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Abstract
Investigating ion-acoustic disturbances in amagnetized plasma, consisting of relativistic elec-
trons and non-thermal ions, entails a comprehensive study into the nonlinear wave structure.
By condensing the fundamental set of fluid equations for the flow variables, a singular equa-
tion known as the Sagdeev potential equation is derived using the pseudopotential approach.
In this investigation of themagnetized relativistic plasma,we have observed only dip (rarefac-
tive) (N < 1) soliton under both subsonic (M < 1) and supersonic (M > 1) conditions. The
occurrence of the soliton depends on the wave velocities in different propagation directions.
The magnitude of amplitudes of the relativistic solitons is higher for higher Mach number
(M > 1) irrespective of the wave’s propagation direction. Furthermore, the magnitude of
amplitudes of the solitary wave is seen to increase near the direction of the magnetic field.

Keywords Magnetized relativistic plasma · Subsonic and supersonic · Solitary waves ·
Propagation

Introduction

Modern research focuses on examining nonlinear events across various media and disci-
plines. There is a growing interest in studying the nonlinear solitary waves in plasmas under
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diverse physical conditions. Solitons are a stunning and magnificent example of how nonlin-
ear structures appear in nature in both magnetized and unmagnetized plasmas. The solitary
wave is an intriguing feature explored experimentally in the atmosphere on earth and in the
space laboratory for research. In plasmas made up of some ion species, such as negative
ions, electrons, positrons, ion–electron beams, etc., the production of solitary waves is stud-
ied using simple or complex models. Initially, solitary waves in plasmas were explored by
Korteweg and de Vries [1] and Washimi and Taniuti [2] using basic models. Korteweg-de
Vries (KdV) first used the reductive perturbation approach to characterize small amplitude
solitary waves. Also, Sagdeev [3] investigated finite but large amplitude solitary waves using
the pseudopotential method with full nonlinearity.

The idea of relativistic effects, first proposed by Synge [4] for gases, is also widely used in
plasmas. When particle velocities are significantly smaller than the speed of light (v << c)
but not negligible, the relativistic effect in plasma is considered weakly relativistic. In addi-
tion, plasma is regarded as strongly relativistic when the particle velocities are a significant
fraction of the speed of light (v ≈ c) or are highly relativistic (v > c). Many researchers
have looked into the possibility of ion-acoustic solitary waves (IASWs) in relativistic plas-
mas under various physical conditions, including Das and Paul [5], Nejoh [6–8], Das et al.
[9], Pakira et al. [10], Kuehl and Zhang [11], Malik et al. [12], Chatterjee and Roychoudhury
[13], El-Labany and Shaaban [14], Kalita et al. [15], Roychoudhury et al. [16], Singh et al.
[17], Gill et al. [18], and Kalita et al. [19, 20]. However, these studies use the relativistic
effect and are conducted in magnetized and unmagnetized plasmas. Their properties are
said to be substantially impacted by the relativistic effect, ion temperature, and cold-to-hot
electron temperature ratio. Since Das and Paul’s original study [5] on the presence of small
amplitude IASWs in a weakly relativistic two-fluid plasmamade up of massless hot electrons
and drifting cold ions, numerous researchers have started into related topics under different
conditions in relativistic multi-component plasmas. For instance, KdV-type equations [7, 17,
21] and the Sagdeev pseudopotential approach [22–26] were used to explore the effects of
ion temperature and electron inertia on IASWs.

Numerous authors, including Sah andGoswami [27, 28], have also examined the propaga-
tion of semirelativistic electron acoustic solitary waves (EASWs). Sahu and Roychoudhary
[29] have studied the EASWs in non-magnetized plasma containing ions, hot relativistic
electrons, cold relativistic electrons, and relativistic beams. The relativistic effect is shown
to limit the region of existence of solitons in the occurrence of relativistic electron beam
plasma, utilizing a vortex-like distribution of trapped electrons. Here, u0e is the initial elec-
tron streaming speed, and solitons stop existing when u0e/c crosses a particular limit. The
role of electron inertia is typically disregarded in many relativistic or non-relativistic studies.
However, Kalita et al. [30] have considered the effect of electron inertia with the drifting
effect in a non-relativistic plasma where the electron’s drift velocity v′

e is determined to
satisfy v′

e < 44.72 + M/kz , (M-Mach number and kz direction of propagation). In a warm
magnetoplasma with initial electron drift motion in the magnetic field, Kalita and Bhatta [31]
have explored IASWs. The existence of hump and dip solitons in the parametric domains
has been demonstrated. Alternatively, Kuehl and Zhang [11] have considered first the effect
of electron inertia in relativistic plasma.

