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Abstract
In this paper, we developed the operational matrices of integration based on the Bernoulli
wavelets and proposed the novel technique known as the Bernoulli wavelet collocation
method (BWCM) for extended boundary conditions of the non-linearMurray equation. Abid-
ing by this method, given equations are converted into a system of algebraic equations. On
solving these algebraic equations that yield desired approximate solution. The obtained out-
come is comparedwith the exact and other numerical solutions in the literature through tables
and graphs. The accuracy of the extended boundary conditioned problem of theMurray equa-
tion is better than the Haar wavelet method. The convergence analysis is discussed through
theorems.

Keywords Murray equation · Collocation method · Functional matrix of integration ·
Bernoulli wavelets · Newton Raphson technique

Introduction

Partial differential equations (PDEs) are used to formulate real-world problems in terms of
solving mathematical equations, and thus help to obtain the solution of physical and other
problems having functions of several variables, such as the fluid flow, propagation of heat or
sound, elasticity, electrodynamics, electrostatics, etc. The thorough study of physical models
is one of the fundamental concerns of PDE development to the present day. PDEs play a
vital role in several areas of mathematics. There are possibly better applications that have
frequently ended up being very progressive for PDEs as an instrument in the advancement
of different areas of mathematics. Many types of PDEs exist in which Reaction–diffusion
(RD) equations are one type of class. RD equations express the way of behaving of an enor-
mous scope of substance frameworks where the dispersion of material rivals the creation of
that material by some types of chemical reactions. RD equations emerge normally in frame-
works comprising numerous synthetic responses, and connecting parts, and are broadly used
to describe design development peculiarities in an assortment of physical, compound, and
organic frameworks. In most recent years, non-linear RD [1, 2] equations have been broadly
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examined and applied in engineering and biological sciences such as the advance wave equa-
tions in genes [3], heat-and-mass transfer equations in Tokamak plasma [4], etc. This study
helps us with the mathematical solutions of non-linear RD modeling the periodic moving
elements of dispersion and non-linear propagation for a populace. for insane, A constructive
method for construction of new exact solutions of nonlinear evolution equations [5], the con-
structive method for construction of non-Lie solutions of nonlinear evolution equations[6],
Nonlinear Diffusion in Population Genetics Combustion and Never Pulse Propagation [7,
8], Soliton solutions for the Fitzhugh-Nagumo equation with the Homotopy analysis method
[9]. The related non-linear RD equation was started by Fisher [3] to portray the engendering
conduct of a virile freak. The non-linear RD equations portray a populace of diploid people
[1, 3].

Let us consider non-linear RD equations with convection terms of the form,

Ut = L(U )Uxx + M(U )Ux + N (U ) (1.1)

Here, U = U (x, t) is an unknown function, L(U ), M(U ), and N (U ) are erratic smooth
functions. x and t are independent variables. Equation (1.1) can be derived into a number
of the popular non-linear second-order evolution equations depicting different portrayals in
biological science [1, 2, 10]. The classical Burgers equation can be generalized from the
Eq. (1.1) is given below.

Ut = Uxx + λ0UUx (1.2)

and the renowned Fisher equation is also derived from (1.1) equation [4],

Ut = Uxx + λ1U − λ2U
2 (1.3)

where, λ0, λ1, and λ2 ∈ R.
The particular case of Eq. (1.1) i.e., L(U ) = 1, M(U ) = λ0U , N (U ) = λ1U − λ2U 2 is

the Murray equation that represents as;

Ut = Uxx + λ0UUx + λ1U − λ2U
2 (1.4)

The Eq. (1.4) is considered as a speculation of the Fisher and Burgers equations.
The exact solution for Eq. (1.4) is given by [19]

U (x, t) = λ1 + c1e(γ 2t+γ x)

λ2 + c0e(−λ1t)
(1.5)

where γ = λ2
λ0

and λ0 �= 0, c0 is constant such that λ2 + c0e−(λ1t) �= 0 and c1 is an arbitrary
constant.

