(0) decrease with an increase in stretching
parameter λ for all β. The values of F ′′(0) also decrease with an increase in λ for small |β|;
however, there are some crossovers for large |β|. In lower solution branches (LSB), each
curve ofF ′′(0) decreases with an increase in |β| for any fixed λ; but for small |β|, each curve
of G′(0) initially increase, and then decrease for large |β|. On the other hand, the values of
F ′′(0) and G′(0) decrease with an increase in λ for small |β| but for large |β|, we have found
complicated trends. However, each curve of−�′(0) is monotonically increasing for both the
increase of |β| and λ in both the solution branches.

It is seen in Figs. 2 and 3 that there are some values of β for which F ′′(0) = 0 and
G′(0) = 0. The value of β for whichF ′′(0) = 0 is defined by β∗

1 , which leads to a frictionless
stretching disk as reported by Fang and Tao [22]. Again the value of β for which G′(0) = 0 is
defined by β∗

2 . The torque T̄ defined in Eq. (20) is related to the value of G′(0). The rotating
disk experiences a resistance for 0 ≥ β > β∗

2 because of the negative value of G′(0) as
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Fig. 4 Plot of −�′(0) with β for
various λ at K = 0.2
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Table 3 Numerical values of F ′′(0), G′(0) and �′(0) for several values λ, β and K for both the solution
branches

λ β K F ′′(0)U G′(0)U �′(0)U F ′′(0)L G′(0)L �′(0)L

1 −1 0 −0.651955 −1.271556 −1.102415 −1.031503 −1.232867 −0.973951

0.1 −0.657654 −1.265557 −1.099677 −0.982688 −1.163580 −0.978709

0.2 −0.654654 −1.257149 −1.097048 −0.907560 −1.096725 −0.984878

−2 0 −0.351741 −1.053409 −1.272618 −1.219810 −1.182688 −1.091795

0.1 −0.288302 −1.014984 −1.273842 −1.109006 −1.016445 −1.096399

0.2 −0.173014 −0.969287 −1.276886 −0.929847 −0.827010 −1.104018

−3 0 −0.048766 −0.833205 −1.416344 −1.476446 −1.238113 −1.201011

0.1 0.103632 −0.747462 −1.421350 −1.333249 −0.995661 −1.202587

0.2 0.392683 −0.632368 −1.431114 −1.094084 −0.701256 −1.207240

2 −1 0 −2.762241 −1.911147 −1.393607 −3.279848 −1.830721 −1.264481

0.1 −2.854919 −1.907558 −1.385073 −3.192534 −1.754350 −1.274070

0.2 −2.930201 −1.898665 −1.375228 −3.028003 −1.747533 −1.284473

−2 0 −2.364082 −1.752315 −1.539859 −3.412362 −1.747937 −1.360085

0.1 −2.304894 −1.714347 −1.537194 −3.071925 −1.540010 −1.378751

0.2 −1.989702 −1.710791 −1.538177 −2.322147 −1.417432 −1.408099

−3 0 −1.963202 −1.592437 −1.667485 −3.618159 −1.723160 −1.450812

0.1 −1.718162 −1.508385 −1.670429 −3.040320 −1.374654 −1.473457

0.2 −0.745574 −1.522972 −1.686137 −1.578223 −1.042259 −1.519152

U Upper branch
L Lower branch
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Table 4 Values of β∗
1 and β∗

2 for
several values of K and λ

K λ β∗
1 β∗

2

0.1 0 – −1.585030

0.25 – −2.503913

0.50 −0.522122 −3.504136

0.75 −1.723695 −4.510258

1.00 −2.741334 −5.470907

1.25 −3.612058 −6.361263

0.2 0 – −1.560045

0.25 – −2.340247

0.50 −0.558315 −3.126737

0.75 −1.568951 −3.843490

1.00 −2.324780 −4.449956

1.25 −2.869296 −4.941845
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0 1 2 3
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1
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1

0 1 2 3
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1

Fig. 5 Upper solution branch at λ = 1 and K = 0.2

evident in Fig. 3. The disk experiences a torque in the rotation direction due to the positive
value of G′(0) when β < β∗

2 as reported by Watson and ang [19]. But the torque becomes
zero when β = β∗

2 . This interesting feature can be related to the decay of a mass-free rotating
disk. According to Watson and Wang [19], if an outside torque rotates a light solid disk, and
after removing the torque, the disk still rotates because of the residual rotation of the fluid.
The numerical values of β∗

1 and β∗
2 are given in Table 4 for several values of the controlling

parameters. It is observed that both values increase in magnitude with the increase of λ for
some fixed K .

Figs. 5, 6, 7, 8, 9, 10, 11 and 12 respectively depict the variations of three velocity
components F(η), F ′(η) and G(η) in z, r and φ directions and the temperature profile �(η)

for various pertinent parameters for both the branches. In USB in Fig. 5, it is observed that the
axial velocityF(η) increases as the unsteadiness increase. Also, the value ofF(∞) increases

123



97 Page 12 of 18 Int. J. Appl. Comput. Math (2023) 9 :97

0 2 4 6
-0.5

0

0.5

0 2 4 6
-1

-0.5

0

0.5

1

0 2 4 6
-0.5

0

0.5

1

0 2 4 6
0

0.5

1

Fig. 6 Lower solution branch at λ = 1 and K = 0.2
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Fig. 7 Upper solution branch at β = −2 and K = 0.2

with the increase of |β|, which is quite different with the results of Fang and Tao [22]. This
may happen due to effect of cross-viscous parameter K , i.e. more fluid being pumped towards
the disk surface for fast deceleration. The radial F ′(η) and circumferential G(η) velocities
increasewith an increase in |β| for small value ofη but decrease for largeη. The radial velocity
experiences an overshoot near the disk for fast deceleration and the similar trend is observed
for Newtonian fluid (see Ref. [22].) But the temperature profile �(η) decreases when |β|
increases, which means the temperature reaches faster to the ambient fluid temperature for
higher |β|. This result can be utilized in cooling process. On the other hand, the LSB in
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Fig. 8 Lower solution branch at β = −2 and K = 0.2
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Fig. 9 Upper solution branch at β = −0.5 and λ = 1

