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Abstract

The aim of the study is to analyze space-time fractional multidimensional telegraph equation
using a generalized transform method. Fractional derivative are considered in Liouville-
Caputo sense. The idea is to combine New iterative method with Aboodh transform to get
approximate-analytical solution in form of fast convergent series. Uniqueness and existence
of the proposed problem is shown using Banach fixed point theorem. Stability analysis is
stated using Ulam—Hyres stability theorem. The convergent of solution obtain by generalized
transform is shown by Cauchy convergent theorem. Four test problem are considered to shows
the efficiency of the proposed method.

Keywords Aboodh transform iterative method - Caputo fractional derivative - Fractional
differential equations - Fractional partial differential equation - New iterative method

Introduction

Most of the physical processes rely on their past behavior; thus, to understand their past behav-
ior, fractional calculus is a vital tool. The memory effect and non-local nature of fractional
calculus help to capture the past behavior of physical processes. This property of fractional
calculus is explained in the transmission of dengue model [1]. It states that mosquito doesn’t
look for their host randomly, but they use the prior experience of host location [2, 3]. Thus
in the transmission of dengue, the history of the transmission process will affect its future
state. Fractional differential operator trajectory is non-local [4]. This property is useful in
including memory in physical process. Du et al. [5] provide justification of memory effect
by taking n € (0, 1) as order of fractional derivative, where n — 0 states an ideal memory
and n — 1 states no memory. Hence these properties of fractional calculus attract many
researchers in this area. The fractional calculus have various applications in field of fluid
dynamics [6], diffusion [7], control [8], relaxation processes [9, 10] and so on.
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In today’s world communication system is a vital tool to transfer information from source
to receiver. Every engineering problem requires the transmission of signals from one point
to another. The system together is known as transmission media which transfers data from
one point to another. All transmission methods undoubtedly experience signal loss. Sorting
out signal losses is necessary to optimise the transmission medium. The study of how elec-
trical impulses spread along a transmission line’s cable and wave phenomena gives rise to
telegraph equations. Oliver Heaviside [11] created the transmission line model and discov-
ered telegraph equations. This model shows how electromagnetic waves are magnified on
wires and how wave patterns can be seen along the length of a transmission line. There are
several applications for telegraph equations, including electrical signal propagation in trans-
mission line cables [12], wave propagation [13], random walks [14], signal analysis [15],
etc. Mainly, the telegraph equation occurs in fractional order than integer order. The main
benefit of fractional derivatives is their memory character. Hence every successive stage of
the physical system will also depend on its past stage. Therefore the physical system with
fractional derivative is more realistic.

There are several methods accessible in literature for the study of fractional-order telegraph
equations. Bansu and Kumar [16] combine radial basis function with chebyshev polynomial
to get approximate solution of fractional telegraph equations. Kumar et al. [17] applied local
meshless method for approximation of the fractional telegraph equation.
The 1-dimensional space-time fractional telegraph equation given as,

82w amw 32w

Jem T 2050 Taiw = gy TG, O <<l M

with conditions,
w(x,0) = f1(0), wi(x,0) = fo(x),
w(0,7) =g1(v), wy(0,7) = ga(7).
2-dimensional time fractional telegraph equation given as,

92w 5 "w 2 _82w 92w
oo TR0y aiw HETE

=l 0<n=<1, ()

subject to conditions,

w(X7 J/, O) = ¢15 w'L’(Xa J/7 0) = ¢2'
3-dimensional fractional telegraph equation is given by,

92w 0w 2 2w 9w 9w
m—}-ZaoW—i—alw:8—)(2+W+W+h(x,y,9,r), O<n<l1, @

subject to,

w(Xa %9,0) = Ilfla w'L'(X? yagvo) = VIZ'

In Egs. (1) to (3) ao, a; are positive constant. f1, f2, g1, &2, ¢1, $2, ¥1, Yo are continuous
function.