Wavelet analysis is a recent and arising region in applied and computational numerical
exploration. Wavelets are the mathematical functions that help to cut up the information
into different recurrence parts and which prompt the investigation of every part of informa-
tion with a goal matched to its scale. Wavelets lead over the regular Fourier strategies in
dissecting physical circumstances where the sign contains discontinuities and sharp spikes.
The wavelet transform is an emerging mathematical scheme that can decompose a signal
into multiple lower resolution levels by controlling a single wavelet function’s scaling and
shifting factors. Bernoulli wavelets have come to be a rising famous tool in the applied
and computational sciences. They have had several applications in a broad range of areas
such as data compression, signal analysis, and many others. Some types of mathemati-
cal problems tackled by the wavelet method are listed as follows; Anomalous infiltration
and diffusion modeling by nonlinear fractional differential equations with variable order
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[11], neutral delay differential equations [12], fractional partial differential equations with
Dirichlet boundary condition [13], fractional delay differential equations [14], Nonlinear Sin-
gular Lane–EmdenType Equations [15], singular Volterra integro-differential equations [16],
Caputo fractional delay differential equations [17], Numerical solution of the Jeffery–Hamel
flow through the wavelet technique [20], A novel approach for multi-dimensional fractional
coupled Navier–Stokes equation [21], A new coupled wavelet-based method applied to the
nonlinear reaction–diffusion equation [22], An effective numerical simulation for solving a
class of Fokker–Planck equations using Laguerre wavelet method [23], On pulse propagation
of soliton wave solutions related to the perturbed Chen-Lee-Liu equation in an optical fiber
[24], On the conformable nonlinear Schrödinger equation with second-order spatiotempo-
ral and group velocity dispersion coefficients [25], Application of Hermite Wavelet Method
and Differential Transformation Method for Nonlinear Temperature Distribution in a Rect-
angular Moving Porous Fin [26], On the Complex Simulations with Dark–Bright to the
Hirota-Maccari System [27, 28].

Bernoulli Wavelet and its Functional Matrix of Integration

BernoulliWavelets

Bernoulli wavelets Un,m(t) = U (k, n̂,m, t) have four parameters; n̂ = n − 1, n =
1, 2, 3, . . . , 2k−1, k is a + ve integer, m be the degree of the Bernoulli polynomials, and
t be the normalized time. Bernoulli wavelets are well-defined on the interval [0, 1) as [18],

Un,m(t) =
⎧

⎨

⎩

2
k−1
2 ˜bm
(

2k−1t − n̂
)

,
n̂

2k−1 ≤ t <
n̂ + 1

2k−1

0, Otherwise

with

˜bm(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, m = 0

1
√

(−1)m−1(m!)2
(2m)! a2m

bm(t), m > 0

where m = 0, 1, 2, . . . , M − 1, n = 1, 2, . . . , 2k−1. The coefficient 1
√

(−1)m−1(m!)2
(2m)! a2m

is

for normality, p = 2−(k−1) is the dilation-parameter and q = n̂2−(k−1) is the translation
parameter. Here, bm(t) are the renowned Bernoulli polynomials of order m which can be
well-defined by;

bm(t) =
m
∑

i=0

(m

i

)

am−i t
i ,

where ai , i = 0, 1, . . . ,m are the Bernoulli numbers. Now, we fairly accurate the function
y(x) under Bernoulli wavelet space is as follows:

y(x) =
∑∞

n=1

∑∞
m=0

Cn,mUn,m(x) (2.1)
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where Un,m(x) is the Bernoulli wavelet. We approximate y(x) by truncating the series as
follows;

y(x) ≈
∑2k−1

n=1

∑M−1

m=0
Cn,mUn,m(x) = ATU (x) (2.2)

where A and U (x) are 2k−1M × 1 matrix,

AT = [C1,0, . . . ,C1,M−1,C2,0, . . . ,C2,M−1, . . . ,C2k−1,0, . . .C2k−1,M−1],

U (x) = [U1,0, . . . ,U1,M−1,U2,0, . . .U2,M−1, . . .U2k−1,0, . . .U2k−1,M−1]T .

Let
{

Ui, j
}

be the sequence of Bernoulli wavelets, i = 0, 1, . . . , and j = 1, 2, . . . For
every fixed j, there is a Bernoulli space spanned by the elements of the sequence

{

Ui, j
}

. That
is, L
({

Ui, j
}) = L2[0, 1) is Banach space.

Functional Matrix of Integration

Here, we simplified some basis of the Bernoulli wavelets at k = 1 as follows:

U1,0(t) = 1,

U1,1(t) = √
3(−1 + 2t),

U1,2(t) = √
5
(

1 − 6t + 6t2
)

,

U1,3(t) = √
210
(

t − 3t2 + 2t3
)

,

U1,4(t) = 10
√
21

(

− 1

30
+ t2 − 2t3 + t4

)

,

U1,5(t) =
√

462

5

(

−t + 10t3 − 15t4 + 6t5
)

,

U1,6(t) =
√

1430

691

(

1 − 21t2 + 105t4 − 126t5 + 42t6
)

,

U1,7(t) = 2

√

143

7

(

t − 7t3 + 21t5 − 21t6 + 6t7
)

,

U1,8(t) =
√

7293

3617

(−1 + 20t2 − 70t4 + 140t6 − 120t7 + 30t8
)

,

U1,9(t) =
√

1939938

219335

(

−3t + 20t3 − 42t5 + 60t7 − 45t8 + 10t9
)

,

U1,10(t) = 22

√

125970

174611

(

5

66
− 3t2

2
+ 5t4 − 7t6 + 15t8

2
− 5t9 + t10

)