Fig. 6 shows some different characters than the USB. It is observed that each curve of axial
velocity F(η) increases very near to the disk surface, then after a certain distance far away
from the disk, they decrease. The values of F(η) decrease for higher deceleration (for large
|β|). Each curve of radial and circumference velocity profiles F ′(η) and G(η) decrease near
the disk surface, and thereafter, they begin to increase far away from the disk and converge to
zero. The unique difference between LSB with USB is that these three profiles show reversal
flow. However, the temperature profile in LSB shows the same behaviour as the temperature
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Fig. 10 Lower solution branch at β = −0.5 and λ = 1
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Fig. 11 Upper solution branch at β = −5 and λ = 1

profile in USB. The common feature for these four profiles is that the boundary layer and the
thermal boundary layer thicknesses reduce for higher deceleration.

The effectiveness of λ at β = −2 and K = 0.2 are elucidated in Figs. 7 and 8 respectively
for both the solution branches. In USB, the behaviour of axial velocity shows similar as
discussed in Fig. 5. The radial velocity increase with the increase of λ, which means that
more amounts of fluids are pumped towards the disk and the circumferential velocity decays
faster to zero. The temperature profile decreases as λ increases, which leading heat loss for
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Fig. 12 Lower solution branch at β = −5 and λ = 1

large stretching. In such cases, stretching will play an important role in cooling a system. On
the other hand, all four profiles in LSB show a similar trend, as discussed in Fig. 6.

Figs. 9 and 10 depicts the variations of velocity and temperature profiles for various values
of non-Newtonian parameter K at λ = 1 for slow deceleration (i.e., β = −0.5) for both the
solution branches respectively. In USB, axial and radial velocities decrease with an increase
in K , which means that less fluid is drawn axially and pushed away in the radial direction.
The circumferential velocity and temperature profiles increase with an increase in K . It is
observed that the behaviour of K on F(η), G(η) and �(η) profiles is qualitatively similar to
steady Von Kármán flow of RR fluid (see Figs. 4 and 5 of Tabassum and Mustafa [30]). As
was expected, the effect of K on these three profiles is preserved in the slow deceleration
case. In LSB, all three velocity profiles increase near the disk and decrease away from it
when K is incremented. But the �(η) profile decreases when K increases.

The effectiveness of K for fast deceleration (i.e., β = −5) on velocity and temperature
profiles are shown in Figs. 11 and 12 for both branches respectively. In Fig. 11, the interesting
observation in USB for fast deceleration is that all profiles except circumferential velocity
profile G show the opposite behaviour than slow deceleration (see Fig. 9), which is a new
finding of this current study. In Fig. 12, all three velocity profiles in LSB show similar
variation trends, but the temperature profile shows the opposite trend compare to Fig. 10.

Fig. 13 demonstrates the influence of Prandtl number Pr on �(η) profile for both the
branches at β = −2, λ = 1 and K = 0.2. In both the branches, it was expected that
�(η) decrease with an increase in Pr , and thus the thermal boundary layer thickness gets
decreased. The thermal boundary layer thickness in USB is lower than LSB.

Conclusion

The unsteady flow induced by an infinite rotating stretchable disk with heat transfer of a non-
Newtonian RR fluid with deceleration is studied. The similarity equations are obtained with
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Fig. 13 Effects of Prandtl numbers in �(η) profile for (a) Upper and (b) Lower solution branches at β = −2,
λ = 1 and K = 0.2

the aid of similarity transformations. The self-similar solutions are obtained by employing
an effective Matlab’s solver “bvp4c”. The following important aspects are drawn based on
the present study:

1. Numerically dual solution branches are found of theEqs. (16)–(19)when the unsteadiness
parameterβ < 0.According to Fang andTao [22], the LSBmay not be practically reliable
because the tangential velocity has negative direction as reflected in Figs. 6, 8, 12.

2. There exists some certain values β∗
1 for which F ′′(0) = 0, which leads to a frictionless

stretching disk. The torque T̄ is related to G′(0), and T̄ becomes zero at some certain
values β∗

2 . The absolute values of β
∗
1 and β∗

2 increase with an increase in λ for some fixed
K .

3. All three velocity profiles in LSB show reversal flow.
4. The momentum and thermal boundary layer thicknesses get reduced in both the branches

with an increase in |β| and λ.
5. For slow deceleration, the effect of K on F , G and � profiles in USB is qualitatively

similar to steady Kármán flow of RR fluid. But, for fast deceleration, the effect of K on
F , F ′ and � profiles in USB show opposite behavior corresponding to the profiles for
slow deceleration.

6. Both the boundary layer thicknesses in USB are thinner than the LSB.

The present studymay use as benchmark for further study of higher grade fluids. Also several
thermal controlling effects like entropy generation, thermal radiation, Joule heating can be
included in this present study to investigate thermal analysis. Literature survey indicates that
nanofluids with various shape enhance the thermal conductivity and flow stability. Thus, the
extension of present study on shape effects of nanofluidswill be communicated in near future.
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