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Abstract
Predator–prey models are regarded as the structural blocks of the bio- and ecosystems as
biomasses are headed by their resource masses. During the current investigation, we examine
the impact of a contagious disease on the growth of ecological varieties. We study a non-
integer-order predator–prey system by applying the Atangana–Baleanu–Caputo derivative.
We use an effective techniqueto get the numerical solutions and to discover the system’s
dynamical behavior using different values of fractional order which indicates that how how
the proposed scheme is suitable to solve the dynamical systems containing the derivatives
with non-singular kernels. Moreover, the existence of the results is given utilizing the fixed-
point theorem. Also, diagrams via numerical simulations of the approximate solutions are
shown in different dimensions.

Keywords Mittag–Leffler kernel · Atangana–Baleanu derivative · Non-singular kernel ·
Predator–prey system · Fixed point analysis

Introduction

The evolution of the qualitative investigation of ODEs is arising to analyze various enigmas in
mathematical biology and related areas. Designing the model to the community dynamics of
a prey–predator problem is an example of the significant and impressive aim in mathematical
biology, that has undergone comprehensive reflection by many scholars [1–6]. During real
universe, several classes of prey and predator classes possess a living past which is formed of
at least couple steps: immature and mature, and every step possesses various behavioral char-
acteristics. Therefore, some activities of step-building prey–predator systems are presented
in many articles in the literature [7–12]. Contagious diseases occur if infected external bodies
penetrate into the individual body.
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Table 1 Vital parameters involved in the eco-epidemiological system

Parameters Description

ξ1 Reproduction number of the prey population

(ξ2 + ξ3u3(t))u3(t)u1(t)

&(ξ2 + ξ3u3(t))u3(t)u2(t) Hunting cooperation functional

ξ4 Transmission rate of the prey population (infection rate)

ξ5 Death rate of the prey population

ξ6 Conversion rate of prey biomass into predator biomass

ξ7 Natural mortality of the predator population
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Fig. 1 Numerical simulations for u1(0) = 0.01, u2(0) = 1.1 and u3(0) = 0.05 for ξ1 = 1.5, ξ2 = 1.5, ξ3 =
0.5, ξ4 = 0.5, ξ5 = 0.5, ξ6 = 0.5 and ξ7 = 0.5

The mentioned pathogens could be bacteria, microorganisms, and parasites. These bodies
are transferred by virus from a different individual, creatures, polluted food, or disposal to
any of the environmental constituents which are infected by any of the mentioned organ-
isms. These diseases have several signs in body, containing raised one warmth and anxiety,
moreover to additional traits which vary regarding the position of contamination, nature,
and hardness of the infection. It is permissible to possess a disease that produces moderate
signs, and hence it does not require to be solved. Indeed, there are severe situations that may
affect mortality. Also, they probably influence the population scale of several kinds. In a
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Fig. 2 Numerical simulations for u1(0) = 0.01, u2(0) = 1.1 and u3(0) = 0.05 for ξ1 = 1.5, ξ2 = 1.5, ξ3 =
0.5, ξ4 = 0.5, ξ5 = 0.5, ξ6 = 0.5 and ξ7 = 0.5

Fig. 3 Chaotic behaviour of
solutions for
u1(0) = 0.01, u2(0) = 1.1 and
u3(0) = 0.05 for
ξ1 = 1.5, ξ2 = 1.5, ξ3 =
0.5, ξ4 = 0.5, ξ5 = 0.5, ξ6 = 0.5
and ξ7 = 0.5
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Fig. 4 Numerical simulations for u1(0) = 0.01, u2(0) = 1.1 and u3(0) = 0.05 for ξ1 = 1.5, ξ2 = 0.5, ξ3 =
0.5, ξ4 = 0.5, ξ5 = 0.5, ξ6 = 0.5 and ξ7 = 0.5

more dangerous situation, some species probably indeed become dead because of some fatal
infections that occurred in some extremely rational populations. Mathematical systems for
foretelling the progression of varieties of such pathogen have been utilized in an escalating
way in the latest decades. The biological species are most susceptible to any disease that
can affect the development of species. We study the predator–prey interplay. Such disease
is able to influence the power of predators and performance of shooting, which places some
predators at threat of extirpation. During the literature review, several investigations were
examined on the predator–prey interplay in bearing the contagious infections [12–16].