Furthermore, Malik et al. [12] have thought about ion-acoustic solitons in a relativistic
plasma of non-drifting electrons and drifting ions at a limited temperature. Due to elec-
tron inertia and a limited ion temperature, the ion drift velocity u0 for the weak relativistic
effect is restricted. Lee and Choi [32] studied the IASW in a relativistic plasma containing
cold ions and hot electrons using totally relativistic two-fluid equations. A two-dimensional
ion-acoustic wave propagating obliquely across a dusty plasma with a two-ion-temperature
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plasma is also governed by the variable-coefficient Zakharov–Kuznetsov equation, which Qu
et al. [33] have studied symbolically. During a magnetized ion-beam plasma, IASWs may
be generated by positive beam ions, static warm ions, and normal electrons. Additionally,
Das [34] has examined similar behaviour in ion-beam plasma. Kalita and Deka [35] have
explored hump solitons with low and high amplitudes in a weakly relativistic and magne-
tized plasmamodel. Using non-thermal collisional dusty plasma, Sultana [36] has studied the
non-Maxwellian j-distributed electrons propagating IASWs. Kamalam and Ghosh [37] have
analyzed a plasma model made up of two electrons and warm fluid ions at various tempera-
tures using the Sagdeev pseudopotential approach in theBoltzmann distribution. The Sagdeev
pseudopotential approachwas used byX.Mushinzimana and F. Nsengiyumva [38] to explore
the large amplitude ion-acoustic fast mode solitary waves in a negative ion plasmawith kappa
electrons. They found a range of parameter values where the two different types of structures
can coexist, supporting compressive and rarefactive solitons propagation in this plasma. To
explore the non-linear propagation of static large amplitude electromagnetic solitary waves in
amagnetized electron–positron plasma, Nooralishahi and Salem [39] adopted the completely
relativistic two-fluid hydrodynamic model. Kalita et al. [40] have recently shown that both
hump and dip subsonic solitary waves exist based on wave velocities in different propagation
directions. Very recently, Almas et al. [41] employed the pseudopotential technique to study
the oblique propagation of arbitrary IASWs in magnetized electron–positron-ion plasmas.
They have investigated how different plasma configuration parameters, like positron con-
centration and parallel and perpendicular ion pressure, affect soliton characteristics in the
plasma system.

In the present paper, the authors study thenon linear properties of IASWsusing theSagdeev
potential method by considering the plasma systemwith relativistic effects on electrons. Non-
thermal ions, however, are non-relativistic.

Dynamics of theMotion and Derivation of Sagdeev Potential

Relativistic effects becomeprominent and alter the nonlinear behaviour of plasmas as electron
or ion velocities ve,i go close to the speed of light c. Due to their low mass, electrons can
reach relativistic speeds much more easily than heavier ions. In contrast, relativistic effects
are only included in the equations of motion of the electron at a constant temperature Te, not
in the equations of motion of the ions. The governing equations in the zx-plane are

∂ni
∂t

+ ∂

∂x
(nivi x ) + ∂

∂z
(nivi z) = 0 (1)
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for the electrons, where γez = {
1 − (vez/c)2

}−1/2 = 1+(v2ez/2c
2) and c is the speed of light

and Q (= me/mi ) is the electron to ion mass ratio. To obtain the set of Eqs. (1) to (6), we
normalised the densities using the unperturbed plasma density n0, time using the reciprocal
of the ion gyro-frequency �i , space using the ion gyro-radius ρs = Cs/�i , speed using
Cs[= (Te/mi )

1/2], and potential by Te/e.
For a static solution, we consider a frame travelling with the wave defined by

