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Abstract

It is known that the variable coefficients Hirota equations have been widely studied in the
amplification or absorption of propagating pulses, as well as in the generation of supercon-
tinuum in inhomogeneous optical fibers. In this paper, a generalized variable coefficients
Hirota equation is considered. Firstly, we constructed the classical and generalized Dar-
boux transformations of the equation. Next, we obtained multisoliton solutions based on the
classical Darboux transformation and rogue wave solutions using the generalized Darboux
transformation. Finally, we discussed the evolutions of solitons.

Keywords Lax pair - Darboux transformation - Multisoliton solutions - Rogue wave

Introduction

In recent years, people pay more and more attention to the study of nonlinear evolution equa-
tions, such as Schrodinger equation, Korteweg—de Vries equation, sine-Gorden equation, see
e.g. [1-4]. Seeking exact solutions of the equations is helpful to understand the essential prop-
erties, algebraic structure and physical phenomena [5—7]. There are many methods to obtain
the exact solutions, for instance, Painlevé analysis [8, 9], inverse scattering transformation
[10, 11], Hirota bilinear method [12, 13], Bicklund transform [14], Darboux transformation
(DT) [15-17], Lie symmetry analysis [18, 19], Riemann—Hilbert formulation [20], elliptic
wave function method [21-23], Lie group analysis [24-26], etc.
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DT is an effective method to obtain a new solution from the initial solution, and it can
be repeated any number of times. The main idea of DT approach is to prove the canonical
equivalence of the Lax pairs and to obtain soliton solutions through continuous iteration. To
construct the explicit solutions, Gu and his collaborators constructed a classical DT in matrix
form and provided purely algebraic algorithms for a group of isospectral integrable systems
[15,27]. To obtain the rogue waves of nonlinear Schrodinger equation, Guo et al. [28] derived
a generalized DT through a limit procedure. These methods have also been extended to study
the variable coefficients and nonlocal equations.

For the problem at hand, we focus on studying a generalized variable coefficients Hirota
equation

ity + ottty + i Pty + 3iBy lulPux + oy |ul*u + su =0, (1)

where i = +/—1 and u is a complex function with the variables (7, x), @« = «a(t), 8 =
B(t),8 = &(¢) are real functions with variable ¢ and the parameter y is a nonzero con-
stant. The significance of the study for this equation is that it is often associated with the
amplification or absorption of propagating pulses and the generation of supercontinuum
in inhomogeneous optical fibers [29-31]. In optical fibers, «, 8, v, § represent the group
dispersion velocity, third order dispersion, self-steepening and the amplification or absorp-
tion coefficient respectively [32]. For different value of «, 8, y, §, the amplitude, intensity,
width and period of the oscillation show different results. We constructed the classical and
generalized DTs of Eq. (1) and obtained the multisolutions and rogue wave solutions. The
evolutions of solutions are discussed. The propagation of solitons can be controlled by adjust-
ing the values of relevant parameters. The results might be of potential applications in the
design of optical communication systems. Some related works associated with (1) have been
researched. The auto-Bécklund transformation and a family of the analytic solutions has also
been given, see [33]. When «, S, § are all constants, multisolitons, breathers and rogue waves
have been derived, see [34-37]. When o« = § = 0, 8 = B(t), y = y(t), the multisoliton
solutions have been obtained, see [38—41]. When = 0,a = «(t),8 = §(),y = y(t),
multisoliton solutions, rogue wave solutions, semi-rational solutions, breathers are obtained,
please see [42—46] for details.

The paper is organized as follows. In section “Lax Pair and Darboux Transformation”,
we derive the Lax pair, classical DT and generalized DT of Eq. (1). In section “Multisoliton
Solutions”, we use the classical DT to obtain multisoliton solutions from the zero seed
solution. In section “Rogue Wave Solutions”, we use the generalized DT to obtain the rogue
wave solutions from the non-zero seed solution. Finally, the main results are summeried.