On the other hand, there are various approaches that the predators examine for reaching
prosperous hunting. Predator assistance is an efficient approach that several predators seek
a unique prey. Such an approach can be so beneficial in degrading the hunting failure scale.
Numerous anglers perform in the aforementioned approach. For instance, some animals such
as lions, and dogs are distinguished for the great ability scale in this manner. Numerical solu-
tion of two- sided space-fractional wave equation using finite difference method in [17].
Modelling of such particular performance of predator was firstly formed in [18]. wherein
an uncomplicated pattern was employed for representing such collaboration. There were
studies that investigated such performance in the predator–prey interplay [19–27]. Regard-
ing the achieved outcomes in [28], time-fractional derivative possesses wide applicability
for explaining various real-life conditions, that is recognized with memory impact for the
dynamical model; memory speed is named for non-integer order, memory function of kernel
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Fig. 5 Numerical simulations for u1(0) = 0.01, u2(0) = 1.1 and u3(0) = 0.05 for ξ1 = 1.5, ξ2 = 0.5, ξ3 =
0.5, ξ4 = 0.5, ξ5 = 0.5, ξ6 = 0.5 and ξ7 = 0.5

Fig. 6 Chaotic behaviour of
solutions for
u1(0) = 0.01, u2(0) = 1.1 and
u3(0) = 0.05 for
ξ1 = 1.5, ξ2 = 0.5, ξ3 =
0.5, ξ4 = 0.5, ξ5 = 0.5, ξ6 = 0.5
and ξ7 = 0.5
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of non-integer derivative. The mentioned derivative Atangana–Baleanu–Caputo (ABC) is
applied to model several phenomena [29–32]. More studies about the applications of frac-
tional operators can be found in [33–37]. Regarding the mentioned inclinations, we examine
the eco-epidemiological system given below:
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Fig. 7 Numerical simulations for u1(0) = 0.01, u2(0) = 1.1 and u3(0) = 0.05 for ξ1 = 3.5, ξ2 = 3.05, ξ3 =
0.8, ξ4 = 2.5, ξ5 = 0.15, ξ6 = 0.5 and ξ7 = 0.3

du1
dt

= f1(u1, u2, u3) = ξ1(u1(t) + u2(t)) − (ξ2 + ξ3u3(t))u3(t)u1(t)

− ξ4u1(t)u2(t) − ξ5u1(t),

du2
dt

= f2(u1, u2, u3) = ξ4u1(t)u2(t) − (ξ2 + ξ3u3(t))u3(t)u2(t) − ξ5u2(t),

du3
dt

= f3(u1, u2, u3) = ξ6(ξ2 + ξ3u3(t))u3(t)(u1(t) + u2(t)) − ξ7u3(t),

(1)

where it may be noted that the state variables u1(t), u2(t), and u3(t) respectively stand for
densities of susceptible prey, infected prey, and the predator populations. Regarding initial
conditions (ICs), we have u1(0) = u1,0(t), u2(0) = u2,0(t) and u3(0) = u3,0(t). Moreover,
one can see that there are 7 parameters playing the vital role for the dynamics of the model’s
behavior. Description of these parameters is detailed in the Table 1.

The next section is selected to implement some fundamental definitions to comprehend
remaining analysis carried out in other forthcoming sections.

Essential Definitions

Definition 2.1 Assume that X ∈ H1(a, b), a < b and σ ∈ [0, 1]. Therefore, the Atangana-
Baleanu derivative for X in the Caputo structure is written as
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Fig. 8 Numerical simulations for u1(0) = 0.01, u2(0) = 1.1 and u3(0) = 0.05 for ξ1 = 3.5, ξ2 = 3.05, ξ3 =
0.8, ξ4 = 2.5, ξ5 = 0.15, ξ6 = 0.5 and ξ7 = 0.3

Fig. 9 Chaotic behaviour of
solutions for
u1(0) = 0.01, u2(0) = 1.1 and
u3(0) = 0.05 for ξ1 = 3.5, ξ2 =
3.05, ξ3 = 0.8, ξ4 = 2.5, ξ5 =
0.15, ξ6 = 0.5 and ξ7 = 0.3
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ABCDσ X(t) = W (σ )

1 − σ

∫ t

a
X ′(y)Eσ

[
−σ

(t − ζ )σ

1 − σ

]
dζ, (2)

where Eσ is known as the Mittag–Leffler function explained in [33, 34].

