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Abstract

The paper is concerned with different classes of partial differential equations (PDEs), such as
nonlinear Benjamin—-Bona—Mahony and Klein—Gordon equations with variable coefficients.
We developed a new integration operational matrix via the Bernoulli wavelets and proposed
a novel technique called the Bernoulli wavelet collocation method. A collocation approach
based on the Bernoulli wavelets and their matrices is adopted for solving such equations.
Then using the properties of wavelets, we convert the mathematical model into a system of
algebraic equations. The approximate solution can be obtained by solving these algebraic
equations with the help of the Newton-Raphson technique. The achieved results are analyzed
using tables and graphs and are compared with the other methods in the literature. These
results are graphically explained using appropriate values of parameters with comprehensive
behaviour of the physical structure of solutions. Four numerical problems are given to show
the accuracy of the expressed method. As we know, Many PDEs don’t have exact solutions,
and some semi-analytical methods work based on controlling parameters, but this technique
is free from controlling parameters. Also, it is easy to implement and consumes less time
to execute the programs. The suggested wavelet-based numerical method is computationally
attractive, efficient, and computationally appealing. Convergence analysis for the proposed
technique is drawn in terms of the theorem.

Keywords Partial differential equations - Collocation method - Integration operational
matrix - Bernoulli wavelets - Newton Raphson technique

Mathematics Subject Classification 65M70 - 65T60

Introduction

Nonlinear PDEs play a vital role in mathematics, engineering, and physics, like wave circula-
tion phenomenon, movement of heat, electricity, plasma physics, fluid mechanics, etc. PDEs
are of countless attention in nonlinear optics and quantum ground, like Advection, Burgers,
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Boussinesq, Fisher equation, and many more. In 1972, the BBM equation was perceived
by Benjamin, Bona, and Mahony as enhancing the Korteweg—de-Vries (KdV) equation for
plane water waves in an identical channel. The BBM equation is of the form [1];

0(x, 1) 096(x, 1) d30(x,t 30 (x, t
(x, >+ (x, 1)  070(x, )+9,,(x’ 5 (x, ):0’
ot ox ax20t
and KDV equation is of the form,
0(x, 1) 96(x, 1) 930(x, ¢ 30 (x, t
x, 1) 00k, 1) 96K )+9(x,t) IR

ot dx ax20t ax

The main variation between BBM and KdV is that they are comparable only for small
wavenumbers and produce different wave results.

The Klein—Gordon (KG) equation is a vastly considered PDE in condensed matter physics.
Usually, the functions with nonlinearity accompanying the KG equation are polynomials or
sinusoidal functions. The Schrédinger equation for the quantum wave function is connected
to the KG equation. Oscar Klein and Walter Gordon proposed the KG equation in 1927 as
an interesting differential equation [2]. The general KG is of the form [3];

0(x, 1) 30 (x, 1)
2 [fl(Q)ax]x + f2(0).

Wavelet theory is one of the upcoming modern approaches in applied mathematics. It
has tremendous applications in computer science, Signal analyses, image processing, and
modeling. Many researchers’ offerings towards wavelet-based numerical schemes have been
proposed over the past couple of years, with different practical methods for retrieving the
numerical solutions for nonlinear PDEs in scientific research. They are as follows; Sensitive
visualization of the fractional BBM equation [4], new analysis for KG model [5], a study
on KG Zakharov equation [6], Laguerre wavelets method for BBM equation [7], Numer-
ical solution for BBMB equation via finite integration method [8], mathematical solution
for the (2 + 1) dimensional Sobolev equations via wavelet technique [9], numerical solution
of generalized BBMB equation via finite difference method [10], KG equation via Clique
polynomials of Complete graphs [11], numerical analysis of the KG equations by iteration
transform method [12], Laguerre wavelet method for the Hunter Saxton equation [13], new
exact soliton solution for (3 + 1)-dimensional BBM equation [14], numerical solution for
nonlinear KG equation [15], exact traveling waves for the KG equation [16], wave solu-
tions of a KG equation [17], orthonormal Bernoulli polynomials for modified BBM type
equations [18], Hermite wavelets approach for the multi-term fractional differential equa-
tions [19], exact solutions of nonlinear KG equation with nonconstant coefficients [20],
Hermite wavelet method for Rosenau—Hyman equation [21], PINNs method for coupled
wave KG equations [22], nanofluid flow system by Hermite wavelet technique [23], hyper-
bolic PDE by Fibonacci wavelets [24], Korteweg-de Vries-Benjamin-Bona-Mahony-Burgers
(KdV-BBM-B) model by the combination of the radial basis function (RBF) and the finite dif-
ference (RBF-FD), RBF-pseudospectral (RBF-PS) [25], nonlinear equal width equation by
local RBF-FD method [26], sine-Gordon system by radial basis function partition of unity
method (RBF-PUM) [27], nonlinear sine-Gordon equation (NSGE) localized RBF-PUM
[28], Rosenau-Korteweg-de Vries-regularized-long wave equation by local RBF-FD method
[29], and nonlinear regularized long-wave and nonlinear extended Fisher-Kolmogorov mod-
els by localized RBF-PUM [30].

The primary purpose is to present and explain a new numerical method for obtaining
the approximate solution to the nonlinear PDEs that cannot be solved exactly. The obtained
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results are compared with other techniques available in the literature [32-35]. According to
the current literature survey, BWCM has not been used to solve KG and BBM equations.
This urges us to solve such equations.