Lax Pair and Darboux Transformation

In this section, we will derive the Lax pair and DTs of Eq. (1) which include classical DT
and generalized DT. The Lax pair of soliton equation means that the equation can be written
as a pair of linear problems. The DTs build the relationships between the seed solution #[0]
and the new solution u[N].

Lax Pair

Theorem 1 The Lax pair for the generalized variable coefficients Hirota equation (1) can be
expressed as follows
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Ox = UQD»
o=V, ()

where U, V are the matrices determined by u and u™ with isospectral parameter A (* denotes
the complex conjugate),

—i\ Lu
U= 2 ,v=(AB>, 3

_\/gu* C-A
A:—4iﬂk3 2la)»2+lﬂy|u| A+ aylul + ﬁy(uu —utuy) + 5
B =48 ;ukz+<2a\/;u+2iﬂ 2ux>)»+iol\/:ux—,3\/:u /3)/\/7|u|2
C=-48 %M*AZ + (—2a\/§u* + Ziﬂ\/Zuj> A+ ia\/gui + ﬁ\/gujx
+ ﬂy\/glulzu*. )

Proof According to the compatibility condition, i.e. ¢x; = ¢y, of Eq. (2), we can obtain
zero-curvature equation U; — Vi 4+ [U, V] = 0 (here [U, V] = UV — VU), namely

with

0 iu _(Ax B, )+ —inJhu (A B )
\/gu;k 0 Cy —Ax _\/gu* in C-A
A B —iA %u
“\c-a vk =0 )
—\/;u ix

Substituting Egs. (4) and (1) into Eq. (5), we can verity the validity of U; — V, +[U, V] = 0.
Therefore, we can give the Lax pair for Eq. (1). O

Darboux Transformation

Taking j = 1,2,3..., we assume u[j] is j soliton solution of Eq. (1), ¢[j] be j solution
of the Lax pair (2) at u[j] and T[] is a gauge transformation between ¢[j — 1] and @[]
which represents the transformation relationship between two sets of solutions of Lax pair.
The iteration process of the DT is described using a flowchart

olo] T g1y LB gy LBL TV oy gy T oy
tor 1 t - ©
ul0] — ul[l] — ul2] — -+ —> u[N —1] —> u[N]

Theorem 2 The N-fold classical DT of the generalized variable coefficient Hirota equation
1) is

al (A =M fili =gl — 1

@[N] =T[N]--- T[21T[1]¢[0], u[ N - .
Iff =1+ gyl = 1]

™
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_ 1
|-+ gL -1

Ml =P +axlg U -0 og -l - gl -

. .o N . 2 . 2 )il —11
(=20 fil = gl = 11 23| £ = 1|7+ 4 |g;li = 11

(fili =11 g;lj — INT is a solution of Lax pair (2) at A = Aj and u = u[j — 1] which

Here the gauge transformation T[j] = A — S[j — 1], S[j — 1]

; FiU=10\ _ o p i — TS —3]) O] — fil0]
satisfies (gj[j )= Al —=S[j—=2D ;I = S[j —3D---(A;1 = S[0]) 001 )
Proof (1) Gauge transformation

Assuming ¢ satisfies the Lax pair Eq. (2) and ¢’ satisfies the Lax pair

¢ =U'y,
o=V, ®)

here U’, V' have the same forms with U, V except that u, u* in the matrices U, V are replaced
with «/, u’* in the matrices U’, V'. If we set

¢ =Top. ©

and call T a gauge transformation. We can obtain the gauge transformation 7" satisfies
T, +TU -U'T =0, (10)
T,+TV —-V'T=0. an

Substituting T = Al — S into Egs. (10) and (11), we have

S+ = SHU —U' (M — S) =0, (12)
S+ =S)V -V (M —S) =0. (13)
Setting (f, g)7 is a solution of the Lax pair (2) at A = Ao, we see that (—g*, f*)7 is a
solution of Lax pair (2) when A = Ag*. Denoting A = <k0 0 > ,H[0] = (f —g ), it

0 A§ g f*
can be verified that

_ 1 Ml +251gl> (o= fg* >
S=HAH '= ——— 0 0 , 14
|f|2+|g|2( (o — A5 F*g A31f12 + Aolgl? (14

satisfies Eqgs. (12) and (13). Then we find the gauge transformation of the Lax pair (2),

¢ =Te, T =1 -S. 15)

Denoting S = (Z“ 212>, and comparing the coefficients of A in (12), the following
21§22

relationship between two sets of solutions in Eq. (1) will be derived,

/ 2.
u =u—2[—isp. (16)
v

_ (o - A5 fer
12 +1g”?