Integral transform has always remain a helpful tool in solving fractional differential equations
(FDEs). There are several integral transform like Laplace transform, Sumudu transform,
Elzaki transform available in literature [18, 19]. Combining these integral transform with
semi-analytical methods is very helpful in dealing with FDEs [20]. Day by day these transform
are refine by several researcher. Aboodh transform a generalized form of Fourier integral
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developed by Khalid [23]. The Aboodh transform has several properties, but the most useful
property over the other integral transforms is its ‘unity’ feature which plays an essential role
[21]. Noting these refinement Jena and Chakraverty [21] combines Aboodh transform with
Q-Homotopy Analysis method to solve delay time-fractional partial differential equations.
Jani and T singh [22] combines Aboodh transform with Homotopy perturbation method for
solving regularized long wave equations.

The motivation of the paper is to employ a semi-analytical method namely New iterative
method (NIM) [24] coupled with Aboodh transform to find the solution of the space-time
fractional multidimensional telegraph equation. NIM is free from arbitrary parameters like the
homotopy perturbation method and also does not require tedious calculations like Adomain
decomposition method or finding langrange multipliers like in the variational parameter
method. Aboodh transform coupled with NIM takes very less computation work and less
C.P.U memory. Also, this coupled method is new and still not used for solving this problem.
So, the Aboodh transform iterative method (ATIM) reduce computation size compare to
other method and give a solution in the form of fast convergent series. Also, the uniqueness
and existence of the proposed problem are shown using Banach’s fixed point theorem and
Schaefer—Krasnoselskii fixed point theorem. Stability analysis is stated using Ulam—Hyre’s
stability theorem. The efficiency of the solution obtained by ATIM is shown by comparing
it with the exact solution and previously published work.

This paper consists 7 sections. Section 2 consists basic definitions of fractional calculus and
Aboodh transform which is useful in dealing of space-time fractional telegraph equation.
Section 3 consists existence, uniqueness and stability analysis of the proposed problem. Sec-
tion4 contains general procedure of ATIM with its convergence analysis. Section 5 consists
numerical illustrations. Section6 gives the explanation of the results obtained with help of
graphs. Finally, Sect.7 concludes the findings.

Preliminaries

This section consists fundamental definitions of fractional calculus and their properties which
is useful for studying FDEs.

Definition 2.1 [25-27] For order n the fractional order Reimann-Liouville integral is defined
as,

t
Ig(x) = / (x —1)" g(t)dr, ifn > 0,x > 0.
0

1
'(n)
Definition 2.2 [28] For order n > 0 the Caputo fractional derivatives (Cfd) is defined as,

1 ! _p-10°8(x, )
D?g(X,f)=m[)(f—T)l 7 ler, s—1<n<s,

Lemma 1 [26] Let I,! is an integral operator then fort > 0andn —1 <n <n,n € N
D1 g(x, 1) = g(x, 1),
n [p
(DI Dlg(x, 1) = g, 1) = ) g(x,0)—.
p!

p=0
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Definition 2.3 [29] In a set A, consider function which is piece wise continuous and of
exponential order given by,

A={v@):3M, ki, ka >0, [z(1)] < Me™™},

where k1 and k» maybe finite or infinite and M is constant. The Aboodh transform is defined
as,

T(v) = #2()])(v) = % /O dDe T, T20, ki <<k

Definition 2.4 [30] For a function z(¢) where ¢t € (0, c0), the inverse Aboodh transform is
given as,

if T(v)=oz(t)], then z(t) = &[T (v)].
Definition 2.5 [30] The Aboodh transform of a Cfd is given as,
" 0)

2—n+p’
v
p=0

(D] z(1)); v] = v".e/[2(1)] — n—1<n<n,neN.

Existence, Uniqueness, and Stability

This section consists existence, uniqueness, and stability analysis of proposed problem. First
we state some definitions and theorems which is useful in proving existence and uniqueness
of the proposed problem.

Definition 3.1 Consider a norm space as (X, ||.||). Then a map ¢ : X — X is a contraction
of X if for every x1, x2 € X,

Q1) — Q(x2)|l < 8llx1 — x2]l,

where 0 < § < 1.

Definition 3.2 [31] Banach fixed point theorem: On a complete metric space every contrac-
tion mapping has a unique fixed point.

Definition 3.3 [32] Arzela—Ascoli theorem: Consider a compact metric space X.Let C (X, R)
be a metric with sup norm. Then a set Q C C(X, R) is compact iff Q is bounded, equicon-
tinuous, and closed.