Bernoulli wavelets produced by Bernoulli polynomials are a new accumulation to the field
of wavelet families. The advantages of the present work are as follows.

e Wavelets are mathematical functions that cut data into different frequency components
and then study each component with a resolution matched to its scale.

e The number of terms of the Bernoulli polynomials P, (x) is less than the number of the
terms of the Legendre polynomials L,, (x). It helps to reduce CPU time.

e The operational matrix of integration is sparse so computational time will be less.

e Using the Mathematica command Bernoulli[m,x], the coefficients of the Bernoulli poly-
nomials can be easily obtained and fit the computer programs.

e The Bernoulli wavelet is a function that may be defined at various scales and has a wide
range of uses because of characteristics including orthogonality, compact support, and
vanishing moment.

e Some semi-analytical approaches depend on controlling parameters to work, but this
BWCM is controlling parameter-free.

e The proposed method is most suitable for studying solutions with discontinuity and sharp
edges. We make a window for the function (at the point of discontinuity and sharp edges)
then we apply this method to get information about such functions.

Due to their superior properties and benefits, Bernoulli wavelets gathered the attention of
many researchers towards it.

The organization of the article is as follows. Section 2 discusses the preliminaries of the
Bernoulli wavelet, operational integration matrix, and function approximation. Section 3
reveals some theorems on the convergence analysis. Section 4 is dedicated to the numerical
method of solution of the proposed technique. In Sect. 5, we present the application of
the BWCM to the governing model. Finally, this paper is completed by giving critical new
findings in conclusion in Sect. 6.

Bernoulli Wavelet and Its Functional Matrix of Integration
Bernoulli Wavelets
Bernoulli wavelets ¢, , (1) = ¢(k, i, m, t) have four arguments; 7 = n — 1, n = 1,2, 3,

..., 271k can assume any positive integer, m is the degree of the Bernoulli polynomials,
and ¢ is the normalized time. On the interval [0,1), these wavelets are defined as [31],

k=1~ - -
S k—1 ~ n n+1
G (1) = 2z bm(2 t_n)’ WS P < 2 k=1

’ 0, Otherwise,

with
N 1, m =0,
bu(t) = § ————by (1), m > 0,
com=temn?
@m)! 2m
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wherem =0,1,2, ..., M—1,n =12, ..., 251 The coefficient # is for
—1ym—
. 1)(Zrn)fm!) a2m

normality, the dilation parameter is p = 2~*~1 and the translation parameter ¢ = 72~%=D.

Here, b, (t) are the well-known Bernoulli polynomials of order m which can be defined by;

m

bu(t) =Y (Mam—it",

i=0
where a;, i = 0,1, ..., m are Bernoulli numbers. Now, we fairly accurate the function
y(x) under Bernoulli wavelet space as follows:

YE) =D Comnm (), @1

n=1m=0

where ¢, (x) is the Bernoulli wavelet. We approximate y(x) by truncating the series
as follows;

2k=1 p—1

YO XYY Comnm(x) = ATp(x), 2.2)

n=1 m=0

where A and ¢ (x) are 28~ M x 1 matrix,
T
A" =[Ci0, ..., CLom—1, C205 -, Co =15 -+ s Cokt g5 .. Cokmt gy 1],

GO) = [910s -+ DL M1 8200 - P2 M1+ - D21 s - - ity 1)

Let {¢,-,j} be the sequence of Bernoulli wavelets, m = 0, 1, ..., M — 1, and n = 1,
2, ..., 21 For every fixed n, there is a Bernoulli space spanned by the elements of the
sequence {¢;, j}. Thatis, L({¢;, j}) = L?[0,1) is Banach space.

Integration Operational Matrix

Here, we simplified some basis of the Bernoulli wavelets at k = 1 as follows:
$10() =1,
$11(0) = V/3(=1+20),
d12(t) = ~/5(1 — 61 +61%),
$13(t) = V210(t — 3¢% +21),

1
b14(1) = 10«5(—E +12 23+ t4),

462
b5 =/ = (—t +1063 — 15/ + 6;5),
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1430 2 4 5 6
bre(t) = 671(1 — 2172 +105¢* — 12615 + 421 )
143
b17(t) = 2,/7(t — 73 42185 2110 + 6t7>,
7293
Pr8() =/ 357 (- 1+ 20¢% — 70¢* + 140¢% — 12047 + 30¢%),

~[1,939, 938 \ s «
bro(t) = W(—yum — 4265 + 607 — 45¢8 + 10t )
125, 970 312 15¢8
=2 """ +5t =70 —— 52 4410,
L0 =22\ 774 611(66 2 T *
_ 676’ 039 3 5 7 9 10 11
¢1,11(t)—2,/m(51—33r + 6615 — 6617 +55¢° — 3310 + 61 )

where

$10(t) = [¢10(0), $1.1(1), $12(1), $15(1), $14(1), $15(0), P16(1), $17(1), $15(1), P19