Based on Eq. (14), we can see

arn
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Substituting Eq. (17) into Eq. (16), we obtain

2 (Ao — A *
u/:u—zfi( 02/ (18)
Y o f1e+ gl
(2) One-fold classical DT
Assuming (f1[0 [0D)7 is a solution of Lax pair (2) when A = A1 and # = u[0]. We can

use Eqgs. (14) and (15) to obtain the gauge transformation
T[1] = Al — S[0],

:%(klm 01 + A3 1g1[01? (M—mfl[‘)]g‘[m*) (19)
017 + T2al0I \ G = 2D ALOF 1101 A1ALONE + 2algal0)? )

According to Egs. (15) and (18), we can obtain the one-fold classical DT

2 (A — X5 fil0]g [0
[1] = T[1@[0], u1] = u[0] — 2.| = . 20
¢ P u = v TIALOIP + 1811017 20

(3) Two-fold classical DT

Assuming ( f>[k], g2 [kDT is a solution of Lax pair (2) when A = Ay and u = ulk], where
k = 0, 1. By means of Egs. (14) and (15), the gauge transformation

T[2] =1 — S[1],

_ 1 (kzlfz[I]I2+>»§Igz[1]I2 (xz—xpfz[l]gz[l]*) @)
| A2 + g2l \ (2 =25 Al gl1] A5 A1 + Azlga111* )

Applying Eq. (20), we get

AN . 0]
(1)) = ot =00 (55)- 22
and
p[2] = T[2]p[1] = T[2]T[1]¢[0]. (23)
By Eq. (18), we derive
2. (A2 = A3) f2[1]g2[11*
1] — . 24
vl =ulll \/: |f2[1]|2+|g2[1]|2 e

Substituting Eq. (20) into Eq. (24), we obtain the two-fold classical DT

=il = Ngili =11
¢[2] = T21T[119[0], u[2] = u[0] — f ’2 . (25)
|f/[J H|"+ |g;lj — 11

(4) Three-fold classical DT

Assuming (f3[k 3[kDT is a solution of Lax pair (2) when A = A3 and u = u[k], where
k=0,1,2. From Eqs (14) and (15), the gauge transformation

T[3] =l — S[2],

_ 1 (A3|f3[2]|2+)\§‘lga[2]|2 (k3—k3)f3[2]gs[2]*) 26)
12112 + 1g3[212 \ (3 — A5 f3[21%g3[2] 251 /302117 + A3lgs[2])?

@ Springer



57 Page6of17 Int. J. Appl. Comput. Math (2023) 9:57

Utilizing Eq. (25), we get

Al ~ f10]
<g3[2]) = (A31 — S[1D) (A3l — S[0]) <g3[0]) , 27
and
¢[3] = T[3]e[2] = T[31T[2]T[1]e[O]. (28)

By using Eq. (18), we observe

2 (A3 = A3) f3[2]g3[21*
3 = ul2] — . 29
e AT AP PRI 29

Substituting Eq. (25) into Eq. (29), we obtain the three-fold classical DT

2 = ADfil gu—u
¢[3]1 = T3IT[21T[11¢l0], u[3] = ul0] — 2\/>i Z / i ]
Yo ]f,]—l]\ +’gjj_1]|

(30)
(5) N-fold classical DT

Assuming (fn[k], gn (kDT is a solution of Lax pair (2) when A = Ay and u = u[k], where
k=0,1,..., N — 1. Continuing the above iteration process, we obtain

TIN]= Al — S[N — 1],
1
|/NIN = 1P + [gnIN — 117
(KN|fN — 11> + A% lgn [N = 111> Oy — )»T\/)fN[N — lgn[N — 17" )