Eσ (z) =
∞∑
n=0

zn

�(nσ + 1)
,
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Fig. 10 Numerical simulations for u1(0) = 0.01, u2(0) = 1.1 and u3(0) = 0.05 for ξ1 = 0.55, ξ2 =
0.5, ξ3 = 3.5, ξ4 = 0.5, ξ5 = 0.5, ξ6 = 0.5 and ξ7 = 1.5

Theorem 2.2 We take into consideration the differential equation containing the Atangana-
Baleanu differential operator [35]:

ABC
0Dσ

t f (t) = u(t). (3)

The foregoing equation possesses a unique answer if the subsequent theorem is performed

f (t) = 1 − σ

W (σ )
u(t) + σ

W (σ )�(p)

∫ t

0
u(ζ )(t − ζ )σ−1dζ,

The common time-fractional order of the differential equation described in (7) is a problem
of the form

Dσ X(t) = F(X(t), t), σ ∈ (0, 1), (4)

Analysis by Non-integer Order

We suppose that B = B(L) × B(L), which B(L) named continuous Branch function on
interval L containing

‖u1, u2, u3‖ = ‖u1‖ + ‖u2‖ + ‖u3‖‖,

123



Int. J. Appl. Comput. Math (2023) 9 :43 Page 9 of 26 43

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

=0.95
=0.96
=0.97
=0.98

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

=0.95
=0.96
=0.97
=0.98

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

u2(t)

u 3
(t
)

u 3
(t
)

u 2
(t
)

u1(t) u1(t)

Fig. 11 Numerical simulations for u1(0) = 0.01, u2(0) = 1.1 and u3(0) = 0.05 for ξ1 = 0.55, ξ2 =
0.5, ξ3 = 3.5, ξ4 = 0.5, ξ5 = 0.5, ξ6 = 0.5 and ξ7 = 1.5

Fig. 12 Chaotic behaviour of
solutions for
u1(0) = 0.01, u2(0) = 1.1 and
u3(0) = 0.05 for
ξ1 = 0.55, ξ2 = 0.5, ξ3 =
3.5, ξ4 = 0.5, ξ5 = 0.5, ξ6 = 0.5
and ξ7 = 1.5
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Fig. 13 Numerical simulations for u1(0) = 0.01, u2(0) = 1.1 and u3(0) = 0.05 for ξ1 = 0.75, ξ2 =
0.5, ξ3 = 3.5, ξ4 = 0.5, ξ5 = 0.5, ξ6 = 0.5 and ξ7 = 1.5

which ‖u1‖ = sup {|u1(t) : t ∈ L}, ‖u2‖ = sup {|u2(t) : t ∈ L} and ‖u3‖ = sup {|u3(t) : t
∈ L}, Following, we develop the problem (1) by interchanging the traditional derivative by
ABC one:

ABC
0Dσ

t u1(t) = ξ1(u1(t) + u2(t)) − (ξ2 + ξ3u3)u3(t)u1(t) − ξ4u1(t)u2(t) − ξ5u1(t),
ABC

0Dσ
t u2(t) = ξ4u1(t)u2(t) − (ξ2 + ξ3u3)u3(t)u2(t),

ABC
0Dσ

t u3(t) = ξ5(ξ2 + ξ3u3(t))u3(t)(u1(t) + u2(t)) − ξ5,

(5)

Regarding ICs

u1(0) = u1,0(t), u2(0) = u2,0(t), u3(0) = u3,0(t), (6)
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Fig. 14 Numerical simulations for u1(0) = 0.01, u2(0) = 1.1 and u3(0) = 0.05 for ξ1 = 0.75, ξ2 =
0.5, ξ3 = 3.5, ξ4 = 0.5, ξ5 = 0.5, ξ6 = 0.5 and ξ7 = 1.5

We have

u1(t) − u1(0) = 1 − σ

W (σ )
[ξ1(u1(t) + u2(t)) − (ξ2 + ξ3u3)u3(t)u1(t) − ξ4u1(t)u2(t) − ξ5u1(t)]

+ σ

W (σ )�(σ)

∫ t

0
(t − ζ )σ−1 × [ξ1(u1(t) + u2(t)) − (ξ2 + ξ3u3)u3(t)u1(t)