,

U1,11(t) = 2

√

676039

854513

(

5t − 33t3 + 66t5 − 66t7 + 55t9 − 33t10 + 6t11
)

.

where U10(t) = [U1,0(t),U1,1(t),U1,2(t),U,3(t),U1,4(t),U1,5(t),U1,6(t),U1,7(t),U1,8(t),U1,9(t)
]T

.
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Now integrate the above basis elements concerning t limit from 0 to t , then express as a
linear combination of Bernoulli wavelet basis as;

t
∫

0

U1,0(t)dt =
[

1
2

1
2
√
3
0 0 0 0 0 0 0 0

]

U10(t),

t
∫

0

U1,1(t)dt =
[

− 1
2
√
3
0 1

2
√
15

0 0 0 0 0 0 0
]

U10(t),

t
∫

0

U1,2(t)dt =
[

0 0 0 1√
42

0 0 0 0 0 0
]

U10(t),

t
∫

0

U1,3(t)dt =
[ √

7
2
√
30

0 0 0 1
2
√
10

0 0 0 0 0
]

U10(t),

t
∫

0

U1,4(t)dt =
[

0 0 0 0 0
√
5

3
√
22

0 0 0 0
]

U10(t),

t
∫

0

U1,5(t)dt =
[

−
√

11
210 0 0 0 0 0

√
691

10
√
273

0 0 0
]

U10(t),

t
∫

0

U1,6(t)dt =
[

0 0 0 0 0 0 0
√

35
1382 0 0

]

U10(t),

t
∫

0

U1,7(t)dt =
[ √

143
20

√
7
0 0 0 0 0 0 0

√
3617

20
√
357

0
]

U10(t),

t
∫

0

U1,8(t)dt =
[

0 0 0 0 0 0 0 0 0
√
219335

3
√
962122

]

U10(t),

t
∫

0

U1,9(t)dt =
[

−
√

146965
2895222 0 0 0 0 0 0 0 0 0

]

U10(t) +
√
1222277

10
√
482537

U1,10(t).

Hence,

t
∫

0

U (t)dt = B10×10U10(t) +U10(t).

where
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B10×10 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
2

1
2
√
3

0 0 0 0 0 0 0 0

− 1
2
√
3

0 1
2
√
15

0 0 0 0 0 0 0

0 0 0 1√
42

0 0 0 0 0 0√
7

2
√
30

0 0 0 1
2
√
10

0 0 0 0 0

0 0 0 0 0
√
5

3
√
22

0 0 0 0

−
√

11
210 0 0 0 0 0

√
691

10
√
273

0 0 0

0 0 0 0 0 0 0
√

35
1382 0 0√

143
20

√
7

0 0 0 0 0 0 0
√
3617

20
√
357

0

0 0 0 0 0 0 0 0 0
√
219335

3
√
962122

−
√

146965
2895222 0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

U10(t) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

0

0

0

0

0

0

0

0√
1222277

10
√
482537

U1,10(t)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Next, twice integration of basis, we get;

t
∫

0

t
∫

0

U1,0(t)dtdt =
[

1
6

1
4
√
3

1
12

√
5
0 0 0 0 0 0 0

]

U10(t),

t
∫

0

t
∫

0

U1,1(t)dtdt =
[

− 1
4
√
3

− 1
12 0 1

6
√
70

0 0 0 0 0 0
]

U10(t),

t
∫

0

t
∫

0

U1,2(t)dtdt =
[

1
12

√
5
0 0 0 1

4
√
105

0 0 0 0 0
]

U10(t),

t
∫

0

t
∫

0

U1,3(t)dtdt =
[ √

7
4
√
30

√
7

12
√
10

0 0 0 1
12

√
11

0 0 0 0
]

U10(t),

t
∫

0

t
∫

0

U1,4(t)dtdt =
[

− 1
6
√
21

0 0 0 0 0
√
691

6
√
30030

0 0 0
]

U10(t),

t
∫

0

t
∫

0

U1,5(t)dtdt =
[

−
√
11

2
√
210

−
√
11

6
√
70

0 0 0 0 0 1
2
√
390

0 0
]

U10(t),

t
∫

0

t
∫

0

U1,6(t)dtdt =
[ √

143
4
√
6910

0 0 0 0 0 0 0
√
3617

4
√
352410

0
]

U10(t),
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t
∫

0

t
∫

0

U1,7(t)dtdt =
[ √

143
40

√
7

√
143

40
√
21

0 0 0 0 0 0 0
√
43867

84
√
9690

]

U10(t),

t
∫

0

t
∫

0

U1,8(t)dtdt =
[

− 5
√
221

6
√
119361

0 0 0 0 0 0 0 0 0
]

U10(t) +
√
174611

6
√
7559530

U1,10(t),

t
∫

0

t
∫

0

U1,9(t)dtdt =
[

−
√
146965

2
√
2895222

−
√
146965

6
√
965074

0 0 0 0 0 0 0 0
]

U10(t) +
√
77683

2
√
30268230

U1,11(t).