(AN = M) fNIN — 1]*gN[N — 11 AGIfnIN = 1% + Aylgn [N — 112
3D

SIN — 1] =

The relationship between ( fx[0], gn [0D7 and (fNIN — 11, gn[N — DT is

SNIN =11 _ B B _ _ Sw10]

<gN[N— l]) = ANI—=S[N=2])(AnI—=S[N =3])---(AnT — S[O])< N[0]>. (32)
‘We obtain the N-fold classical DT

N(A =2 filj = g5l — 1]

¢IN1=TIN]--- TR2IT (1[0, u[N LS

m = 1"+ gl =1
(33)
[m}

Theorem 3 The N-fold generalized DT of the generalized variable coefficients Hirota equa-
tion (1) is

(= AD AL — g — 1]

LAl — 1P +lgilj — 1117
(34)

@[N] =T\[N]---T1[2]T1[1]¢[0], u[N] = u[0] -2 Z
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1
LAL=1P+gi =111
<k1|f1[j — 1P+ %l — 17 0 —AD AL — Ngilj — 1 ) [—1]=

G = WD AL~ 1l — 11 251AL = 0P+ Al — 12 ) O~ 0=
(filj — 1), g1lj — INT is a solution of Lax pair (2) at A = A1 and u = u[j — 1] which
satisfies

Here the gauge transformation Ti[j] = A — S1[j — 1], S1[j — 1] =

(Ni[j —11--- Ti2IT [1D 5=, 1e 01 (A1 + €)

T
oilj — 1] lim

gi—1
j—1
= @0+ | Y Tilk] ol 4 S Tnik e
k=1 A=h I<k<l<j-1 i
+ > TimTNTik] oy
1<k<l<m<j—1 oy
(Tl = NN =21+ Til Dy, 0 ", 35)

where ¢1(A1 + ¢€) is a solution of Lax pair (2) at . = A + ¢, u = ul[0] and w%k] =

kKl o kNT — 1 3*ao)
(fl » 81 ) = KT aak A:)Ll.

Proof From Eqgs. (14) and (15), we see that if A = A¢, the gauge transformation
¢ = Top = (ol — g = 0. (36)

It means that the same solution can not be reused in the iteration of DT. In the generalized
DT, we consider the case of A = A + &, where ¢ is a small complex parameter. Assuming
@1 (A1 + €) is a solution of Lax pair (2) at A = A1 + ¢ and u = u[0], and it can be expanded
at ¢ = 0 as the following Taylor series

o1 +e) =" +ollle + oPle? 4+ plMen 4 (37)
where o} = (filM], g)I¥hT = %ag’;{” L (k=0.1.2...).and g}’ = g1 (1) = @1 0]
=Al

(1) One-fold generalized DT

The one-fold generalized DT of Eq. (1) is the same as the one-fold classical DT. The gauge
transformation

Th[1] = Al — $:[0],

! (mfl 012 + 371211012 (M—AT)fl[O]gl[O]*> a8)
LAT0112 + 12110112 \ (A1 — A9 f1l01*g1[0] AF[AL011% + A1lgi[011* )

and the one-fold generalized DT

2 (A — A7) f1[0]g1[0T*
[1] = Ty[11¢[0], u[1] = u[0] — 2, | . 39)
v L= Y LA + 11101 (

S110] =

(2) Two-fold generalized DT

From the classical DT (7), we see that Ti[1]],—;,1+.%1(A1 + €) is a solution of Lax pair (2)
Ti[1la=; +s %1 (A1+€) - Nl o1 M te)
——— Then lim ———1—————is

& e—0 &

at A = Ay + ¢ and u = u[1], and so is
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a solL;ti[?]rll of Lax(kpair)(Z) at A = Ay and u = u[l]. We write ¢1[1] = (f1[1], g1[1DT =
lim 1 H=ny +ep1 A1+
&