Now integrate the above first ten basis concerning ¢ limit from O to ¢, then express as a
linear combination of Bernoulli wavelet basis as;

t

/¢>1,0(z)dt =135 00000000]¢)10(t),
/(/)1 1(dit = 0 5755 0000000]g100),

/qsl,z(t)dt =[0007£5000000]p0),

0

qum(z)dz - [27@0 0005150000 o]m(:),

/¢1,4(t)dt - [0 0000 % 000 0]¢10(1),

/¢1,5(t)dz - [_ 1500000 5L 00 0]¢10(t)

f¢1,6(t)dt=[0000000 s 00]¢1o(z)
0

t
/¢1,7(t)dt =[£%£0000000 259 0 |pio00),

/qsl,g(r)dt: 000000000 Vj%]qsm(z)
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_ 146,965 V1,222,277
/¢1,9(t)dt = 2,895,220 00000000 0]¢10(Z) T,S:}(ﬁl’l()(t).
Hence
/¢(t)dt = Biox10P10(1)+ ¢10(?),
where
_ | | _
71 33 (l) 0 0 0 0 0 0 0
~3/ 0 375 (1) 0 0 0 0 0 0
\(/)» 0 0 vl 0 0 0 0 0 0
7 1
2730 0 0 0 2770 \(/)» 0 0 0 0
5
. 0 0 0 0 0 EWr) 0 0 0 0
10x10 = TR N ,
310 0 0 0 0 0 TR 0 0 0
0 00 0 0 0 0 Jgs o0 0
Vi3 3617
207 0 0 0 0 0 0 0 2035 0
/219,335
0 0 0 0 0 0 0 0 0 37063133
146,965
60 0 0 0 0 0 0 0 o |
_ 0 _
0
0
0
- 0
d10()= 0
0
0
0
V1,222,277 Zo1.100) |
L 10.482,537 P 110

Next, twice integration of the above ten basis is given below;

//d)lo(t)dtdt [§ 375 1255 0000000]g10(),

//¢11(t)dtdt [—ﬁ —50%000000]@0(;),
0

//¢],2(t)dtdt:[12f000 755 00000]100),
0 0
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tt
[ [ eraaar = [ 22 505000 b 0000600,
0 0

//¢1,4(t)dtdt:[ —=00000 6\/%000]4)10(;)
00

[ [ ersarar = - = 800000 4200 g,
0 0

t t
/f(ﬁm(t)dtdt = [ 569; 0000000 257 0]4)10(;),

0
//¢17(t)dtdt [Qf 50000000 ;4‘3%]@0(;),
0

//¢1 o(Ddidt = [— _5Y2L_ 00000000 0]¢10(t) + 7‘174’6“@,10(:),

6+/119,361 64/7, 559, 530
0
t t
_ | _ /146,965 /146,965
//4’1’9 (O)drdt = [ 272,895,222 6+/965,074 00000000 |¢i0()
0 0
717, 683 S ().
+ ————01,11
24/30, 268, 230
Hence,
t ot
_ /
/
//¢(t)dtdt = Blpx10910(t) + P10(1) ,
0 0
where
i 1 4 _1_ 9 0 0 0 0 0 0 ]
61 4“/1§ 124/5 X
-1 - 0 5 0 0 0 0 0 0
1 1
1zf/§ \of 0 0 = O 0 0 0 0
7 7 1
VT T R v/t S 0 0 0
1 NG
» 7(’% \oﬁ 0 0 0 0 e O 0 0
10x10 = _ Vi _ /I 1
2/210 670 0 0 0 0 0 2390 0 0
143 3617
4/6910 0 0 0 0 0 0 O imans
143 143 J33.867
407 4021 0 0 0 0 0 0 0 844/9690
54221
N 0 0 0 0 0 0 0 0 0
/146,965 /46,965
T 2/2.895,222 6,965,074 0 0 0 0 0 0 0 0 i
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$10(t) =

eleoleoBeoNeReBole)

JIT&611
6v7.559.53021.10(0)

JT7.683 AT
L 2./30,268,230 7 111

In the same way, we can generate matrices of different sizes for our handiness.

Some Theorems on Convergence Analysis and the Bernoulli Wavelet

The Space of Functions L2 (R): The set of all functions f for which | f (x)|? is integrable
on the region R.

Continuous Functions in L, (R): Let 6(x, t) € Lr(R) with ¢ € [a, b]. Then 6(x,
t) is continuous in Ly (R) in the variable ¢ on [a, b] if 9(x , t’) — 0(x,t)in Ly(R)
whenevert’ — t VYVt € [a, b].

The above definition says that if the function 6(x, ¢) is continuous in ¢ on [a, b], then the
|16 (x, t)] is continuous in ¢ on [a, b].

Riesz Fischer Theorem: If a sequence of functions {fx};2, in L2(R) converges itself
in Ly (R) then there is a function f € Ly(R) such that || fy — f|| > 0ask — 0.

Theorem 1 Letd(x, r) in LZ(R x RR) be a continuous bounded function defined on [0, 1) x
[0, 1), then Bernoulli wavelet expansion of 8(x, ¢) is uniformly converges to it.

Proof Let 6(x, t) in L2(R x R) be a continuous function defined on [0, 1) x [0, 1) and
bounded by a real number p. The approximation of 6( x, t) is;

oo 0
O(x, t) = ZZCi,j¢i,j(x)¢i,j(t),
i=1 j=0
where ¢; ; = <9(x, 1), qﬁi,j(x)qﬁ,-,j(t)), and (,) represents inner product. Since

0;, j(x)0;, j (¢) are orthogonal functions on [0,1). Then,
1

1
Ci, j 2//9()@ D@i, j(xX);, j(t)dxdt,

0

1
cij= //e(x by, @ 'y —n+ D¢y j(1)dxdt,
( l)m l(m')ZO‘Zm ’
0 I

s )

—1
where [ = |: s Put2k Ly —n+1 = r then,
2k—1 2k 1
k—l 1
r—1+n dr
Ci,j - D" L )an, Ty l(m')zazm //9< 2k 1 s )b,n(r)F¢l!](t)dt,
(2m)' 0
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—1+n
)" m)ay, l)m 1( ,)2 2k T t )by (r)dr | @i j(t)dt.
m Aom

By generalized mean value theorem for integrals,

1
—1+n
( 1yn— 1( ‘)2 2k71 ’t ¢1w/(t)dt bm(r)dr s
m:)"oom

oemt 0

1
where & € (0, 1) and choose [ by, (r)dr = A
0

—1+n 2\ 2 1
mn— 1 "2 2]{71 ’ t -1 2 bm(2 t—n+ l)dt,
D™ ) o D" n) agm
Semt @m)!