Definition 3.4 [33] Schaefer—Krasnoselskii fixed point theorem: If X is bounded and closed
convex subset of a Banach space Y and Q : X — X is completely continuous, then Q has a
fixed point in Q.

Existence and Uniqueness of Proposed Problem

Let [0, b] x (0, T] = ¢ and consider C(¢, R) as a Banach space of all continuous func-
tion from ¢ into R with sup norm define as ||x||o:= sup(|x|, (x, T) € ¢). We consider a
generalized fractional partial differential equation (FPDE) for proposed problem as,

Jwx, ) +Gw, wy, wy,) =H(x,7), x€[0,b], 7€(0, T, 0<n=<1, @
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subject to conditions as,

w(x,0) = f1(x), wi(x,0) = f2(x),
w(0,7) = g1(1), wy(0,1)=g2(7). ©)

Definition 3.5 Let w(, 7) be a function in C (¢, R) is said to be a solution of (4)—(5) if n
derivative exists on (0, 7] and w(, t) satisfies(4)—(5) on (0, T].
Theorem 3.1 [34] Assuming following condition holds.
(R1) 3 constant K{, Ky > 0 such that
lwiy — w2y | < Ki|lwy — wal,
[Wiyy — Wayy < Kolwy — w2, ¥(x,7) € ¢, we C(¢,R).
(R2) 3 constant My, M, and M3 such that,

|G (w1, Wiy, Wiyy) — G(wa, way, wayy)l
< Milwy — wa| + Ma|wiy — way | + M3lwiyy — wayyl
If
1
T(n+1)
Then on C(¢, R) (4)—(5) has a unique solution.

(M1 + MK + M3Kp) < 1. (6)

Proof Consider a operator ¥ : C(¢, R) — C(¢, R) define as,

n w(ﬁ)(X,O)tp .
Ve o) =Y S+ L (HOG D) = Gwawe ) )on L <n <

p=0

The fixed points of operator W are solution of the (4)—(5). Using Banach fixed point theorem
we show that W has a fixed point. Finally, show W is a contraction. Consider wy, wy € C(¢, R)
where (x, T) € ¢, then

(W (wi(x, 1) — W(wa(x, )| = ]G (Wi, wiy, Wiyy) — G(wz, way, Wayy)l,s

= Ig(Mllwl —wa| + Mlelx - w2x| + M3|wlxx - szX|)s
< I(Mi|wy — wa| + MoK |wi — wa| + M3Ka|wy — wal),
£
< (M + MK +M»K)w —wyl,
F(n+1)(1 2K 3K )lwi — wy|
"
< W(Ml + MK, +M3K2>S”P|wl — wa|. @)
Hence from Eq. (6), ¥ operator is contraction. As a result of Banach fixed point theorem W
has a unique fixed point which is also solution of (4)—(5). O

Theorem 3.2 [34] For existence we assume that:

(E1) 3 a constant Ay such that,

|H(x, Dl = A1, ¥Y(x, 1) € 9.
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(E2) 3 a constant A, such that,
[G(w, wy, wy, )| < A2, ¥(x,7) € p,w € C(p, R).

(E3) Assume w : ¢ — R is continuous.
(E4) 3 constants By, Bz, and B3 such that

[G(w(x1, T1), Wy (X1, T Wy 0 (X1, T1)) — G(W (X2, T2), Wy, (X25 T2)s Wyy o (X2, T2))]
< Brlw(x1, T1) — wx2, ©2)| + B2lwy, (X1, T1) — Wy, (X2, 2)|
+ ﬂ3|w)(1)(1 (X17 fl) - wxz)(z(XZa T2)|7

(ES5) 3 constants ay,0p > 0 such that
[wy, (X1, T1) — Wy, (X2, )| < arlw(xr, T71) — w(x2, ©2)l,

Wy 0 (X1 T1) — Wyy o (X2, ©2)| < c2w(x1, 1) — w(X2, T2)1,
Y(x1, 1), (X2, 2) € ¢, w € C(¢, R).

(E6) 3 constants yy1, y» > 0 such that

lw(xi, 1) —wx2, )| < vilx1 — x2l + »2lt1 — 2l Y(x1, 1), (X2, 12) € ¢, w € C(¢, R).