Hence,

t
∫

0

t
∫

0

U (t)dtdt = B
′
10×10U10(t) +U10(t)

′
,

where

B
′
10×10 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
6

1
4
√
3

1
12

√
5

0 0 0 0 0 0 0

− 1
4
√
3

− 1
12 0 1

6
√
70

0 0 0 0 0 0

1
12

√
5

0 0 0 1
4
√
105

0 0 0 0 0
√
7

4
√
30

√
7

12
√
10

0 0 0 1
12

√
11

0 0 0 0

− 1
6
√
21

0 0 0 0 0
√
691

6
√
30030

0 0 0

−
√
11

2
√
210

−
√
11

6
√
70

0 0 0 0 0 1
2
√
390

0 0
√
143

4
√
6910

0 0 0 0 0 0 0
√
3617

4
√
352410

0
√
143

40
√
7

√
143

40
√
21

0 0 0 0 0 0 0
√
43867

84
√
9690

− 5
√
221

6
√
119361

0 0 0 0 0 0 0 0 0

−
√
146965

2
√
2895222

−
√
146965

6
√
965074

0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

U10(t)
′ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

0

0

0

0

0

0

0
√
174611

6
√
7559530

U1,10(t)
√
77683

2
√
30268230

U1,11(t)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

In the same way, we can generate matrices of different sizes for our requirements.
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Some Theorems on Convergence Analysis and the Bernoulli Wavelet

The Space of Functions L2(R)

The set of all functions f for which | f (x)|2 is integrable on the region R.

Continuous Functions in L2(R)

Let U (x, t) ∈ L2(R) witht ∈ [a, b]. Then U (x, t) is continuous in L2(R) in the variable t
on [a, b] if U (x, t

′
) → U (x, t) in L2(R) whenever t

′ → t∀t ∈ [a, b].
The above definition says that if the function U (x, t) is continuous in t on[a, b], then the

‖U (x, t)‖ is continuous in t on[a, b].

Riesz Fischer Theorem

If a sequence of functions { fk}∞k=1 in L2(R) converges itself in L2(R) then there is a function
f ∈ L2(R) such that ‖ fk − f ‖ → 0 as k → ∞.

Theorem 1 Let U (x, t)in L2(R × R) be a continuous bounded function defined on [0, 1) ×
[0, 1), then Bernoulli wavelet expansion of U (x, t)is uniformly converges to it.

Proof Let U (x, t) in L2(R × R) be a continuous function defined on [0, 1) × [0, 1) and
bound by a real numberμ. The approximation of U (x, t) is;

U (x, t) =
∞
∑

i=1

∞
∑

j=0

ai, jUi, j (x)Ui, j (t),

where ai, j = 〈U (x, t),Ui, j (x)Ui, j (t)〉, and 〈, 〉 represents inner product. Since
Ui, j (x)Ui, j (t) are orthogonal functions on[0, 1). Then,

ai, j =
1
∫

0

1
∫

0

U (x, t)Ui, j (x)Ui, j (t)dxdt,

ai, j =
1
∫

0

∫

I

U (x, t)
2

(

k−1
2

)

√

(−1)m−1(m!)2α2m
(2m)!

bm
(

2k−1x − n + 1
)

Ui, j (t)dxdt,

where I =
[

n−1
2k−1 ,

n
2k−1

]

, Put 2k−1x − n + 1 = r then,

ai, j = 2
k−1
2

√

(−1)m−1(m!)2α2m
(2m)!

1
∫

0

1
∫

0

U

(

r − 1 + n

2k−1 , t

)

bm(r)
dr

2k−1Ui, j (t)dt,

ai, j = 2− k−1
2

√

(−1)m−1(m!)2α2m
(2m)!

1
∫

0

⎡

⎣

1
∫

0

U

(

r − 1 + n

2k−1 , t

)

bm(r)dr

⎤

⎦Ui, j (t)dt,
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By generalized mean value theorem for integrals,

ai, j = 2
−
[

− k−1
2

]

√

(−1)m−1(m!)2α2m
(2m)!

1
∫

0

U

(

r − 1 + n

2k−1 , t

)

Ui, j (t)dt

⎡

⎣

1
∫

0

bm(r)dr

⎤

⎦,

where ξ ∈ (0, 1) and choose
∫ 1
−1 bm(r)dr = A,

ai, j = A2
−
[

− k−1
2

]

√

(−1)m−1(m!)2α2m
(2m)!

n
2k−1
∫

n−1
2k−1

U

(

ξ − 1 + n

2k−1 , t

)

2
k−1
2

√

(−1)m−1(m!)2α2m
(2m)!

bm(2k−1t − n + 1)dt,

ai, j = A
(

(−1)m−1(m!)2α2m
(2m)!