−ξ4u1(t)u2(t) − ξ5u1(t)] dζ,

u2(t) − u2(0) = 1 − σ

W (σ )
[ξ4u1(t)u2(t) − (ξ2 + ξ3u3)u3(t)u2(t)]

+ σ

W (σ )�(σ)

∫ t

0
(t − ζ )σ−1 × [ξ4u1(t)u2(t) − (ξ2 + ξ3u3)u3(t)u2(t)] dζ,

u3(t) − u3(0) = 1 − σ

W (σ )
[ξ5(ξ2 + ξ3u3(t))u3(t)(u1(t) + u2(t)) − ξ5]

+ σ

W (σ )�(σ)

∫ t

0
(t − ζ )σ−1 × [ξ6(ξ2 + ξ3u3(t))u3(t)(u1(t) + u2(t)) − ξ7u3(t)] dζ, (7)
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Fig. 15 Chaotic behaviour of
solutions for
u1(0) = 0.01, u2(0) = 1.1 and
u3(0) = 0.05 for
ξ1 = 0.75, ξ2 = 0.5, ξ3 =
3.5, ξ4 = 0.5, ξ5 = 0.5, ξ6 = 0.5
and ξ7 = 1.5
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Now, we take

B1(u1, t) = ξ1(u1(t) + u2(t)) − (ξ2 + ξ3u3)u3(t)u1(t) − ξ4u1(t)u2(t) − ξ5u1(t)

B2(u2, t) = [ξ4u1(t)u2(t) − (ξ2 + ξ3u3)u3(t)u2(t)

B3(u3, t) = ξ6(ξ2 + ξ3u3(t))u3(t)(u1(t) + u2(t)) − ξ7u3(t)
(8)

Beside, we provide the subsequent result.

Lemma 3.1 The kernels Bi (ui , t), for i = 1, 2, 3 hold the Lipschitz condition for 0 ≤
Bi (ui , t) < 1, i = 1, 2, 3.

Proof Opening by i = 2 we own B2(u1, t) = ξ4u1(t)u2(t) − (ξ2 + ξ3u3)u3(t)u2(t). Let u1
and u∗

1, the we own

‖B2(u1, t) − B2(u
∗
1, t)‖ = ‖ − ξ4

{
u2(t) − u∗

2(t)
} ‖

≤ ‖ξ4‖‖u2(t) − u∗
2(t)‖ ≤ G2‖u2(t) − u∗

2(t)‖ (9)

which G2 = ξ4. Take m1 = maxt∈L ‖u1(t)‖, m2 = maxt∈L ‖u2(t)‖ and m3 =
maxt∈L ‖u3(t)‖ be limited functions, so

‖B1(u2, t) − B1(u
∗
2, t)‖ ≤ G2‖u2(t) − u∗

2(t)‖

123



Int. J. Appl. Comput. Math (2023) 9 :43 Page 13 of 26 43

0 50 100 150 200 250

t

-2

-1

0

1

2

3

4

5

6

7

8

=0.95
=0.96
=0.97
=0.98

0 50 100 150 200 250

t

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

=0.95
=0.96
=0.97
=0.98

0 50 100 150 200 250

t

0

1

2

3

4

5

6

=0.95
=0.96
=0.97
=0.98

u 3
(t
)

u 1
(t
)

u 2
(t
)

Fig. 16 Numerical simulations for u1(0) = 0.01, u2(0) = 1.1 and u3(0) = 0.05 for ξ1 = 0.95, ξ2 =
0.5, ξ3 = 3.5, ξ4 = 0.5, ξ5 = 0.5, ξ6 = 0.5 and ξ7 = 1.5

resembling phrases for components xi , for i = 1, 3 to get ‖Bi (ui , t) − Bi (u∗
i , t)‖ ≤

Gi‖ui (t), u∗
i (t)‖, for i = 1, 3. Hence, the Lipschitz condition works for B2, and contraction

works for 0 ≤ G2 < 1. Using the considered kernels (7) gives

u1(t) = u1(0) + 1 − σ

W (σ )
B1(u1, t) + σ

W (σ )�(σ )

∫ t

0
(t − ζ )σ−1B1(ζ, u1)dζ,

u2(t) = u2(0) + 1 − σ

W (σ )
B2(u2, t) + σ

W (σ )�(σ )