A E—1+n i
Ci,j = ((71)”171(}”!)20‘2,") / 0( 2/(—1 5 t)bm (2 I —n+ l)d[

2m)!

Put 281y — n + 1 = s then,

i
_ o = l+4n s—1+n by,
" (L pim e l(mv>2azm 2k*1 Lokl (S)zk r
2m) o

1
A2kl E—1+n s—1+n
(g |\ T e
( 1

2m)! 0

By generalized mean value theorem for integrals,

1

A2~k E—1+n & —1+n

A T T T T buls)ds,
@2m)! 0

1
where & € (0,1) and [ by, (s)ds = B then,
0

_ AB2™H E—1+n & —1+n v ol
Cl,/ - (—1)”171(m!)20(2,,, 2k71 > 2]{71 ’ 57 S] € ( ’ )’
2m)!

Therefore,

s

AB2 7K1 ‘ E—1+n g]—1+n>

|Ci,j| = ( l)m ](m|)2a2 2]{—1 ’ 2](—1
Coeml
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Since 6 is bounded by w,

e = |Al|B] |27 |
Q”_Vmwm%m'
2m)!

Therefore > i, Z?o:o ¢, j is convergent. Hence the Bernoulli wavelet expansion of 6(x,
t) converges uniformly.

Theorem 2 Let the Bernoulli wavelet sequence {¢§,m (x, 1) }:O: | Which are continuous func-
tions defined in L2(R) in t on [a, b] converges to the function 8 (x, ¢) in L3(R) uniformly in
ton [a, b]. Then 6(x, 7) is continuous in L2(R) in t on [a, b].

Proof Since the Bernoulli wavelet sequence {qbﬁ,m(x, t)};:il is uniformly converges to
0(x, 1) in L%(R). Therefore, for every € > 0, there exists a number k = k, such that,

Also, {¢F ,,(x, 1)} is continuous in Ly(R) int € [a, b]. Then there exists anumber § = 8,
such that,

B (x, 1) — 0(x, t)” € Viela bl 3.1)

b 1) = 6k (e 0] < 5. whenever | — 1] < 8%, 1 € la. b] (3.2)

l6Gx, 1) — 6(x, 1)
- He (6, 1) = @5 (s ) + 0K (s ) = B (v D+ BF (6, 1) —

< oG ) = 0 (e )| + |86 1) = 0 e 0]+ 0 1) =
€ € €
<-+-+-=p¢,
3 3 3

18(x, t/) — O(x, t)|| < € forall ||t —¢t/|| < & witht, t' € [a, b]. Hence 6(x, t) is contin-
uous in LZ(R) in 7 on [a, b].

Theorem 3 Let the Bernoulli wavelet sequence {d)f’m(x, t)};il converges itself in Ly (R)
uniformly in t on [a, b]. Then there is a function 6 (x, ¢) is continuous in L, (R) in t on [a, b]
and klim ¢5ym(x, 1) =¢pmx,t) YVt ela,b]

—00

Proof By Riesz Fischer theorem, for each ¢t € [a, b] there is a function 6 (x, ¢) in L2(R) such
that

lim ¢f , (x, 1) =0(x, 1), (3.3)
k— 00

X oo
Consider the subsequence {gbif’, m(x, 1) } X such that,

kit (e, 1) — gt (x, z)H .Vt € [a, b, (3.4)

from Eq. (3.3)

. k ki ki i ki ki
00 1) = lim @il = o + (045 — o) + (o — ol )+,
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from Eq. (3.4)

|

ki ki ki ki ki
He(x’ 1 — ¢n‘,m H = ‘ ¢nl,;rll - ¢n‘,m ¢n[,;121 - ¢n’,;ll1 +, .,

1 1

S21,+F+,...,:2ij,i:1,2,3,...,

This shows that the subsequence {¢l,§’ m(x, t)} converges to 0 (x, t) in LZ(R) uniformly
in t on [a, b]. By theorem 2, the function 0 (x, ¢) is continuous in L, (R) in ¢ on [a, b].

Bernoulli Wavelet Collocation Method

Consider the nonlinear PDE is of the form:
F(x,t,0,06;, 6, Oy, Oxx, Oxxt) =0, 4.1)

where x, ¢t are independent variables, 0 is the dependent variable with the following
physical conditions.

0(x, 0) = Fi(x), (0, t) = F2(t), 6(a, t) = F3(t), 4.2)

where a be any constant, Fj(x), Fa(¢), F3(t) are continuous real-valued functions.
Assume that,

PO o7 yka(r) @3)
—_— X X s .
ax2ot
where 07 (x) = [010(x), ..., O, m—1(x), ..., Opi1 o(X), ..., Opi1_pr_ 1 (0],
K = [ci,j] be 2%=1pf x 2k=1 M unknown matrix such thati = 1, ..., 21, j =0, ...,

M —1.
0(1) = [01,0(0), ..., O, p—1(0), ..., gt (D), ..., ezk_lgM_l(z)]T,

Integrate (4.3) concerning ¢ from limit O to ¢.

+0T (0K [B@(t)+ o) |, (4.4)

9%0(x, 1) 9%0(x, 0)
9x?2 - 9x2

Now integrate (4.4) twice concerning x from 0 to x.