)

n
2k−1
∫

n−1
2k−1

U

(

ξ − 1 + n

2k−1 , t

)

bm
(

2k−1t − n + 1
)

dt,

Put 2k−1t − n + 1 = 𝓈 then,

ai, j = A
(

(−1)m−1(m!)2α2m
(2m)!

)

1
∫

0

U

(

ξ − 1 + n

2k−1 ,
𝓈 − 1 + n

2k−1

)

bm(𝓈)
d𝓈
2k−1 ,

ai, j = A2−k+1
(

(−1)m−1(m!)2α2m
(2m)!

)

1
∫

0

U

(

ξ − 1 + n

2k−1 ,
𝓈 − 1 + n

2k−1

)

bm(𝓈)d𝓈,

By generalized mean value theorem for integrals,

ai, j = A2−k+1
(

(−1)m−1(m!)2α2m
(2m)!

)U

(

ξ − 1 + n

2k−1 ,
ξ1 − 1 + n

2k−1

)
1
∫

0

bm(𝓈)d𝓈,

where, ξ1 ∈ (0, 1) and
1
∫

0
bm(𝓈)d𝓈 = B then,

ai, j = AB2−k+1
(

(−1)m−1(m!)2α2m
(2m)!

)U

(

ξ − 1 + n

2k−1 ,
ξ1 − 1 + n

2k−1

)

, ∀ξ, ξ1 ∈ (0, 1),

Therefore,

∣

∣ai, j
∣

∣ =
∣

∣

∣

∣

∣

∣

AB2−k+1
(

(−1)m−1(m!)2α2m
(2m)!

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

U

(

ξ − 1 + n

2k−1 ,
ξ1 − 1 + n

2k−1

)∣

∣

∣

∣

.

Since U is bounded by μ,

∣

∣ai, j
∣

∣ = |A||B|2−k+1μ
∣

∣

∣

(−1)m−1(m!)2α2m
(2m)!

∣

∣

∣

.

Therefore
∑∞

i=1
∑∞

j=0 ai, j is convergent. Consequently, the Bernoulli wavelet expansion
of U (x, t) converges uniformly.
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Theorem 2 Let the Bernoulli wavelet sequence {Uk
n,m(x, t)}∞k=1which are continuous func-

tions defined in L2(R)in ton [a, b]converges to the function U (x, t)in L2(R)uniformly in
ton [a, b]. Then U (x, t)is continuous in L2(R)in ton [a, b].

Proof Since, the Bernoulli wavelet sequence {Uk
n,m(x, t)}∞k=1 is uniformly converges to

U (x, t) in L2(R). Therefore, for every ε > 0, there exists a number k = kε such that,

‖Uk
n,m(x, t) −U (x, t)‖ <

ε

3
,∀t ∈ [a, b] (3.1)

Also, {Uk
n,m(x, t)} is continuous in L2(R) in t ∈ [a, b]. Then there exists a number δ = δε

such that,

‖Uk
n,m

(

x, t ′
)−Uk

n,m(x, t)‖ <
ε

3
,whenever‖t ′ − t‖ < δ∀t ′, t ∈ [a, b] (3.2)

∥

∥U
(

x, t ′
)−U (x, t)

∥

∥ =
∥

∥

∥U
(

x, t ′
)−Uk

n,m
(

x, t ′
)+Uk

n,m
(

x, t ′
)−Uk

n,m (x, t) +Uk
n,m (x, t) −U (x, t)

∥

∥

∥,

≤
∥

∥

∥U
(

x, t ′
)−Uk

n,m

(

x, t ′
)

∥

∥

∥+
∥

∥

∥Uk
n,m

(

x, t ′
)−Uk

n,m(x, t)
∥

∥

∥+
∥

∥

∥Uk
n,m(x, t) −U (x, t)

∥

∥

∥,

< ε
3 + ε

3 + ε
3 = ε,

∥

∥U
(

x, t ′
)−U (x, t)

∥

∥ < ε,∀∥∥t − t ′
∥

∥ < δwith t, t ′ ∈ [a, b].HenceU (x, t) is continuous
in L2(R) in t on[a, b].

Theorem 3 Let the Bernoulli wavelet sequence {Uk
n,m(x, t)}∞k=1converges itself in

L2(R)uniformly in t on [a, b]. Then there is a function U (x, t) is continuous in L2(R)

in ton [a, b]and lim
k→∞Uk

n,m(x, t) = Un,m(x, t)∀t ∈ [a, b].