ξ = kx x + kzz − Mt (7)

where M = Mach number (= V /Cs = pulse speed / ion sound speed), and the direction
cosines kx (= cos θ) and kz(= sin θ) such that k2x + k2z = 1. For the moving coordinate ξ ,
we can write down from (7)

∂

∂x
= kx

∂

∂ξ
,

∂

∂z
= kz

∂

∂ξ
,

∂

∂t
= −M

∂

∂ξ

Introducing the additional coordinate ξ specified in (7), and utilizing the boundary con-
ditions vi x = vi z = 0 at ni = 1 as |ξ | → ∞, after integration, Eq. (1) becomes

kxvi x + kzvi z = M

(
1 − 1

ni

)
(8)

Using (7) and (8), Eqs. (2) to (4) can be simplified as

M

ni

∂vi x

∂ξ
= kx

∂φ

∂ξ
− viy (9)

M

ni

∂viy

∂ξ
= vi x (10)

M

ni

∂vi z

∂ξ
= kz

∂φ

∂ξ
(11)

Using (7) in (5) and then integrating, we obtain

vez = M

kz

(
1 − 1

ne

)
(12)

In deriving Eq. (12), we employed the boundary conditions vez = 0 and ne = 1 as
|ξ | → ∞.

Using the coordinate ξ and Eq. (12), integrating Eq. (6) once to give the boundary condi-
tions ϕ = 0 at ne = 1 as |ξ | → ∞

ne = eφ exp

[
QM2

2k2z

(
1 − 1

n2e

)
+ QM4

8c2k4z

(
1 − 1

ne

)3(
1 + 3
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)]
(13)

Making use of (13) and the charge neutrality condition ne = ni = n, Eq. (11) can be
integrated to acquire
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M
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{
1 − QM2

k2z
.
1
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With the use of (14), we can get from (8)
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(15)
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After entering the value vi x from (15) into (9), viy may be evaluated as

viy = f (n)
1

n

dn

dξ
(16)

where f (n) = T1 + T2
n2

+ T3
n3

+ T4
n4
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}

In order to get (16), we have to use Eq. (13). From (10), one may get the following
expression using the values of vi x and viy from (15) and (16), respectively
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Equation (17) is multiplied by the term in the parenthesis, which is then inserted into the
integration process to get the following energy integral involving the Sagdeev potential ψ
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and we have used the boundary condition dn
dξ

= 0 at n = 1.

Conditions for SolitaryWaves to Occur

The characteristics of ψ(n) around n = 1 and n = N , where N is the highest value of n
or the solitary wave pulse’s amplitude, can be used to determine the prerequisites for the
existence of localized solitary wave solutions. We are to set the nonlinear dispersion relation
ψ(N ) = 0 to obtain the solitary wave pulse’s amplitude “N” such that
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In addition, the following conditions must exist for solitary waves to exist

ψ(1) = ψ(N ) = ψ ′(1) = 0 (23)

and

ψ(n) < 0 (24)

between n = 1 and n = N . Now, to determine the mathematical requirements, we take into
consideration
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h′′(n) = − 1
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where h′(n) = dh(n)
dn and h′′(n) = d2h(n)

dn2
.

From Eqs. (21), (25) and (26) it can be seen that at n = 1,

h(1) = 0, h′(1) = 0 , h′′(1) =
(
1 + Q − k2z

M2

)(
Q + k2z − k2z

M2

)
M2

k2z k
2
x

(27)

By using these values and Eq. (20) at n = 1, we obtain

ψ(1) = 0, ψ ′(1) = 0, ψ ′′(1) =
k2z

(
1 + Q − k2z

M2

)

M2
(
Q + k2z − k2z

M2

) (28)

The relation (22) is derived by takingψ(N ) = g(N )h(N ) = 0 for which h(N ) = 0, since
g(N ) �= 0 so that

h′(N ) = − (N − 1)

kx

(
1 + Q

N
− k2z

M2
+ QM2(N − 1)2

2c2k2z N3

)⎡
⎣− 3QM4(N − 1)2
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⎤
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ψ ′(N ) = N 3(N − 1)
{
2N 2c2k2z M

2(1 + Q) − 2N 3c2k4z + (N − 1)2QM4
}
k2z
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[
3QM4(N − 1)2 − 2N 2c2k2z