30(x, 1) 96(0,1) 90(x,0) 90(0,0 -7 T -
x5 _ 90,0 960 0.0 1p . 60| klBow+em|. @s)
ax ax 0x 0x L,
30(0, 1)  36(0,0) , -/ -
O(x, t) =0(0, t)+6(x, 0) —6(0,0) +x|: % — ox j| +[BO(x)+0(x)] K[BO(t)+0(1)],

(4.6)
Put x = a on (4.6) along with the physical conditions given in (4.2). We get,

30 (0, t) _ a0 (0,0):|
0x 0x

F3(t)=Fz(t)+F1(a)—F1(0)+a[

_ !/ T —
+)}1_)nb [B'O(x)+6(x)] K[BO(@)+0 ()]
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00 (0, 1) 06(0,0) 1
[ - ]:|:F3(t)—F2(t)—F1 (a) + F1 (0)
x ox a

_ T _
— lim [B/G (x)+9(x)} K |:BQ )+ Q(t)]:|,
x—a (47)

Substitute (4.7) in (4.5) and (4.6)

a0 (x, 1) B oF) (x)
0x T ax

_ ! T —
+l |:F3 t)—F(t)—F(@)+F (0)— lim [B'0 (x)+ 6 (x)] K[BO(t)+6 (t)]:|
a xX—>a

_ T —
+[BO(x)+60(x)] K |:B€ ®+0 (t):| ,

(4.8)

_ T _
0(x,t)=F (t)+F (x)—F; (0)+[B’0 (x)+0(x)] K [BO (t)+0(t)]+2 |:F3 ()

4 T —
—F @) —Fi(a)+ F (O)—)}ig}l |:B/0(x)+0(x)] K[BO(I)+9(t)]], 49

Now, differentiate 6 (x, t) concerning ¢ twice. We get,

00 (x, t) , x d
3 =R @O+-— |:F3(f)_F2(f)_F1 (@)+ F1(0)
t adt
4 T —
— )}E}}l [B'O(x)+6(x)] K[BO(t)+6 (t)]:|
d - T -
+ = |:[B O(x)+6(x)] K[BO(@)+6 (t)]:| , @.10)
326 (x, 1) ., x d?
oz = O+ —o5 | B0 - R - Fi@)+F(0)
_ T _
— X]l_r)l}l [BO(x)+6(x)] K[BO(t)+6 (t)]:|
d2 , _ T _
+ prel |:[B O(x)+0(x)] K[BO(@)+6 (t)]:| , @10
Now, fit 8, 6;, 6y, 6y, Oxx and O, in (4.1) and discretize by following discrete points,
L 2i — 1 . 1,12
= e 12, ..., [ ]

@ Springer



Int. J. Appl. Comput. Math (2023) 9:108 Page 130f27 108

To extract the values of unknown coefficients, we use the Newton-Raphson method.
Finally, substitute obtained values of unknown coefficients in (4.9) yield the Bernoulli wavelet
numerical solution of the given PDE.

Results and Discussion

Consider the different error norms for measuring errors given by,

2
L? error = ,/Z El.z, L®error = Max(E;), 1 <i <n—1,RMSerror = Z?:l %,
where, E; = |6; (exact solution) — 6; (approximate solution)|. We used Matematica 11.3.0

version in the laptop with HP-i5, 11th generation, RAM: 4GB, SSD:512GB to obtain the
required results.

Example 1 Consider the nonlinear Klein-Gordon equation [15];

3%6(x, n 3%6(x, r)
at? 9x2

( 1) +62(x, t)—xzsm2<n2) Vx e (=1,1),1>0,

with the initial condition,
0(x,0) =0,

and boundary conditions,

(=11 = —sin<”—t>, 01, t) = sin(n—t)
2 2

The exact solution is 6(x, t) = xszn( ) The above equation is solved by the Bernoulli
wavelet collocation method. Figure 1 shows a graphical representation of the exact solution
and the BWCM solution at different values of M, along with its absolute error. Error norms
of the proposed method, Tension spline approach of O(k? + k*>h” + h?) method [32] and
O (k% + k2h?% + h*) method [32] from the literature are compared in Table 1. Figures 2 and 3
reflect the one-dimensional graphical representation of the present method solution with the
exact solution for the different values of # and x, respectively. The CPU time taken by the
Mathematica software is 0.864 s for Table 1.

The BWCM solution at M = 4 is given by,

6 (x, 1) = 4.8593 x 10719:2x2 — 1.0299 x 107103x% — 4.2385 x 107 7r*x? — 1.0253
x 107105%% —1.0299 x 10716:2x3 +1.3477 x 1071%13x% +1.6051 x 10716743
—3.2724 x 107175 x3 +7.7515 x 1071712x* — 7.7424 x 1073 x*
—3.8893 x 10717*x* +4.6563 x 107177 x* — 5.1463 x 10771%x° +1.0629

t
x 107107x% = 5.6521 x 1077¢*x> +2.0230 x 107'8£°x° + xsin (”2 )

Example 2 Consider one more nonlinear Klein-Gordon equation [11];

926 (x, n 920 (x, 1)

Py G TO0n 1) = —xeos(t) +xPcos’ (1), ¥x € (=1, 1), 1 > 0,
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Exact solution Approximate solution at M=4

1

8]
@
=
©
=
©
S
]

Fig. 1 Graphical representation of BWCM and Exact solution along with the absolute error, for example, 1

with the following conditions,

6(x, 0) =x,

0(—1, t) = —cos(t), 0(1, t) = cos(t).