Proof By Riesz Fischer theorem, for each t ∈ [a, b] there is a function U (x, t) in L2(R)

such that.

lim
k→∞Uk

n,m(x, t) = U (x, t) (3.3)

Consider the subsequence {Uki
n,m(x, t)}∞i=1 such that,

‖Uki+1
n,m (x, t) −Uki

n,m(x, t)‖ <
1

2i
,∀t ∈ [a, b] (3.4)

from (3.3)

U (x, t) = lim
p→∞U

kp
n,m = Uki

n,m +
(

Uki+1
n,m −Uki

n,m

)

+
(

Uki+2
n,m −Uki+1

n,m

)

+, . . . ,

from (3.4)

‖U (x, t) −Uki
n,m‖ ≤ ‖Uki+1

n,m −Uki
n,m‖ + ‖Uki+2

n,m −Uki+1
n,m ‖+, . . . ,

≤ 1

2i
+ 1

2i+1 +, . . . ,= 1

2i−1 , i = 1, 2, 3, . . . ,

This shows that the subsequence
{

Uki
n,m(x, t)

}

converges to U (x, t) in L2(R) uniformly

in t on [a, b]. By theorem 2 the function U (x, t) is continuous in L2(R) in t on [a, b].
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Bernoulli Wavelets Method

Consider the nonlinear PDE is of the form:

Ut = Uxx + λ0UUx + λ1U − λ2U
2 (4.1)

where x and t are the independent variables, U is the dependent variable with the following
physical conditions.

U (x, 0) = H1(x),U (0, t) = H2(t),U (l, t) = H3(t) (4.2)

where, λ0, λ1, λ2 and l be any constant, H1(x), H2(t), H3(t) are continuous real functions.
suppose that,

∂3U (x, t)

∂x2∂t
≈ UT (x)KU (t) (4.3)

where, UT (x) = [U1,0(x), . . . ,U1,M−1(x), . . . ,U2k−1,0(x), . . . ,U2k−1,M−1(x)
]

,

K = [ai, j
]

be 2k−1M × 2k−1M unknown matrix such that i = 1, . . . , 2k−1, j =
0, . . . , M − 1.

U (t) = [U1,0(t), . . . ,U1,M−1(t), . . . ,U2k−1,0(t), . . . ,U2k−1,M−1(t)
]T

,

Integrate (4.3) concerning t from limit 0 to t .

∂2U (x, t)

∂x2
= ∂2U (x, 0)

∂x2
+UT (x)K

[

BU (t) +U (t)
]

(4.4)

Now integrate (4.4) twice concerning x from 0 to x .

∂U (x, t)

∂x
= ∂U (0, t)

∂x
+ ∂U (x, 0)

∂x
− ∂U (0, 0)

∂x
+ [BU (x) +U (x)

]T
K
[

BU (t) +U (t)
]

(4.5)
U (x, t) = U (0, t) +U (x, 0) −U (0, 0) + x

[

∂U (0, t)

∂x
− ∂U (0, 0)

∂x

]

+
[

B
′
U (x) +U (x)

′]T
K

[

BU (t)+ −
U (t)

]

(4.6)

Put x = l on (4.6) along with physical conditions given in (4.2). We get,

H3(t) = H2(t) + H1(l) − H1(0) + l

[

∂U (0, t)

∂x
− ∂U (0, 0)

∂x

]

+ lim
x→l

[

B
′
U (x) +U (x)

′]T
K

[

BU (t)+ −
U (t)

]

.
[

∂U (0, t)

∂x
− ∂U (0, 0)

∂x

]

= 1

l

[

H3(t) − H2(t) − H1(l) + H1(0) − lim
x→l

[

B
′
U (x) +U (x)

′]T
K
[

BU (t) +U (t)
]

]

(4.7)

Substitute (4.7) in (4.5) and (4.6)

∂U (x, t)

∂x
=∂H1(x)

∂x
+ 1

l
[H3(t) − H2(t) − H1(l)

+H1(0) − lim
x→l

[B ′
U (x) +U (x)

′ ]T K [BU (t) +U (t)]
]

+ [BU (x)+ −
U (x)]

T

K
[

BU (t) +U (t)
]

(4.8)

U (x, t) =H2(t) + H1(x) − H1(0) +
[

B
′
U (x) + −

U (x)

′]T

K
[

BU (t) +U (t)
]

123



40 Page 12 of 17 Int. J. Appl. Comput. Math (2023) 9 :40

+ x

l

⎡

⎣H3(t) − H2(t) − H1(l) + H1(0) − lim
x→l

[

B
′
U (x) + −

U (x)

′]T

K
[

BU (t) +U (t)
]]

(4.9)

Now, differentiate U (x, t) concerning t twice. We get,

∂U (x, t)

∂t
=H2

′
(t) + x

l

d

dt

[

H3(t) − H2(t) − H1(l) + H1(0) − lim
x→l

[B ′
U (x) +U (x)

′ ]T K [BU (t) +U (t)]
]