If assumptions (E1)—(E6) satisfied, then problem (4)—(5) have atleast one solution in space
C(¢,R)

Proof The existence of the proposed problem is shown in 4 steps.

Step 1 The map ¢ is continuous. Consider w, a sequence in C(¢, R) such that w, — w,
then

[Ww,(x, ) —Yw(x, )| = I?|G(wns Wry wn)()() - G(w, Wy, wx)()|-
Using Eq. (6),
n
Ww,(x, 1) —VYwx, 1) £ == (M1 + M2K| + M3K3) [wp — wlloo.
Fn+1D

From (E3) w is continuous, thus asn — 0 ||V w, (x, 7) — Yw(x, T)|lcoc = O.

Step 2 Operator ¥ maps bounded set into bounded set C (¢, R). We show for any ¢y > 0
J a constant f such that for each w € Aqy={w € C(¢,R) : |w(x, 7)o < €0, we have
Yw| < f.

" w®P(x, 0P
w(x, 0)7
WG Dl = | 30 =2 1 (H G0 = Gl wg ) |
p=0 '

w® 0t
’ZL‘ + I7(A] + Ay),

!Zw"”(x O+ oy i+ A,
Pllo Yl
< \Zw‘”(x,O)\”’p'!' + o A1t A ®)
p=0
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Finally,

n
TP "
1w ol < | Y w0 e (A1 +AD=D.
p=0

p! Fn+1

Implies [[Yw(x, 7)|lc < 00.
Step 3 W is equicontinuous on C(¢, R). Consider (x1, 71), (X2, 72) € ¢, X1 < x2,T1 < T2
and A¢, be bounded set of C(¢, R) and let w € A, then

(W (wi(x, 1) — V(wa2x, 1)

1(G WG, T Wy, (1, 7, Wy G0 T1))

— G0, ), W (1. ), Wy (2. 72) )|

= 1(Bilwn. 1) = we, )|+ Balwg G, 71) = we (2, 7))
+ Balwy, 3 (X1, T1) — Wyy o (X2 T2)|)

< If"(ﬂllw(m, 7)) — w(x2, ©2)| + Baar|w(xi, T1) — w(x2, ©2)|

+ Braalw(a, ) — Wi, ),

= %((ﬂl + paar + ﬂsaz)(yll)(l = x2l + 2l — Tzl))
= o (B oo+ ) (s = sl + 2l = ). 10)

Hence as Eq. (10) is free from w and as x; — x2, 71 — 71 right hand side of Eq. (10) tends
to zero. From above steps and Arzela—Ascoli theorem, we concludes W : (¢, R) — (¢, R)
is continuous and completely continuous.

Step 4 We show that the set

Q={weC@,R):w=¢V(w(x, 1)) forsomeO < ¢ < 1}

is bounded.
Let w € Q, then

lw(x, O] = [¢W(w(x, 1)),
=W (w(x, )l an

Using Eq. (9) in Eq. (11), we get

- p
lw(x, )| < ;(Z w(”)(x,O)‘ ||tp|‘|oo N

" .
(A1 +A)]) = D",
p=0

Fn+1)

which states that Q is bounded set. From Schaefer’s fixed point theorem, operator W has a
fixed point which is solution of (4)—(5). O

Stability Analysis

This subsection consists the stability analysis of proposed problem with the help of Ulam-
Hyres stability theorem which states,
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Definition 3.6 Letw € C(¢, R) be any solution of (4)—(5) and for any € the (4)—(5) is Ulam-
Hyres stable if inequality holds,

||8;7w(x,r)—(H(x, 7) — G(w, Wy, w)(x))“SfO- (12)

Lemma 2 The following inequality hold to problem (4)—(5),

lw(x, ) — Aw(x, )| < [m} €0.

Theorem 3.3 Assuming Lemma 2 holds then the solution of problem (4)—(5) is Ulam-Hyres
stable.

Proof For proof please refer [35]. O

General Procedure of ATIM

This section consists general procedure of ATIM and further its convergences analysis of
solution is obtained using Cauchy convergences theorem.