∫ t

0
(t − ζ )σ−1B2(ζ, u2)dζ,

u3(t) = u3(0) + 1 − σ

W (σ )
B3(u3, t) + σ

W (σ )�(σ )

∫ t

0
(t − ζ )σ−1B3(ζ, u3)dζ,

(10)
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Fig. 17 Numerical simulations for u1(0) = 0.01, u2(0) = 1.1 and u3(0) = 0.05 for ξ1 = 0.95, ξ2 =
0.5, ξ3 = 3.5, ξ4 = 0.5, ξ5 = 0.5, ξ6 = 0.5 and ξ7 = 1.5

and

u1,n(t) = 1 − σ

W (σ )
B1(u1,n−1, t) + σ

W (σ )�(σ )

∫ t

0
(t − ζ )σ−1B1(ζ, u1,n−1)dζ,

u2,n(t) = 1 − σ

W (σ )
B2(u2.n−1, t) + σ

W (σ )�(σ )

∫ t

0
(t − ζ )σ−1B2(ζ, u2,n−1)dζ,

u3,n(t) = 1 − σ

W (σ )
B3(u3,n−1, t) + σ

W (σ )�(σ )

∫ t

0
(t − ζ )σ−1B3(ζ, u3, n − 1)dζ,

(11)

Then, we have

Z1n(t) ≡ u1,n(t) − u1,n−1(t) = 1 − σ

W (σ )

[B1(u1,n−1, t) − B1(u1,n−2, t)
]

+ σ

W (σ )�(σ)

∫ t

0
(t − ζ )σ−1 [B1(ζ, u1,n−1) − B1(ζ, u1,n−2)

]
dζ,

Z2n(t) ≡ u2,n(t) − u2,n−1(t) = 1 − σ

W (σ )

[B2(u2,n−1, t) − B2(u2,n−2, t)
]
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Fig. 18 Chaotic behaviour of
solutions for
u1(0) = 0.01, u2(0) = 1.1 and
u3(0) = 0.05 for
ξ1 = 0.95, ξ2 = 0.5, ξ3 =
3.5, ξ4 = 0.5, ξ5 = 0.5, ξ6 = 0.5
and ξ7 = 1.5
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+ σ

W (σ )�(σ)

∫ t

0
(t − ζ )σ−1 [B2(ζ, u2,n−1) − B2(ζ, u2,n−2)

]
dζ,

Z3n(t) ≡ u3,n(t) − u3,n−1(t) = 1 − σ

W (σ )

[B3(u3,n−1, t) − B3(u3,n−2, t)
]

+ σ

W (σ )�(σ)

∫ t

0
(t − ζ )σ−1 [B3(ζ, u3,n−1) − B3(ζ, u3,n−2)

]
dζ,

(12)

we state that

ui,n =
n∑
j=1

Zi j (t), i = 1, 2, 3.

Now, we take (12) and use the norm to have

‖Z1n‖ = ‖u1,n(t) − u1,n−1(t)‖ ≤ 1 − σ

W (σ )
‖B1(u1,n−1, t) − B1(u1,n−2, t)‖ + p

W (σ )�(σ )

× ‖
∫ t

0
(t − ζ )σ−1 [B1(u1,n−1, t) − B1(u1,n−2, t)

]
dζ‖.

(13)

To satisfy the Lipschitz condition, we have

‖u1,n(t) − u1,n−1(t)‖ ≤ 1 − σ

W (σ )
χ1‖u1,n−1 − u1,n−2‖

+ p

W (σ )�(σ )
× χ1

∫ t

0
(t − ζ )σ−1‖u1,n−1 − u1,n−2‖dζ,

(14)

and

‖Z1n‖ ≤ 1 − σ

W (σ )
χ1‖Z1n−1‖ + σ

W (σ )�(σ )
× χ1

∫ t

0
(t − ζ )σ−1‖Z1n−1(ζ )‖dζ, (15)
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Fig. 19 Numerical simulations for u1(0) = 0.01, u2(0) = 1.1 and u3(0) = 0.05 for ξ1 = 1.2, ξ2 = 0.5, ξ3 =
3.5, ξ4 = 0.05, ξ5 = 0.5, ξ6 = 0.5 and ξ7 = 1.5

Equivalent expressions guard for rest elements:

‖Zin‖ ≤ 1 − σ

W (σ )
χ1‖Zin−1‖ + σ

W (σ )�(σ )
× χ1

∫ t

0
(t − ζ )σ−1‖Zin−1(ζ )‖dζ, i = 2, 3,

(16)

We take solutions X1(t), X2(t) and X3(t) exist for model (5) that indicates

‖u1(t) − X1(t)‖ ≤ 1 − σ

W (σ )
[B1(u1, t) − B1(X1, t)]

+ σ

W (σ )�(σ )

∫ t

0
(t − ζ )σ−1 [B1(u1, t) − B1(X1, t)] dζ

≤ 1 − σ

W (σ )
‖B1(u1, t) − B1(X1, t)‖

+ σ

W (σ )�(σ )

∫ t

0
(t − ζ )σ−1‖[B1(u1, t) − B1(X1, t)‖dζ,

(17)
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Fig. 20 Numerical simulations for u1(0) = 0.01, u2(0) = 1.1 and u3(0) = 0.05 for ξ1 = 1.2, ξ2 = 0.5, ξ3 =
3.5, ξ4 = 0.05, ξ5 = 0.5, ξ6 = 0.5 and ξ7 = 1.5

By regarding traits of the Lipschitz condition yields in

‖u1(t) − X1(t)‖ ≤ 1 − σ

W (σ )
χ1‖u1(t) − X1(t)‖ + χ1tσ

W (σ )�(σ )
‖u1(t) − X1(t)‖ (18)

which results

‖u1(t) − X1(t)‖
[
1 − χ1(1 − σ)

W (σ )
+ χ1tσ

W (σ )�(σ )

]
≤ 0 (19)

with ‖u1(t) − X1(t)‖ = 0, it indicates u1(t) = X1(t). Alike phrases exist for segments
ui (t), i = 2, 3.Consequently, the fractional problem (5) owns a unique answer. 	


Numerical Scheme

Now, we will apply the numerical technique to resolve the problem for simulations. The
method has the following form:
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Fig. 21 Chaotic behaviour of
solutions for
u1(0) = 0.01, u2(0) = 1.1 and
u3(0) = 0.05 for ξ1 = 1.2, ξ2 =
0.5, ξ3 = 3.5, ξ4 = 0.05, ξ5 =
0.5, ξ6 = 0.5 and ξ7 = 1.5
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un+1 = u0 + 1 − σ

W (σ )
f (u(tn), tn) + σ

W (σ )

n∑
q=0

{
hσ f (uq , tq)

�(σ + 2)
an

−hσ f (uq−1, tq−1)

�(σ + 2)
bn

}
+ Eσ

n ,

(20)

where an = (n + 1 − q)σ (n − q + 2 + σ) − (n − q)σ (n − q + 2 + 2σ) and bn =
(n + 1 − q)σ+1 − (n − 1)σ (n − q + 1 + σ) and the remaining term E p

n is expressed by

Eσ
n = σ

W (σ )�(σ )

n∑
q=0

∫ tq−1

tq

(ζ − tq)(ζ − tq−1)

2

∂2

∂ζ 2 × [ f (u(ζ ), ζ )]ζ=λζ
(tn+1 − ζ )σ−1dζ,

(21)

So, exercising the kernels, Eq. (10) changes to the following

u1(t) = u1(0) + 1 − σ

W (σ )
B1(u1(t), t) + σ

W (σ )�(σ )

∫ t

0
(t − ζ )σ−1B1(ζ, u1(ζ ))dζ,

u2(t) = u2(0) + 1 − σ

W (σ )
B2(u2(t), t) + σ

W (σ )�(σ )

∫ t

0
(t − ζ )σ−1B2(ζ, u2(ζ ))dζ,

u3(t) = u3(0) + 1 − σ

W (σ )
B3(u3(t), t) + σ

W (σ )�(σ )

∫ t

0
(t − ζ )σ−1B3(ζ, u3(ζ ))dζ.