+ d

dt

[

[B ′
U (x) +U (x)

′ ]T K [BU (t) +U (t)]
]

(4.10)
∂2U (x, t)

∂t2
=H ′′

2 (t) + x

l

d2

dt2

[

H3(t) − H2(t) − H1(l) + H1(0) − lim
x→l

[

B ′U (x) +U (x)
′]T

K
[

BU (t) +U (t)
]

]

+ d2

dt2

[

[

B ′U (x) +U (x)
′]T

K
[

BU (t) +U (t)
]

]

(4.11)

Now, fit U ,Ut ,Utt ,Ux ,Uxx in (4.1) and discretize by following discrete points,

xi = ti = 2i − 1

2[2k−1M]2 , i = 1, 2, . . . , [2k−1M]2

To extract the values of unknown coefficients, we use the Newton Raphson method.
Finally, substitute obtained values of unknown coefficients in (4.9) yield theBernoulliwavelet
numerical solution of the given PDE.

Applications of the ProposedMethod

Consider three different types of error norms for calculating the errors given,

L2error =
√

∑n
i=1 Y

2
i , L∞error = Max(Yi ), 1 ≤ i ≤ n − 1, RMSerror =

√

∑n
i=1

Y 2
i
n where, Yi = Ui (exact solution) −Ui (approximate solution).

Example 1 Consider the non-linear Murray equation [19]

∂U

∂t
= ∂2U

∂x2
+U

∂U

∂x
+U −U 2, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1 (5.1)

with initial condition

U (x, 0) = λ1 + c1e(γ x)

λ2 + c0
,

and boundary conditions

U (0, t) = λ1 + c1e(γ 2t)

λ2 + c0e(−λ1t)
,

U (1, t) = λ1 + c1e(γ 2t+γ )

λ2 + c0e(−λ1t)
,

with c0 = 1, c1 = 1 andγ = 1. The literal solution of the Eq. (5.1) is (x, t) = 1+e(t+x)

1+e(−t) .
The above non-linear equation is solved by the proposed method. From Fig. 1, we observe
the time–space graph which shows the proposed BWCM graphical compared with the exact
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Fig. 1 Graphical illustration of BWCM and Literal solution along with the absolute error, for example, 1

solution and its error analysis at M = 2. Table 1 and Table 2 show the comparison between
the BWCM solution and the accurate solution at different values of t andx . Table 3 compares
the mathematical solutions obtained from the proposed method and the Haar wavelet method
(HWM) from the literature [19] with the accurate solution and mentioned the absolute errors.
Figures 2 and 3 narrate the graphical comparison of the BWCM solution with the accurate
solution at different values of t and x . Table 4 explains the error norms of the present method.

The approximate polynomial solution of the BWCM at M = 2 is given by,

U (x, t) = − 1

2
+ ex

2
+ 1

1 + e−t
+ et

1 + e−t
+ x

2
− ex

2
− et x

1 + e−t
+ e1+t x

1 + e−t

− 0.5970t x − 0.2727t2x + 0.3864t x2 − 0.1212t2x2 + 0.2106t x3 + 0.3939t2x3.

Table 1 Comparison of Numerical solution with the literal solution at different values of t and M = 2

x Exact
solution at
t = 0.1

BWCM at
t = 0.1

Exact
solution at
t = 0.01

BWCM at
t = 0.01

Exact
solution at
t = 0.001

BWCM at
t = 0.001

0.0 1.105170 1.105170 1.010050 1.010050 1.001000 1.001000

0.1 1.166190 1.165691 1.063429 1.063373 1.053664 1.053659

0.2 1.233626 1.232640 1.122423 1.122317 1.111868 1.111857

0.3 1.308156 1.306750 1.187621 1.187476 1.176192 1.176178

0.4 1.390523 1.388814 1.259675 1.259506 1.247281 1.247265

0.5 1.481553 1.479692 1.339308 1.339129 1.325848 1.325830

0.6 1.582157 1.580319 1.427316 1.427144 1.412676 1.412659

0.7 1.693341 1.691714 1.524580 1.524432 1.508637 1.508623

0.8 1.816219 1.814984 1.632073 1.631964 1.614690 1.614680

0.9 1.952020 1.951340 1.750872 1.750814 1.731897 1.731891

1.0 2.102103 2.102103 1.882164 1.882164 1.861430 1.861430
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Table 2 Comparison of Numerical solution with an accurate solution at different values of x and M = 2