Aboodh Transform Iterative Method

Consider a nonlinear FPDE as,
Dlw(x,t) = R(w(x, ) + Qw(x, 1) + g(x,0),n =1 <n<n, 13)
with initial conditions,
wP(x,0)=j,(), p=0,1,2...(n — 1).

Caputo fractional derivative operator is defined by D, and source term is g(x, 7), R and Q
are linear and nonlinear operator respectively. Operating Aboodh transform on Eq. (13) leads
to

A [D{w(x, )] = F[Rw(x, 1) + Qw(x, 1)+ g(x, T)]. (14)

Using Definition 2.5 and taking inverse of Aboodh transform leads to,

o[ & w0 1
wi =" — > S—= + 5 (IR, 7)) + Qw(x, 1)) + &(X, D)D)

U p2—n+s
s)
As, through the iterative technique,
o
wiT) =Y wy(x, 7). (16)
p=0
Linear part decompose as,
oo [e.¢]
RIY w0 | =) R(wy(x. D). (17)
p=0 p=0
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The decomposition of nonlinear operator Q is done by NIM,

0w m) = 0(Y w,(x. 1)
p=0

o0 4 p—1
= QoG N+ Yy [ D wi.o |- Y wit.o||. a8
j=0 j=0

p=1
Putting Eqgs. (17) and (18) in Eq. (16) we get,
n

(e ¢]
1 w(p)(())
e O -\
Eowp(x,r)_gz{ > E o
p=

1
+ 1806, O + o~ [WM[R(WO(X, ) + Q(wo(x. 1))

o0 p p—1
+Y RGN+ 0| Y wit. o | =D wix. 0
p=1 j=0 Jj=0

(19)

From above scheme, we obtain following iterations,

| n w(P (0)
wox, 0 = | |3 | s Dl n—T<nsn. Q0)
p=0

1
wi(x, 1) =o' [171‘4 [R(wo(x, 7)) + Qwo(x, T))]] , 21

likewise,

1 p p—1
Wyt (D) = | — A Ry + 0 Yowi(x o) [ =0 | D w7
j=0 j=0
(22)

This series solution converges. For convergences analysis following theorem is discussed.

Convergences Analysis

Theorem 4.1 [36] Consider a Banach space B, if there exists L such that 0 < L < 1, ||w,]|
< L||wy—1]|, then the series solution obtain from ATIM converges to R; € B.

Proof Consider a sequence R;,i =0, 1, ..., n. given as,

Ry = wy,
Ry = wo + wy,
Ry = wo + w1 + wy, (23)

R, = wo+ wi + wy + ... + wy,.
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We show that this R; is a Cauchy sequence. Using assumption we have,
[|Rn — Ru—1ll < l[lwall < L"wy. (24)
Forall p,g € N,
IRy = Rgll = l1Rp = Rp—t + Ryt = Rpz + .+ Rt — Ry
= IRp = Rp—ill + [IRp—1 — Rpall + ... + [[Rg1 — Ryl
< (Lp+LP7" 4+ L1 hHwg
LIl — LP~9)

<||———||wo, 25

< Il Ilwo (25)
where wy is bounded, so

lim [||R, — R,|| =0. 26
p,qlﬁOO” p q|| (26)

So, considered R; is Cauchy sequence in Banach space B, hence solution in Eq. (22) is
convergent. O

Numerical lllustrations

Example 5.1 Consider a homogeneous space fractional telegraph equation as [37]

a2y 2w dw
s~ gt T TE00<usl <

subject to conditions,
w(x,0)=¢X, wO,7)=¢", wy(0,7)=e *,0<x <1, 7>0. (28)

Exact solution of Eq. (27) is w(x, 7) = eX 7.
Applying Aboodh Transform on both side Eq. (27) leads to,

92w 2w dw
A|—| = —+ — . 29
[8)(2”] [afz T +w} &

Using Definition 2.5 on Eq. (29),

0T = w0, 1)+ w0 1) + o [0 Y (30)
/[w(x, )] = =w0,7)+ —w, (0, 7) + — —+—+w].
X v2 3t v21 at? = 9t
Inverse Aboodh transform on Eq. (30) leads to,
1 1 1 2w dw
P R -1

Now solving Eq. (31) by procedure of NIM,

wo(x,7) =e "+ xe ", (32)
( ) o 1 A 9%wo n dwg n
wi(x, 1) = — — +wo |,
X v a2 ot 0
2n 2n+1

X -t X

Fen+ D ¢ Tart2) 3)

wi(x, 1) =e"

@ Springer



Int. J. Appl. Comput. Math (2023) 9:84

Page110f19 84

(a) 3-dimensional plot of approximate so-

(b) 3-dimensional plot of exact solution

lution w(x, 7). w(x, 7).