, and can calculate that
£—0

Ny o1 +6) L Tl e @110 + g1 e + )

lim
e—0 I e—0 &
iy (T, +eD @101+ 91 e+
- £—0 &
i T, 21101 4+ @001+ Til1 g 91 De + -
o e—0 I
= 1[0] + Ti[1]];—5, ¢!, (40)

where T1[1]];=,,#1[0] = 0. By means of Egs. (14) and (15), we get the gauge transformation
N[2] = A1 — Si[1],

Sl[l]:1<M|f‘[”'2“?|gﬂlllz G AL )
|f1[1]|2+|81[1]|2 (A1 = A f1l1]*g1[1] )‘Tlfl[l]|2+)»1|g1[1]|2 .

Combining with Egs. (16) and (39), we find the two-fold generalized DT
v[2] = Th[2]lp[1] = T1[2]1T1[1]e[0],

2 (=25 Al
2] = 2
w2l =ulll= \ﬁ |f1[1]|2+lg1[1]|2

M —=aD Al — Heli —1]
=ul[0] —2 .
! Z Al — UP+ g1l — 117

(42)
j=1

(3) Three-fold generalized DT

Similarly, we see that (T1[2]71[1]) =3, +.®1(A1+¢€) isasolution of Lax pair (2) at A = A;+¢

. (TIRITD)— A+ . (M2TD s A+
and u = u[2], and so is (i ])‘8;1”%( %) Then lim 20 ])lkazlﬂwl( AR

e—0
solution of Lax pair (2) at A = A; and u = u[2]. We write ¢1[2] = (f1[2], g1[2])T =
(MR2IT1ND =3, +e1 (R1+€)

lin}) p , and can calculate that
£—
lim (M R2IT D [=p 4ep1 (A1 + €)
e—0 82
i TRITDL 1 @110] + 01T + 97 -
- £—0 62
i (021 + DT, + D@01 + 01 + 97 - )
- g—0 82
= @1[0] + (T112] + 101D ey, o2 + (2T mp, 8, (43)

where Ti[1]];—;,¢1[0] = 0 and Ti[2]1;—y, (¢1[0] + Ti[11[=, @) = Ti[211525, 01 (1] =
0. Then we have the gauge transformation

B3l =l — 512,

1 A1|f1[2]|2+x*|g1[2]|2 (A=A fil2lgi[21* )
SiI2l=———— . (44
2] |f1[2]|2+|g1[2]|2( O =D fil2lFgi2] A%1fil2 |2+A1|g1[ 112 “44)
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and the three-fold generalized DT

¢[3] = T1[3le[2] = T1[31T1[2]T1[1]¢[O0],

;1 = 2D AR 21
LARIP + |gi1211

o O = AN AL — gl — 1]

ul3] = ul2] -2

XN m

=ul0] -2 |—i - - . (45)
= AL =1+l - 1P
(4) N-fold generalized DT
—1]-T 21T [(1])];—
Continuing the above process, we see that lirr}) IVl JZI,\,I,JI)“_MHW(Mﬂ) is a solu-
£—

tion of Lax pair (2) at A = Ay + & and u = u[N — 1]. We write ¢1[N — 1] =

Ti[N=11--Ti [21T1 [1])]5— A
(AAIN =11, g1[N — 1DT = lin%) V=TTl ]SIN[_]I)‘A"\‘“%( e and can calculate that
E—>

lim (T[N = 1]--- W [2ITA (1D .=, 4291 (A1 + &)
e—0 eN-1

N—-1
= ¢1[0] + (Z Tl[k])

k=1

A+ > numnik ol

A=A 1<k<I<N-1

A=A

+ S nmnmnk || o+
l<k<l<m<N-1 —y

+ (NN = T[N = 2] T[], 01" 1. (46)
Then the gauge transformation

Ti[N1= Al — $i[N — 1],
1
T AIN — 112+ [g1[N — 112
(Allfl[N — 12+ AfgiIN = 1117 (k1 — A5 AAIN = g1 [N — 1] )
(M = ADAIN = 1[N — 11 A AN = 07 + Algi[N = 1112 )
(47)