t Exact
solution at
x = 0.1

BWCM at
x = 0.1

Exact
solution at
x = 0.01

BWCM at
x = 0.01

Exact
solution at
x = 0.001

BWCM at
x = 0.001

0.0 1.052585 1.052585 1.005025 1.005025 1.000500 1.000500

0.1 1.166190 1.1656913 1.111001 1.110953 1.105751 1.105746

0.2 1.292032 1.291218 1.228152 1.228079 1.222074 1.222067

0.3 1.431410 1.430550 1.357651 1.357590 1.350634 1.350628

0.4 1.585756 1.585214 1.500800 1.500793 1.492718 1.492718

0.5 1.756654 1.756894 1.659035 1.659138 1.649748 1.649759

0.6 1.945848 1.947447 1.833942 1.834222 1.823295 1.823325

0.7 2.155267 2.158922 2.027275 2.027812 2.015098 2.015154

0.8 2.387037 2.393581 2.240973 2.241861 2.227077 2.227168

0.9 2.643510 2.653919 2.477177 2.478526 2.461352 2.461490

1.0 2.927279 2.942690 2.738253 2.740190 2.720270 2.720468

Table 3 Numerical comparison between the proposed method and Haar wavelet method with an exact solution
at M = 2

x t Exact
solution

HWM
[19]

BWCM An absolute error
by HWM [19]

An absolute error
by BWCM

0.125 0.125 1.213295 1.218979 1.219167 5.6834 × 10−3 7.5155 × 10−4

0.125 0.375 1.569808 1.579448 1.574201 9.6396 × 10−3 9.4287 × 10−4

0.125 0.625 2.030273 2.042856 2.034343 1.2583 × 10−2 2.1526 × 10−3

0.125 0.875 2.624307 2.644267 2.642903 1.9959 × 10−2 1.0776 × 10−2

0.375 0.125 1.407025 1.414291 1.424466 7.2663 × 10−3 2.0434 × 10−3

0.375 0.375 1.847341 1.865436 1.858958 1.8094 × 10−2 4.6678 × 10−3

0.375 0.625 2.421920 2.439875 2.423455 1.7954 × 10−2 1.7753 × 10−3

0.375 0.875 3.169216 3.208095 3.198004 3.8878 × 10−2 1.1832 × 10−2

0.625 0.125 1.655779 1.663618 1.680677 7.8384 × 10−3 2.2839 × 10−3

0.625 0.375 2.203701 2.237454 2.222622 3.3753 × 10−2 6.6313 × 10−3

0.625 0.625 2.924806 2.943311 2.922969 1.8505 × 10−2 6.8103 × 10−3

0.625 0.875 3.868894 3.944630 3.885147 7.5736 × 10−2 2.8253 × 10−3

0.875 0.125 1.975186 1.982605 1.991513 7.4188 × 10−3 1.0737 × 10−3

0.875 0.375 2.661276 2.724696 2.675946 6.3419 × 10−2 3.6402 × 10−3

0.875 0.625 3.570524 3.575685 3.569976 5.1609 × 10−3 4.7943 × 10−3

0.875 0.875 4.767297 4.922099 4.768514 1.5480 × 10−1 1.6641 × 10−3
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Fig. 2 Graphical judgment between the proposed technique and accurate solution at different values of t, for
example, 1

Fig. 3 Graphical comparison of the present method solution along with the accurate solution at different values
of x, for example, 1

Conclusion

In this article, the Bernoulli wavelet collocation technique has been efficiently implemented
for the numerical approximation of the non-linear Murray equation, which arises in Reac-
tion–diffusion equations.Wepresent a new functionalmatrix of integration byusingBernoulli
wavelets for solving the non-linear Murray equation. The collocation scheme based on
Bernoulli wavelets has been carried out to get a system of non-linear algebraic equations
that can be solved by the Newton–Raphson method. From Tables 1, 2 and 4, we can see the
efficiency of the proposed method. The comparison of the obtained results with the Haar
wavelet collocation scheme has been demonstrated in Table 3. Figures 1, 2 and 3 show that
the BWCM solution is very close to the exact solution. The precision and accuracy of the
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Table 4 Error norms comparison
between the BWCM and other
methods in the literature

t L2error L∞error RMSerror

HWM [19]

0.125 1.41 × 10−2 7.83 × 10−3 7.09 × 10−3

0.375 7.47 × 10−2 3.37 × 10−2 3.73 × 10−2

0.625 2.91 × 10−2 1.85 × 10−2 1.45 × 10−2

0.875 1.77 × 10−1 7.57 × 10−2 8.88 × 10−2

BWCM

0.125 3.33 × 10−3 2.28 × 10−3 1.66 × 10−3

0.375 8.93 × 10−3 6.63 × 10−3 4.46 × 10−3

0.625 8.78 × 10−3 6.81 × 10−3 4.39 × 10−3

0.875 1.63 × 10−2 1.18 × 10−2 8.16 × 10−3

proposed scheme have been checked by enumerating the L2, L∞ and the RMS errors of a
numerical problem. From the tables, we have seen that the efficiency of the Bernoulli wavelet
collocation scheme is good, even on account of only a few collocation points.
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