Fig.1 3-dimensional plot of Example 5.1
Table 1 Comparison of obtained ~
results by ATIM with exact and ! Exact ATIM  HATM [38] Error
q-HAlTM [38] with x = 1 and 025 050 077880  0.77881  0.77881 0.00001
= 0.50 1.00000 0.99999 0.99999 0.00001

0.75 1.28402 1.28403 1.28403 0.00001

1 1.64870 1.64868 1.64868 0.00002

0.25 0.75 0.60653 0.60652 0.60652 0.00001

0.50 0.77880 0.77881 0.77881 0.00001

0.75 1.00000 0.99999 0.99999 0.00001

1 1.28402 1.28401 1.28401 0.00001
Similarly,

4n+1
_ X —r X
wa(x,t) =€ " +e . 34)
r'dn+1) 'én+2)
Likewise, next approximation,
6n+1
_ X - X
w3(x, 1) =e " +e ) (35)
ren+1) reén+2)
In similar manner we can get further approximation. Hence, the approximate solution com-
muted as,
2n 2n+1 4n 4n+1
_ X X X
w(x,r):er<1+x+ + +)
ren+1) TI'@2n+2) T'dn+1) THEn+2)

(36)

Example 5.2 Considering time fractional telegraph equation in absence of source term as

(371,

92w
aT2n

0w

- tw
at’

:78)(2’

t>0,0<n<1, 37
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subject to conditions,
w(x,0) =eX, we(x,0)=-2e* 0<x <1, t>0. (38)

Exact solution of Eq. (37) is w(x, t) = ex27,
Taking Aboodh transform of Eq. (37) leads to,

9w amw 92w
A | ——+2— = | —|. 39
[arzﬂ T +w] [3)(2} <
Using Definition 2.5 on Eq. (39),
w01 = Ser - Loy ¢ L [P0y (40)
w(x, )] = —ef — —=Q2e —= — —2— —w].
X v2 v3 v2n dx2 ath
Applying inverse Aboodh transform leads to,
P 2 _ 2eX a1 82w B aMw B
now applying procedure of NIM on Eq. (41),
wo(x, 7) = e* (1 —21). (42)
1 Pwy 3w
Y _ —
wi(x, 1) =« [Uz,fﬁzf[ o2 2o Twoll
deX
wix,7) = 43)
F'(n+2)
Similarly,
8eX 2n+1
wa(x, 1) = ————1"", 44
2(x, T) F@r+2) (44)
16eX 3
w3(x, 1) = —— 7" 45
3(x, 7) FGr+2) 45)
In similar manner we can get further approximation.
Hence, the approximate solution commuted as,
4eX 8eX 16eX
, —eX(1=2 n+1 _ 2n+1 3n+1 ).
wix.my=e ( rarnt T+’ TTenrnl
(46)
Example 5.3 Considering 2-dimensional time-fractional telegraph equation [38],
92w n 3"Tw Py 02w n 92w ~0.0 <1 a7
a9 N w = T 5 PG E] T —_— 9 < f— 9
9t 7 gen a2 " 9y2 7
subject to conditions,
w(x,y,0) =X w(x,y,00==3T" 0<x <1, 0<y < 1. (48)
Operating Aboodh transform on the both side of Eq. (47) leads to,
o R +38’7w Py o 92w n 92w 49)
— w|l=A | —+—|-
T2 ot ax2  0y?
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1
Wik

(a) 3-dimensional plot of approximate so- (b) 3-dimensional plot of
lution w(x, 7). w(x,T)..