Si[N —1]

and the N-fold generalized DT

¢[N1=T[Nlp[N — 1] = Ti[N]ITi[N —1]--- Ti[1]¢[O0],

u[N]:u[N—u—z\Fi(M DA UiV — 1]
Y AN = 1P+ [N — 1]

N " Cokrs
:u[o]_z\gz(m—mﬁu gty — 1] )

LA - P gl - P

have been established. O
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(a) (b) () (d)

Fig.1 Parameters are « = 0, 8 = sint, y = 2,8 = 01in Eqgs. (51) and (53)

Multisoliton Solutions

In order to obtain the multisoliton solutions for Eq. (1), we start from the seed solution
u[0] = 0. Substituting #[0] = 0 into Lax pair (2), we get

N

—4iBA3 —2iarr + L6 0

Through direct calculation, the solution ¢1[0] = (f1[0], g1 [ODT of Lax pair (49) at A = X
is

£i10] = o ihx—4ir] fﬂdt—ZiA%fadH—%fédt,

¢1[0] = piMxH4iA] [ pdi42i0] [adi—5 [8di (50)

From Eq. (20), if we take A1 = 1 + 2i, we find the one-soliton solution

2 fil0]g1[0]*
m=8/—-—. (28]
! V7 1AI01P + 1g110]7

The solution 2[0] = (f>[0], g2[0])7 of Lax pair (49) at A = A, is
£o[0] = e—irax—4i3 [ pdi=2i33 [ adi+ [ sdr
@2[0] = efP2x+4ii3 [ pdi+2003 [ adi—3 [ 8dt, .

Substituting Eqs. (22) and (52) into (25) and taking A» = 2 + 3i, we get the two-soliton

solution
:S\F fil01ei (0 2+12\F Al 5
Y 1A1017 + 1g1[0]] Y 1A0P + g 01|

Next, we will discuss the evolutions of the soliton solutions and show the relationship between
solitons and the group dispersion velocity «, third order dispersion 8 and the amplification
or absorption coefficient 4.

In Figs. 1,2, 3,4, 5, 6 and 7, (a) and (b) represent three- and two- dimensional plots of
one-soliton solution depicted by Eq. (51), respectively. (c) and (d) represent three- and two-
dimensional plots of two-soliton solution depicted by Eq. (53), respectively.
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(a) (b) () (d)

Fig.3 Parameters are« =0, 8 = t2, y =2,8 =0inEqgs. (51) and (53)

Fig.5 Parametersarea =¢’, 8 =0,y = 2,8 =t in Egs. (51) and (53)

In Fig. 1, the soliton structure oscillates periodically because third order dispersion coef-
ficient B is a trigonometric function. In Fig.2, the image of the soliton solution has an
upper convex shape and converges at x = 0 because third order dispersion coefficient j
is an exponential function. In Fig. 3, the soliton with variable propagation velocities illus-
trates the non-travelling-wave characteristics because third order dispersion coefficient 8
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Fig.7 Parameters are « = sint, B =1,y =2,8 = ¢! in Eqgs. (51) and (53)

is of parabolic-type. In Figs. 1c, 2c and 3c, the head-on interactions form a peak at each
interaction region between the two solitons, respectively. In Figs.4, 5 and 6, we can see that
the image of the soliton solutions are related to the characteristics of the group dispersion
velocity coefficient . In Fig. 7, the soliton image is affected by several nonzero parameters
including the group dispersion velocity coefficient «, third order dispersion coefficientg,
self-steepening coefficienty, and amplification or absorption coefficient §.

Rogue Wave Solutions

In this section, we will derive the rogue wave solutions for Eq. (1). we start with the seed
solution u[0] = ¢! / @Oy +3®)dt By combining it with Eqs. (39) and (42), we can describe
one-rogue wave solution and two-rogue wave solution as follows

. 2 fil0lgi [0
(1] = i [(ay+8)dr _ 4\/7’ (54)
M=e Y 111017 + |g11012

u[z]zeif<ay+s>dt_4\f A0l (01 _4\/? Al
Y IAIZ+ a0\ 7 AP + gl

here we take A = —i.