(22)
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Fig. 22 Numerical simulations for u1(0) = 0.01, u2(0) = 1.1 and u3(0) = 0.05 for ξ1 = 3.5, ξ2 = 1.5, ξ3 =
3.5, ξ4 = 0.05, ξ5 = 0.5, ξ6 = 0.5 and ξ7 = 1.5

Thus, exercising the technique given in (20) at t = tn+1, we own

u1,n+1 = u1,0 + 1 − σ

W (σ )
B1(u1(tn), tn) + σ

W (σ )

n∑
q=0

{
hσB1(u1,q , tq)

�(σ + 2)
an

−hσB1(u1,q−1, tq−1)

�(σ + 2)
bn

}
+ 1Eσ

n ,

u2,n+1 = u2,0 + 1 − σ

W (σ )
B2(u2(tn), tn) + σ

W (σ )

n∑
q=0

{
hσB2(u2,q , tq)

�(σ + 2)
an

−h pB2(u2,s−1, ts−1)

�(p + 2)
bn

}
+ 2Eσ

n ,

u3,n+1 = u3,0 + 1 − σ

W (σ )
B3(u3(tn), tn) + σ

W (σ )

n∑
q=0

{
hσB3(u3,q , tq)

�(σ + 2)
an

−h pB3(u3,q−1, tq−1)

�(σ + 2)
bn

}
+ 3Eσ

n ,

(23)
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Fig. 23 Numerical simulations for u1(0) = 0.01, u2(0) = 1.1 and u3(0) = 0.05 for ξ1 = 3.5, ξ2 = 1.5, ξ3 =
3.5, ξ4 = 0.05, ξ5 = 0.5, ξ6 = 0.5 and ξ7 = 1.5

by an = (n + 1− q)σ (n − q + 2+ σ) − (n − q)σ (n − q + 2+ 2σ), bn = (n + 1− q)σ+1 −
(n − q)p(n − q + 1 + σ) and i Eσ

n for i = 1, 2, 3 is depicted as

i Eσ
n = σ

W (σ )�(p)

n∑
q=0

∫ tq−1

tq

(ζ − tq)(ζ − tq−1)

2

∂2

∂ζ 2 [Bi (u(ζ ), ζ )]ζ=λζ
(tn+1 − ζ )σ−1dζ,

(24)

Numerical Experiments

Now, we use the proposed numerical scheme [38] as discussed in the above-mentioned
section to get the approximate solutions of the eco-epidemiological system as suggested in the
present study under the novel fractional operator with the name of ABC.We solve the system
for different values of fractional order σ . Figures1, 2 and 3 show the results for different
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Fig. 24 Chaotic behaviour of
solutions for
u1(0) = 0.01, u2(0) = 1.1 and
u3(0) = 0.05 for ξ1 = 3.5, ξ2 =
1.5, ξ3 = 3.5, ξ4 = 0.05, ξ5 =
0.5, ξ6 = 0.5 and ξ7 = 1.5

0
0.08

0.5

1

0.06 2.5

1.5

2

2

0.04 1.5

2.5

10.02
0.5

0 0

u2(t)

u 3
(t
)

u1(t)

values of σ and also for different values of the ICs including u1(0) = 0.01, u2(0) = 1.1
and u3(0) = 0.05 for ξ1 = 1.5, v2 = 1.5, ξ3 = 0.5, ξ4 = 0.5, ξ5 = 0.5, ξ6 = 0.5 and
ξ7 = 0.5. The fractional orders taken for these figures are 0.95, 0.96, 0.97 and 0.98. Indeed,
the Figs. 4, 5 and 6 are dedicated to depict the results for σ values and with ICs given as
u1(0) = 0.01, u2(0) = 1.1 and u3(0) = 0.05 for ξ1 = 1.5, ξ2 = 0.5, ξ3 = 0.5, ξ4 =
0.5, ξ5 = 0.5, ξ6 = 0.5 and ξ7 = 0.5; successfully. Similarly, Figs. 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 and 27 are obtained to show the results for
ξ1, ξ2, ξ3, ξ4, ξ5, ξ6 and ξ7 along with the selected fractional orders for the parameter σ > 0.

In the Fig. 1, each state variable is simulated over considerably large time interval [0, 500]
to understand dynamics of their behaviour. It is observed that the densities of susceptible prey,
and predator populations highly fluctuate under selected ICs and the parameters whereas the
density of the infected prey sharply decrease over a very small time interval and then goes to
vanish as quickly as possible and this situation occurs because susceptible and the predator
population are at greater variation.