The exact solution is given by 6(x, t) = xcos(t). Figure 4 compares the time-space
graph of BWCM with the exact solution and its absolute error at different values of M. Error
norms of the proposed method, Tension spline approach of O(k? + k2h? + h?) method [32],
O(k* + k*h? + h*) method [32] and Thin plate splines (TPS) radial basis function (RBF)
approximation [35] from the literature are compared in Table 2. A graphical comparison
between the projected method solution and the exact solution with different values of # and x
is illustrated in Figs. 5 and 6, respectively. The CPU time taken by the Mathematica software
is 0.912 s for Table 2.

The BWCM solution at M = 4 is given by,

0 (x, 1) = 4.7233 x 10—16 2x2 —2.1237 x 107183x%2 — 3.2091 x 10~ 7#*x% — 2.1016
x 1071759x2 —2.1237 x 1071842x3 + 1.1158 x 107'%43x3 — 6.0894
x 107171427 +4.7427 x 1077£%3 = 3.2001 x 107712x% +1.0310 x 107 '047x*
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Table 1 Comparison of error

norms of the present method and ¢ L? error L% error RMS error

other methods available in the

literature, for example, 1 O(k? + k2h? + h%) method [32]
1 2.71 x1073 3.97 x107° 2.69 x1070
2 8.97 x107° 1.51 x107© 8.93 x10~7
3 1.49 x1073 2.14 x1076 1.48 x1070
4 1.05 1073 1.86 x1070 1.05 x1076
5 3.36 x1077 5.08 x1076 3.34 x1076
O (k2 +k2h? + h*) method [32]
1 271 x1073 3.97 x1070 2.69 x1070
2 8.97 x10~° 1.51 x107© 8.93 x10~7
3 1.49 x1075 2.14 x1070 1.48 x1070
4 1.05 x1073 1.86 x1070 1.05 x1076
5 3.36 x1077 5.08 x1076 3.34 x107°
BWCMat M = 4
1 6.59 x 10716 3.33x 10716 1.98 x 10716
2 1.18 x 10713 539 x 10716 3.58 x 10716
3 2.55 x 10714 1.25 x 10714 7.70 x 10~15
4 127 x 10713 6.37 x 10714 3.85 x 10714
5 4.16 x 10713 2.08 x 10713 125 x 10713

Solution at M=5 and different values of t

-..%- Exact solution at t=0.1
——— Approximate solution at t=0.1
0.6 -..% - Exact solution at t=0.2
Approximate solution at t=0.2
04 4+ Exact solution at t=0.3
’ Approximate solution at t=0.3
-4 Exact solution at t=0.4
0.2} —— Approximate solution at t=0.4 k
-..% - Exact solution at t=0.5 //
= 00 ——— Approximate solution at t=0.5 ’ _4
Y =
=2
=0.2 e
-0.4
-0.6
-1.0 -0.5 0.0 0.5 1.0

X

Fig. 2 Graphical judgment between the proposed method solution and exact solution at different values of 7,
for example, 1
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Solutlon at M=6 and dlfferent values of X

.- Exact solution at x=0.1
——— Approximate solution at x=0.1
0.4 1 ...&.. Exact solution at x=0.2 1
—— Approximate solution at x=0.2
4 Exact solution at x=0.3
0.2 Approximate solution at x=0.3
““| ...% - Exact solution at x=0.4 ]
Approximate solution at x=0.4
. -..4 - Exact solution at x=0.5 y
E 00} Approximate solution at x=0.5 Z _
=] . 7
’{
=02k g J
_—
-04 i
-1.0 -0.5 0.0 0.5 1.0
t

Fig. 3 Numerical comparison between the present method and exact solution at different values of x, for
example, 1

—9.0474 x 1074 x* +2.3353 x 10717 x* — 2.3200 x 10717#2x5 + 4.6819
x 10773 x5 —2.3828 x 107 71* %5 +2.5126 x 107217 + xcos (1) .

Example 3 Consider the nonlinear BBM equation of the form [7];

O(x, 1)  330(x,t 30 (x, 1
(x )_ (x )+0(x,t)L:O,V0§x§1,IZO’
9t ax20t ot

with the initial condition,
f(x, 0) =0,

and boundary conditions,
60,1)=0,0(1,1) = —

The exact solution is 6(x, t) = 1i7. Figure 7 compares the time-space graph of the
BWCM with the exact solution and error analysis at different values of M. Table 3 compares
numerical solutions obtained from the proposed method with the Finite difference method
[33], Haar wavelet method [33], and exact solutions. A graphical comparison of the BWCM
solution and exact solution with different values of ¢ and x is illustrated in Figs. 8 and 9,
respectively. Error norms of the proposed method are discussed in Table 4. The CPU time
taken by the Mathematica software is 0.613 s for Table 3 and 0.849 s for Table 4.
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Approximate solution at M=3

Exact solution

Absolute error at M=7

Fig. 4 Graphical representation of BWCM and Exact solution with an absolute error, for example, 2

The BWCM solution at M = 4 is given by,
0(x, 1) = % — 1.6335 x 107207x2 +8.0135 x 10~ 16/2x2 + 8.2986 x 10~ 167352
+9.4529 x 1071 7#%x2 — 5.3423 x 107 10¢x3 — 4.7667 x 10716123
+3.6364 x 107194353 — 17137 x 10710¢*x3 + 6.1757 x 10~ 7¢x* — 3.1290
x 1071072x% +3.7877 x 107103 x% — 1.2762 x 107 10+*x* + 6.3814 x 10~ 7¢x°
—1.9144 x 1071042x% + 1.2762 x 107'043%5 — 5.2154 x 10~ 2¢4x3.