{(
N 2 − M2

)
k2z − M2Q

}] (29-2)

The set of requirements (23) are met as a result of (28) and (22). However, by expanding
ψ(n) in Taylor’s series near n ≈ 1 and n ≈ N , we have

ψ(n ≈ 1) = ψ(1) + (n − 1)ψ ′(1) + (n − 1)2

2! ψ ′′(1) + · · ·

and

ψ(n ≈ N ) = ψ(N ) + (n − N )ψ ′(1) + (n − N )2

2! ψ ′′(N ) + · · ·

123



102 Page 8 of 15 Int. J. Appl. Comput. Math (2023) 9 :102

With the help of (28), (22), and (29), it is found

ψ(n ≈ 1) =
(n − 1)2k2z

(
1 + Q − k2z

M2

)

2M2
(
Q + k2z − k2z

M2

) (30)

This can be precisely reduced to the work of Kalita et al. [30] for v′
e = 0 in the non-

relativistic situation. Since there is no early streaming, there is no relativistic influence when
everything is in equilibrium and n = 1, and therefore, the aforementioned requirement is
acceptable.

Furthermore

ψ(n ≈ N ) = N 3(N − 1)(n − N )
{
2N 2c2k2z M

2(1 + Q) − 2N 3c2k4z + (N − 1)2QM4
}
k2z

M2
[
3QM4(N − 1)2 − 2N 2c2k2z

{(
N 2 − M2

)
k2z − M2Q

}]
(31)

Finally, the following requirements can be deduced from (30) and (31) for ψ(n) < 0
between n = 1 and n = N to describe solitary waves.

near

n = 1, 1 + Q >
k2z
M2 > Q + k2z (32)

near

n = N , N >
M2

kz
, N < M < 1 when N < 1 (33)

and

N >
M2

k2z
, N > M > 1, when N > 1 (34)

In order to determine the amplitudes of relevant solitons, we must assign proper values
to the parameters M and kz subject to the constraints (32)–(34). Using these values of the
amplitudes, the Sagdeev potential ψ(n) from (19) can be displayed to represent the soliton

characters including its width �
(
� = N/

√
d
)
, d being its depth for each set of assigned

values of M and kz for the determination of N .

Results and Discussion

In this investigation it is important to note that solitary waves can be observed in both
the situations for M < 1 and M > 1. IASWs with density dip (rarefactive) (N < 1) are
observed when the relativistic effect on electrons in a cold plasma is taken into account.
Depending on the particular circumstances and characteristics of the plasma, rarefactive (dip)
(N < 1) and compressive (hump) (N > 1) solitons can occur in several types of plasmas.
The amplitudes (Fig. 1) of the dip soliton are found to increase parabolically with kz for
all M = 0.60 (Blue), 0.65 (Red), and 0.70 (Yellow). But for M > 1, the amplitude of
the dip solitons is noticed to increase rapidly in the lower range of kz and then decreases
slowly in the upper portion of kz for all M = 1.10 (Blue), 1.15 (Red) and 1.20 (Yellow)
(Fig. 2). Additionally, in Fig. 2, it is seen that the magnitudes of the amplitudes are observed
to be higher in comparison to Fig. 1. Figure 3 shows that the amplitudes of the relativistic
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Fig. 1 Amplitudes of the subsonic dip soliton with kz for M = 0.60 (Blue), 0.65 (Red) and 0.70 (Yellow)
(colour figure online)
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Fig. 2 Amplitudes of the supersonic dip soliton with kz for M = 1.10 (Blue), 1.15 (Red) and 1.20 (Yellow)
(colour figure online)

solitons are found to increase linearly with M < 1 for kz = 0.06(Blue), 0.08(Red) and
0.10 (Yellow). Further, the amplitude of the solitons decreases with the increased value of
kz . On the other hand, the widths of the corresponding solitons (Fig. 4) are seen to decrease
quickly with M < 1 for different values of kz = 0.06(Blue), 0.08(Red) and 0.10(Yellow).
In this case the magnitude of the widths are higher for higher value of kz . The amplitudes
(Fig. 5) of the supersonic dip solitons increase rapidly in the narrow lower regime of M > 1,
showing slight declining trend in the upper regime of M > 1 for kz = 0.10(Blue), 0.20(Red)
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Fig. 3 Amplitudes of the subsonic dip soliton with M for kz = 0.06 (Blue), 0.08 (Red) and 0.10 (Yellow)
(colour figure online)
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Fig. 4 Variation of widths versus M for kz = 0.06 (Blue), 0.08 (Red) and 0.10 (Yellow) (colour figure online)