Fig.2 3-dimensional plot of Example 5.2

exact solution

Table 2 Comparison of obtained

results by ATIM with Exact and ‘ Exact ATIM o HATM [38] Error

q-HATM [38] with x = 1 and 025 050 047236 047080  0.47080 0.00156

n=1 0.50 0.60653  0.60453  0.60453 0.00200
0.75 077880  0.77623  0.77623 0.00257
1 1.00000  0.99672  0.99672 0.00328
025 075 028650 026984  0.26984 0.01666
0.50 0.36787 034648  0.34648 0.02139
0.75 047236 0.44490  0.44490 0.27460
1 0.60653 057128  0.57128 0.35350

Using Definition 2.5 on Eq. (49),

M[w(x,y,r)]:T—v—3 w21

eXty  3extv 1 |:32w 9w aMw ]
—2w]|.

4= 3=
9x2 + dy? ot
Operating inverse Aboodh transform on both side of Eq. (50) leads to,

(50)

1 92 92 an
w(x, 7, 7) = XY — 37XV 4 ] [ d[ e S 2w]] . 6D

w20 [ax2 T ay? arn
Applying procedure of NIM on Eq. (50),

wo(x, v, 1) = X7 (1 —31),

92w 92w 0"w
o1 0 0 0

wl(X7 V» 'L') - % |: axz ayz 3 81’” 2U)0:| k)

xX+v 1
wi(y, v, 1) = ——1""".

1, 7, 7) F(n+2)
Similarly,
27eXxtr
r2n+2)

(52)

(53)

(54
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wier0)

(a) 3-dimensional plot of approximate so- (b) 3-dimensional plot of exact solution
lution w(x,~, 7). w(X, Y, T)-

Fig.3 3-dimensional plot of Example 5.3

Table 3 Comparison of obtained

results by ATIM with Exact and ' Exact ATIM G HATM [38] Error
g;EIATMIBS] with x =y =1 025 050 036787 036698  0.36698 0.00089
= 0.50 0.60653  0.60505  0.60505 0.00148
0.75 1.00000 099756  0.99756 0.00244
1 1.64872 164470  1.64470 0.04002
025 075  0.17377  0.15237  0.15237 0.02140
0.50 0.28650 025123  0.25123 0.03527
0.75 047236 041420  0.41420 0.05816
1 077880  0.68292  0.68292 0.95880

+
w30y 1) = (55)
'Gn+2)

Hence, the approximate solution commuted as,

27
n+1 2n+1 3n+1
A p—— — +— +...),
Tm+2) " Tn+2) " TGn+2) " )
(56)

w(x,y. 1) =t (1—3r+

whose exact solution is w(x, y, T) = Xt =37,

Example 5.4 Considering 3-dimensional fractional order time fractional equation as [38],
82w amw Pw  Pw  w
— 42— 43 w=-—+-—+—, t>0,0<n <1, 57
oz g T o2 T2 e T2 7 57)

subject to conditions,

w(x,v,0,0)

sinh x-sinh y-sinh 0, w;(x, y, 6, 0)
= —2sinh x-sinh y-sinh 6, 0 < x,y,0 < 1. (58)
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Table4 Comparison of obtained

results by ATIM with Exact and ’ Exact ATIM - HATM [38] Error

q-HATM [38] with 025 050  0.00593  0.00591  0.00591 0.00002

x=y=0=landn=1
0.50 0.05205  0.05188  0.05188 0.00017
0.75 020456  0.20388  0.20388 0.00068
1 0.59709 059512 0.59512 0.00197
025 075 0.00359  0.00338  0.00338 0.00021
0.50 003157  0.02973  0.02973 0.00184
0.75 0.12407  0.11685  0.11685 0.00722
1 036215 034100  0.34109 0.02106

Operating Aboodh transform on Eq. (57) leads to,

o a2y +23”w 43 o 92w n 92w n 2w
—_— —_— w| = / — — 5 |
T ot axr  oay?  9y?