Example 4 Consider another nonlinear equation [34];

30 (x, t 0(x, 1 9%0(x, t
(x )+9(x’t) (x )_6 (x, 1)
ot dx ax2

= x(2tcos (tz) +sin? (tz),
with the following conditions,
0(x, 0)=0,

0(0, 1) =0, 6(1, 1) = sin(r?).

The exact solution is 6(x, 1) = xsi n(tz). Figure 10 compares the time-space graph of
the Bernoulli wavelet method solution with the exact solution and error analysis at different
values of M. Table 5 represents the assessment of numerical solutions obtained from the
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Table 2 Comparison of error

norms of the present method and ¢ L2 error L error RMS error

other methods available in the

literature, for example, 2 O (k2 + k2h? + h?) method [32]
1 7.01 x10~° 1.03 x10~° 6.97 x10~10
3 6.59 x107° 1.00 x10~° 6.55 x10~10
5 1.29 x10~° 2.56 x10~10 1.28 x10710
7 7.47 x107° 1.13 x10~° 7.44 x10~10
10 5.84 x107°2 9.46 x10~10 5.81 x10~10
O (k2 +k2h? + h*) method [32]
1 491 x107° 7.68 x10~10 4.89 x10~10
3 4.69 x107° 7.52 x10~10 4.66 x10~10
5 9.46 x10~10 1.76 x10710 9.41 x10~ 11
7 5.11 x107°2 7.63 x10710 5.09 x10~10
10 3.98 x10~? 6.55 x10~10 3.96 x10~10
RBF approximation [35]
1 6.54 x107> 1.25 1073 6.50 x10~°
3 1.17 x10™4 1.55 x1073 1.16 x1073
5 220 x10~4 3.37 x107° 2.19 x1073
7 2.58 x10™4 3.77 x1073 257 x1073
10 7.98 x1073 130 x1073 7.94 x107°
BWCM atM = 4
1 8.16 x 10716 3.88 x 10716 2.46 x 10716
3 8.14 x 10713 421 x 10715 245 x 10715
5 8.68 x 10714 438 x 10714 2.61 x 10714
7 5.67 x 10713 2.86 x 10713 171 x 10713
10 4.08 x 10712 2.07 x 10712 1.23 x 10712

projected method, ADM with the Bernstein polynomial (Method I) [34], ADM with modified
Bernstein polynomial (Method 2) [34], and exact solutions by using their absolute errors
listed. A graphical comparison between the current method solution and the exact solution
with different values of ¢ and x is illustrated in Figs. 11 and 12, respectively. Error norms
of the proposed method are discussed in Table 6. The CPU time taken by the Mathematica
software is 0.647 s for Table 3 and 0.878 s for Table 4.

The BWCM solution at M = 4 is given by,

6 (x, 1) = 1.5500 x 10™1%1x% — 7.6346 x 107'%%x2 + 3.5475 x 107813x% + 2.9446
x 107%1*x2 +2.5458 x 107 1%1x3 — 5.1242 x 10732x — 5.8941 x 107733
—9.7267 x 10713t*x3 +1.9708 x 107 81x* +2.9473 x 107%2x* + 1.9715
x 107123x% — 1.4275 x 1079 x* +9.9348 x 107 131x° — 9.9474
x 1071312x +1.2688 x 1071977 x% — 1.4266 x 1077¢*x + xsin (1%) .

@ Springer



Int. J. Appl. Comput. Math (2023) 9:108

Page 190f27 108

Solution at M=3 and different values of t

1.0} - % - Exact solution at t=0.1
— Approximate solution at t=0.1
-..%-- Exact solution at t=0.2
Approximate solution at t=0.2
-4 Exact solution at t=0.3
0.5¢ Approximate solution at t=0.3
-..4 - Exact solution at t=0.4
—— Approximate solution at t=0.4
-4 - Exact solution at t=0.5
—— Approximate solution at t=0.5

0.0

6(x)

-0.5¢

-1.0 05 0.0 05
X

1.0

Fig. 5 Numerical comparison between the BWCM and exact solution at different values of ¢, for example, 2

Solution at M=6 and different values of x

5L * . Exact solution at x=0.1
-9 ——BWCM solution at x=0.1
-4 .. Exact solution at x=0.2
BWCM solution at x=0.2
% Exact solution at x=0.3
M solution at x=0.3
-4 .. Exact solution at x=0.4
04 ———BWCM solution at x=0.4
-% 1 ...% . Exact solution at x=0.5
———BWCM solution at x=0.5

0.3

8(t)

0.2f

0.1t

-1.5 -1.0 -0.5 0.0 0.5

Fig. 6 Numerical comparison between the BWCM and exact solution at different values of x, for example, 2
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Exact solution Approximate solution at M=4

~——

Approximate solution at M=5 Absolute error at M=6

T —

Error analysis

b
7

|
~
5 2

Fig. 7 Graphical representation of the BWCM and Exact solution with an absolute error, for example, 3

Conclusion

In this study, we have developed an operational integration matrix using the Bernoulli wavelet
and generated method with the collocation technique. Successfully applied the BWCM to
nonlinear Benjamin—-Bona—Mahony and Klein—Gordon equations. First, we transform the
given nonlinear PDEs into a system of nonlinear algebraic equations. The Newton-Raphson
method is applied to determine the unknown coefficients. We have also observed the results
numerically in detail. Analysis of this model has been shown through figures. Moreover, we
have introduced the numerical values in the tables. From the tables, it may be concluded
that approximate numerical results are very close to the exact solutions of the governing
model and better than other methods in the literature [32—35]. Thus, considered problems
are introduced to test the proposed method’s efficiency, accuracy, and validity. Moreover,
this method may also be applied to obtaining numerical solutions of the other mathematical
models with slight modification.
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Solution at M=5 and different values of t