Next, we will use an example to demonstrate the process. When we take « = ¢, =
0.5,y = 2,8 = 3, we can obtain u[0] = (2430 Assuming ¢ (—i + ¢) is a solution of
Lax pair (2) at A = —i + ¢ and u = u[0], with the aid of Eq. (37), we can find ¢1[0] =
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(a) (b) (c) (d)

Fig.8 Parametersare « =1¢, 8 = 0.5,y = 2,8 = 3 in Eqgs. (54) and (55)

(1101, g1 [ODT with
FI0] = (=2 + 20)e2 "+ (2 4 31 — x),
g1[0] = (=2 + 20)e~ 21D (2 4 31 — x — 1), (56)

From Eq. (40), we find ¢[1] = (f1[1], gl[l])T with

2 1

A == 8 — e 2 1 1
+ 415 4+ 2521° — 2281*x + 7263 x% — 81%x + 2041* — 36013 x + 204172
— 48tx> 4 4x* — 8413 + 1081%x — 361x2 + 4x> — 631> + 24tx + 33t
—3x 4+ 4ir® + 24it7 — 8itOx + 4it® + 180ir> — 204it*x + 72i3 x>
— 8it?x> — 420it* + 504it3x — 228it%x% + 48itx> — 4ix* + 132it3
—108i1%x + 36itx? — 4ix> + 81ir> — 24itx — 33it + 3ix),

2 1

324 + 1812 — 12¢tx +2x2 — 61 +2x + 1

— 1265 + 1801 — 2041*x + 7263 x% — 82x3 + 2161* — 36013 x + 2041%x>

— 48tx3 + 4x* —3001% 4 3241%x — 108tx2 + 12x7 + 331> — 481x + 12x7

— 27t +9x + 3 + 4ir® +24it7 — 8irx — 12i1® 4 252ir> — 228ir*x
+72i3x? — 8it?x? — 432it* 4 504ir°x — 228ir* x> + 48itx> — 4ix*
+348i1> — 324ir%x + 108irx? — 12ix> — 391> + 48irx — 12ix> + 27it
—9ix —3i). (57)

e (_4s8 4 2417 — 81%x

gill] eI+ 448 4 2447 — 810

From Egs. (54) and (55), the one-rouge wave solution and two-rogue wave solution of
a=1t,8=0.5y=2,8§ =3 are obtained.

Then we will discuss the evolutions of the rogue wave solutions and show the relationship
between rogue waves and the group dispersion velocity «, third order dispersion 8 and the
amplification or absorption coefficient §. In Figs. 8, 9 and 10, (a) and (b) represent three-
and two- dimensional plots of one-rogue wave solution depicted by Eq. (54) respectively.
(c) and (d) represent three- and two- dimensional plots of two-rogue wave solution depicted
by Eq. (55) respectively. Figure 11 show the evolutions of one-rogue wave solution with
different values of «, 8.

In Figs.8, 9 and 10, we take the group dispersion velocity coefficient «, third order
dispersion coefficient, amplification or absorption coefficient § as  respectively, and observe
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(a) a=t,=05 (b) a=t,p5=02 (c)a=1t3,8=0.5

Fig. 11 Evolutions of the one-rogue wave solution represented by Eq. (54) withy =2,§ =3

the evolutions of the rogue wave solutions. In Fig. 11a, b, the one-rogue wave increases in
amplitude and rotates counterclockwise as the third-order dispersion coefficient B increases.
In Fig. 11a, c, the shape and width of the one-rogue wave change as the group dispersion
velocity coefficient « take different functions.

Conclusion

In summary, we have studied the generalized variable coefficients Hirota equation Eq. (1)
and derived its Lax pair and DTs. Specifically, we have constructed a classical DT and got
multisoliton solutions. Furthermore, rogue wave solutions also have been proposed explicitly
by generalized DT. Finally, we have analyzed the dynamical features of these exact solutions.
We believe that the results could be valuable in solving the inhomogeneity problems in optical
fibers and plasma.
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