sinhy-sinhy-sinh@  2sinhy-sinhy-sinh6

o [w(x, y,0, 1:)] =

v2 v3
1 Pw  Pw  Pw  _dw
—d | —+—+— —2— —3w]|. 59
V2 [axz tor T Tt w] (59)
Inverse Aboodh transform on Eq. (59) leads to,
w(x,y,0,t) =sinhy-sinhy-sinh6 — 2tsinhy-sinhy-sinh6
po [ Ly [P e Pe o (60)
. — —t+—+ — —2— —3w||.
v21 ax2  dy? 062 atn
Applying NIM procedure leads to,
wo(x, y,0,t) =sinhy-sinhy-sinh® — 2tsinhy-sinhy-sinh6, (61)
4sinhy-sinhy-sinh6
wi(x,y,0,7) = A 62
1y ) r(+2) (62)
Similarly,
8sinhy-sinhy-sinhd , .,
wa(x,y,0,7) =— n+l 63
20X, ¥ ) F @ +2) (63)
L6sinhy-sinhy-sinh® 5 .
,7,0,7) = (ARS 64
w3(x,y,0,1) FGir+2) T (64)

Likewise, other approximation can be commuted. Hence, the approximate solution commuted
as,

4 8
w(x,v,0,t) =sinhy-sinhy-sinhf 1204 —— gntl 7 2l
Ov.0.0) xestmity ( T(1+2) T2y +2)
N — UL 65
TGn+2)" ) (65)

The exact solution is w(x, y, 8, T) = e *Tsinhx-sinhy-sinh®.
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254

o) woet) ]

[F=n=07 = —n=08 — -n=09 n=0.98 — n-=1] [E=n07-"—m-08— -n-09 =098 — n=1]

(a) Nature of w(x,7) at x = 1 for distinct order n, (b) Nature of w(x,7) at x = 1 for distinct order 7,
for Example 5.1. for Example 5.2.

40 /

304 /

W) / 7 w1.0.0)

[F=n=07—"=n=08 — =09~ =098 — n=1] [F=n07="=n=08 — -n=09- " n-098 —n-1]
(¢) Nature of w(x,v,7) at x = 1 = v for distinct (d) Nature of w(x,v,0,7) at x =1 =~ = 0 for
order 7, for Example 5.3. distinct order 7, for Example 5.4.

Fig.4 Approximate solution behavior at distinct order of n for Examples 5.1 to 5.4

Results and Discussion

Figure 1a and b shows comparison between obtained approximate solution and exact solution
at x = 1, n = 1, for Example 5.1. We have consider the approximation upto 3rd order. It is
clear from the graph that the solution obtained from the proposed ATIM coincides with the
exact solution. Similarly, for Example 5.2 Figs.2a and b elaborates the comparison between
obtained approximate solution and exact solution for x = 1 and n = 1. It also shows
the nature of approximate solution is similar to exact solution. Figures3a and b elaborate
the comparison between obtained approximate solution and exact solution at x = y = 1
and n = 1, for Example 5.3. Likewise, Fig.3 shows that the approximate and exact solu-
tions coincide. Figures4a—d explains the nature of approximate solution for different order
n = 0.7,0.8,0.9,0.98, and 1. Figure4a states that with increase in fractional order 7, the
approximate solution tends to exact solution at = 1, for Example 5.1. Similarly, for Example
5.2, Fig. 4b shows that with increasing value of fractional order 1, the approximate solution
tends to exact solution at n = 1. Figures4c and d shows that the approximate solution tends
to exact solution as 7 tends to 1, for Examples 5.3 and 5.4, respectively. Figure 5a shows
the error between successive approximation at x = 0.5, which elaborates that as number of
approximation increase error between successive approximation decreases. Hence solution
obtained by the proposed method converges. A similar results are elaborated by Fig. 5b—d
for Examples 5.2 to 5.4. Hence, the solution obtained by ATIM in all 4 examples converges.
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Fig.5 Plot of error between successive approximation for Examples 5.1 to 5.4

The efficiency of proposed ATIM method is shown from Tables 1, 2, 3 and 4 by comparing
it with exact solution and previously published works.

Conclusions

We have successfully implemented the ATIM for multidimensional telegraph equation. The
proposed method doesn’trequire tedious calculation and is free from linearization or perturba-
tion parameter, which makes it more useful for nonlinear problems. It also takes significantly
less memory and less calculation time. Uniqueness and existence of proposed method is
shown. Also, stability is stated using Ulam-Hyres theorem. Cauchy theorems give conver-
gent analysis of the solution obtained by ATIM. Graphs and tabular representation show that
the proposed method is efficient in solving fractional differential equations. The successive
error between approximations states the convergence of the solution.
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