and 0.30(Yellow). It is evident that as the amplitude grows with the increases of Mach
number while the width contracts. The solitons exhibits with a bigger amplitude in the case
of smaller kz because the solitons speed and amplitude are directly correlated, otherwise
higher amplitude solitons is noticed away from the magnrtic field. The depth of the Sagdeev
pseudopotential ψ(N ) considerably decreases with soliton amplitude when deviation from
the direction of the magnetic field given by kz = 0.15(Blue), 0.16(Red), 0.17(Yellow) and
kz = 0.77(Blue), 0.78(Red), 0.79(Yellow) (Figs. 6, 7) decreases for fixed M = 0.20 (< 1)
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Fig. 5 Amplitudes of the supersonic dip soliton with M for kz = 0.10 (Blue), 0.20 (Red) and 0.30 (Yellow)
(colour figure online)
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Fig. 6 The variation of Sagdeev potential ψ(N ) vs. N for kz = 0.15 (Blue), 0.16 (Red) and 0.17 (Yellow)
when M = 0.20 (colour figure online)

and M = 1.01 (> 1) respectively. Figures 1b, 2b, 3b, 4b, 5b, 6b and 7b are respectively the
demonstration of three dimensional views of 1a, 2a, 3a, 4a, 5a, 6a and 7a. In the investigation
of Kalita et al. [40], they have reported that both hump and dip solitons are shown to exist
only for M < 1. But, due to consideration of relativistic effects on electrons, only dip soliton
appear to exist for both the situations when M < 1 and M > 1, which is a new finding from
the ongoing investigation. Nonlinearity is also a fundamental aspect of plasmawaves induced
by the collective behavior of charged particles and their interactions with electromagnetic
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Fig. 7 The variation of Sagdeev potential ψ(N ) vs. N for kz = 0.77 (Blue), 0.78 (Red) and 0.79 (Yellow)
when M = 1.01 (colour figure online)

fields. Finally, this research ought to be useful in understanding the key characteristics of
fully nonlinear IASWs in both space and lab studies involving ions and relativistic thermal
electrons.

Conclusion

IASWs play a crucial role in comprehending space and laboratory plasmas. This study
explored the propagation of IASWs in the presence of ions and relativistic electrons. Ions
and relativistic electrons within magnetized plasmas are essential constituents of numerous
space and astrophysical systems. Analyzing their behaviour and interactions with magnetic
fields and other particles is of utmost importance in gaining insights into various phenomena,
ranging from Earth’s space weather to the dynamics of distant astrophysical entities. Due
to the inclusion of relativistic effects on electrons, only density dip (N < 1) IASWs existed
for both subsonic (M < 1) and supersonic (M > 1) situations in the plasma model. It was
observed that the amplitudes of the relativistic dip solitons are higher for M > 1 and smaller
for M < 1. The present paper can be extended by considering the relativistic effects on both
the species electrons and ions.
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Appendix

Multiplying both sides of Eq. (17) by the expression in the parenthesis of left hand side, we
obtain

1

2

d

dξ

{
f (n)

1

n

dn

dξ

}2

= 1

kx

(
1 − 1

n

){
1 + Q − k2z

M2 . n + QM2

2c2k2z
.

(
1 − 1

n

)2
}
f (n)

dn

dξ

By integrating, we get

1

2

{
f (n)

1

n

dn

dξ

}2
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∫ (
1 − 1

n

){
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2c2k2z
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(
1 − 1

n

)2
}
f (n)dn

= 1
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∫ (
1 − 1

n
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2c2k2z
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n

)2
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)
dn
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2
{ f (n)}2 1

n2

(
dn
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)2
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kx

[{(
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M2
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2c2k2z

)
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}
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(
T1k

2
z

2M2

) (
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)

−
{
T2k

2
z
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(
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After simplification, we find the exact from of Eq. (18).
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