0.8}

0.6}

6(x)

0.4+

0.2t

'm*,,, Exact solution at t=0.1
— Approximate solution at t=0.1
-4 Exact solution at t=0.2
Approximate solution at t=0.2
-4 Exact solution at t=0.3
Approximate solution at t=0.3
-..%-. Exact solution at t=0.4
Approximate solution at t=0.4
... - Exact solution at t=0.5
Approximate solution at t=0.5

0.2 04 06 08 1.0

X

Fig. 8 Numerical comparison between the present method solution and exact solution at different values of 7,

for example, 3

Solution at M=6 and different values of x

- - Exact solution at x=0.1
——— Approximate solution at x=0.1
-..% - Exact solution at x=0.2
151 Approximate solution at x=0.2 ]
4 Exact solution at x=0.3
Approximate solution at x=0.3
- - Exact solution at x=0.4
— Approximate solution at x=0.4
—10L -4 - Exact solution at x=0.5 |
% : — Approximate solution at x=0.5
0.5¢
3
g
n bod kad kad £
0.0t R %%
-0.5 0.0 0.5
t

Fig. 9 Numerical comparison between the present method solution and exact solution at different values of x,

for example, 3
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Table 4 Error norms of the

proposed method at M = 4, for t L2 error L error RM S error
example, 3
1 1.4476 x 1014 7.3274 x 10715 43648 x 10~15
2 9.1504 x 10~14 45380 x 10~14 2.7589 x 10~ 14
3 2.1464 x 10713 9.8726 x 10714 6.4717 x 10~ 14
4 3.3101 x 10713 1.5958 x 10713 9.9805 x 10~ 14
5 6.1303 x 10713 2.5301 x 10~13 1.8483 x 10713

Exact solution
A

y —

Approximate solution at M=3

X 4
0.10 20

Absolutg error at M=5

ysis

Error anal
-

Fig. 10 Graphical representation of Bernoulli wavelet solution and Exact solution with an absolute error, for
example, 4
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Table 5 Numerical comparison of the present method with different methods available in the literature at
x = 0.1, for example, 4

t

present method

Exact solution

An absolute
error by
Method I [34]

An absolute
error by
Method 11 [34]

An absolute error
by the current
method at M = 4

00 0 0 0 0 0
0.1  0.000999983333  0.000999983333  5.5121 x 1070  4.1490 x 107®  1.4528 x 10716
02 0.001999966666  0.001999966666  3.4011 x 10~  1.8495 x 10~  3.9161 x 1013
03 0.002999950000  0.002999950000  8.8513 x 10™5  2.8381 x 1075 1.6276 x 10~ 14
0.4 0.003999933333  0.003999933333  1.4044 x 1075 9.1215x 107> 3.8899 x 10~ !4
0.5 0.004999916667  0.004999916667  1.2560 x 10~*  1.6204 x 10~%  7.0159 x 10~ !4
0.6 0.005999900000  0.005999900000  4.2509 x 10~5  1.8804 x 10™%  1.0514 x 1013
0.7 0.006999883333  0.006999883333  4.3607 x 1074  1.0861 x 1074  1.3563 x 10713
0.8 0.007999866667  0.007999866667  1.0501 x 10~ 1.0202 x 10~%  1.5012 x 10713
0.9  0.008999850000  0.008999850000  1.7188 x 10~ 37522 x 1074  1.3385 x 10713
1.0 0.009999833333  0.009999833333  2.0247 x 1073 4.8632x 1074  6.8667 x 1014
Solution at M=5 and different values of t
0.4 ... Exact solution at t=0.1 I
——— Approximate solution at t=0.1
...+ Exact solution at t=0.2
Approximate solution at t=0.2
4 Exact solution at t=0.3
0.2 Approximate solution at t=0.3
-4~ Exact solution at t=0.4
Approximate solution at t=0.4 M
...~ Exact solution at t=0.5
2 0.0 Approximate solution at t=0.5 ) :“__:_ —— |
s - RS 2
-0.2 g
-04¢t, ‘ ‘ . . . =
-1.5 -1.0 -0.5 0.0 0:5 1.0 1.5
X

Fig. 11 Numerical comparison between the present method solution and exact solution at different values of
t, for example, 4
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Solution at M=6 and different values of x

... - Exact solution at x=0.1
0.4+ Approximate solution at x=0.1 1
-.-%-- Exact solution at x=0.2
Approximate solution at x=0.2
4 Exact solution at x=0.3
0.3 Approximate solution at x=0.3
-5 - Exact solution at x=0.4
Approximate solution at x=0.4
... Exact solution at x=0.5
= Approximate solution at x=0.5
@ 0.2t 1
0.1}
0.0t ‘ , 1
-1.0 -0.5 0.0 0.5 1.0

t

Fig. 12 Numerical comparison between the present method solution and exact solution at different values of
x, for example, 4

Table 6 Error norms of the ) o
proposed method at M = 4, for t L~ error L™ error RM S error

example, 4

1 2.6161 x 10~12 1.0940 x 10~ 12 7.8878 x 10713

2 8.1931 x 10710 3.9878 x 10710 2.4703 x 10~10
3 7.4899 x 1079 3.7339 x 1079 2.2582 x 107
4 3.0534 x 1078 1.5343 x 1078 9.2065 x 1079
5 8.5980 x 1078 43370 x 1078 2.5923 x 1078
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