If we closely look at the Fig. 2 then we realize that that patterns like limit cycles occur in
the phase portrait forms under different values of σ and the parameters. Some strange chaotic
type behavior is observed in the figure which is not possible to obtain with classical version of
the eco-epidemiological system, that is, when σ = 1. Similarly, Fig. 3 shows 3-dimensional
plot for the underlying systemwherein, once again, chaotic type behavior with predator–prey
limit cycles is observed. This phenomenon is highly obvious in natural situations as well.
Thus, it is said that ABC operator is capable enough to capture the most natural occurrences
in the world.

The Fig. 4 is obtained with a slight variation in the ξ2 parameter that appears in the
hunting cooperation functional as described in the Table 1. By decreasing ξ2 from 1.5 to
0.5 in the Fig. 4, it is observed that the peaks of the fluctuations within the susceptible prey
and predator populations decrease including the peak in the infected prey. However, there
are still limit cycles having varying structures are observed as can be seen in the Figs. 5 (2D
phase-plane diagrams) and 6 (3 dimensional dynamics). While keeping the ICs same and
varying some values of the parameters, we observe drastic change in the dynamics of the
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Fig. 25 Numerical simulations for u1(0) = 0.01, u2(0) = 1.1 and u3(0) = 0.05 for ξ1 = 1.5, ξ2 = 1.5, ξ3 =
0.5, ξ4 = 0.05, ξ5 = 0.5, ξ6 = 0.5 and ξ7 = 0.5

eco-epidemiological system as can be seen in the time series plots in the Fig. 7 wherein one
can note that the not only peak of fluctuations decrease but the infected prey slightly increase
also. One may also note that as value of fractional order σ approaches 1, the fluctuations
increase. Some interesting limit cycles in the form of phase-planes and 3 dimensional plots
are also depicted in the Figs. 8 and 9; respectively.

Looking at the Fig. 10, one can observe that there comes huge change in the behavior of all
three populations when parameters are varied particularly the parameters ξ3 and ξ7 with little
bit high values while ICs and the fractional order σ are still same as considered in previous
figures. Limit cycles as shown in the Fig. 11 are reduced in size and this happens due to the
fact that now there are not many fluctuations in the populations. Similarly, the Fig. 12 refers
the chaotic behavior that lasts for smaller interval of time.

Likewise, upon carrying out numerous other simulations of the eco-epidemiological sys-
tem as suggested in the present study under the novel fractional operator with the name of
ABC, we have obtained interesting dynamics and patterns that were not not encountered with
operators having no memory such as those classical ones also called integer-order deriva-
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Fig. 26 Numerical simulations for u1(0) = 0.01, u2(0) = 1.1 and u3(0) = 0.05 for ξ1 = 1.5, ξ2 = 1.5, ξ3 =
0.5, ξ4 = 0.05, ξ5 = 0.5, ξ6 = 0.5 and ξ7 = 0.5

tives. These other simulations based upon time series, phase-portraits and 3 dimensional
structures can be visualized in the Figs. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26
and 27 wherein different parameters’ values are taken into consideration in order to obtain
the various kinds of behavior for the system via ABC operator.

Conclusion

In this research study, numerical simulations of the Prey–Predator system is investigated
using the ABC operator. We used the theorem of fixed-point to establish the occurrence and
uniqueness of the results of the underlying system. Employing numerical approach, solutions
of the system are produced that depict quite interesting dynamical features not possible to
achieve under the classical approach of differential calculus. To understand the influence of
fractional order σ , numerical investigations are illustrated under engaging various fractional
orders of σ . To explain the chaotic behavior in deep, we have tried various values of the
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Fig. 27 Chaotic behaviour of
solutions for
u1(0) = 0.01, u2(0) = 1.1 and
u3(0) = 0.05 for ξ1 = 1.5, ξ2 =
1.5, ξ3 = 0.5, ξ4 = 0.05, ξ5 =
0.5, ξ6 = 0.5 and ξ7 = 0.5
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involved parameters in the model so that the state variables like susceptible prey, infected
prey, and the predator populations could be visualized under ABC operator with different
values of σ . It may be noted that such detailed analysis under the ABC operator has not been
previously encountered in the existing literature for the eco-epidemiological system. Future
studies would include the analysis of the discussed system with another operator called the
Caputo-Fabrizio operator and some optimal control theory would also be discussed in the
realm of fractional calculus.
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