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Abstract
The dengue disease epidemiological patterns ofNepal have become a geographical challenge.
It is one of the emerging public health issues in the country. In Nepal, the disease has been
reported since 2004 in both tropical and sub-tropical regions. In this work, the dengue disease
epidemicmodel is formulated by using fractional-order derivatives. The least-squaresmethod
is used for estimation of the parameters with the help of the classical compartmental model
of the dengue infections recorded in the year 2019, which is the largest-ever outbreak to
occur in Nepal. The existence and uniqueness of a non-negative solution are discussed for
the fractional-order model. An epidemiologically important dimensionless number, R0 is
obtained using the next-generationmethod. Two equilibriums disease free and endemic points
are obtained and their stability is studied. The Euler’s method is implemented to solve the
fractional-order model numerically. The numerical results suggest that the fractional model
fits better with an appropriate choice of the memory level, α than the classical model based
on the real data of Nepal.

Keywords Dengue fractional-order model · Basic reproduction number · Stability analysis ·
Parameter estimation · Numerical results

Introduction

Dengue is highly infectious mosquito-borne viral disease. It has scattered throughout the
tropics with local divergence due to the seasonal impact (rainfall, temperature) and unplanned
rapid civic [37]. Dengue virus imparts to humans through the bite of infectedAedesmosquito,
especially called Aedes Aegypti. The infected mosquito remains with one of the four dengue
virus serotypes (DEN-1, DEN-2, DEN-3 and DEN-4) for life which transmits the virus to
humans during feed [45]. Dengue can affect almost all age groups (infant to adult) of humans.
The epidemic of dengue-like illnesses was reported in the French West Indies in 1635 and
Panama in 1699. In 1780, doctors in Philadelphia, Pennsylvania recorded an epidemic of
the disease later known as dengue [22]. About 390 million dengue virus infections occurs
every year, of which 96 million manifest the disease apparently with any level of severity
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Fig. 1 Dengue cases in Nepal from 2006 to 2020 (Data source: Epidemiology Disease Control Division, Nepal
[40])

[8]. According to WHO [70], about 3.9 billion people are at risk with dengue virus including
129 countries, 70% are from Asia. Nowadays, dengue disease is affecting Asian and Latin
American countries and has become a leading cause of hospitalization and death among
children and adults [22]. According to WHO, mosquito transmit malaria, dengue, yellow
fever, filariasis, and several other infectious diseases. This is due to the gradually increasing
urbanization, uncontrolled population and civilization.

In the context of Nepal, Peters et al. [47] were first to study on mosquito and reported the
existence of the species of Anopheles in the Terai region. Peters and Dewar [46] recorded
culicine species ofmosquito existing inNepal. Darsie and Pradhan [13] focused their study on
biological distribution and indentification of the mosquito in Nepal. Aedes Aegypti species
was first reported in Nepal in 2009 [21] although the first dengue outbreak was reported
in 2004 [30], and other outbreaks of dengue have been recorded from both tropical and
subtropical regions of Nepal including the capital city Kathmandu [44, 54]. During 2004–
2013 the major outbreaks of dengue epidemic was recorded in 2010 and 2013. In the years
2014–2019, a yearly outbreaks of the dengue have been more frequent than in the years
2004–2013. The number of confirmed annual dengue incidence varied from 336 to 17,992 in
2014–2019 [57]. The largest ever outbreak of dengue diseases in Nepal was reported in 2019.
In this year the infectious cases was more than 15,000 people during mid-summer from a
tropical region and then it spread to hilly subtropical locations (the Sunsari district, the eastern
region of Nepal, the Makwanpur district and the southwest district of Kathmandu). A total
nineteen deaths were reported from 2006 to 2019 from dengue infection [3, 40]. According to
EDCD [40] of Nepal, there are around 564 dengue infection cases reported in 2002, most of
the affected districts are Myagdi, Kaski, Sindhuli, Kailali, Sunsari, and Rupandehi. Dengue
virus infection has now become an emerging disease in Nepal. Subedi and Robinson [64]
revealed that the problem in finding timely medical treatment, poor facilities for disease
diagnosis and a scarcity of mosquito control programs are major issues to cause increment
in dengue cases in Nepal. Kawada et al. [30] observed the insecticides’ resistance status and
its impact on the transmission and the prevention of dengue in Nepal (Fig. 1).

Mathematical modeling of dengue has become one of the effective strategies for the pre-
vention and control of the disease [37]. Kermack and McKendrick contributed on upgrading
themathematicalmodeling of infectious diseases by SIR (Susceptible, Infected andRemoved
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of individuals) compartmentalmodel [31, 32]. Esteva andVargas [18, 19]modified thismodel
to study transmission dynamics of dengue disease. In the transmission of dengue virus, there
are two periods of incubation, one is the timewhen themosquito takes viremic bloodmeal and
it becomes infectious (5–33 days), another is time from infection due to the bite of infected
mosquito to the appearance of symptoms in human (2–10 days) [11]. Pongsumpun [52]
studied the length of time during incubation of dengue virus in humans and mosquito, and
analyzed how to reduce the outbreak of the dengue virus. The SEIR model [61] is proposed
to study dengue disease transmission of dengue disease taking exposed classes of both vec-
tor and host population. Prevention of mosquito bites is one of the ways to prevent dengue
disease. The developing countries may not be able to provide treatment to each infected indi-
vidual. The transmission model with treatment by considering logistic growth of mosquito
is formulated and analyzed by [62]. The effect of temperature and rainfall on mosquito to
spread the dengue disease in a community is one of natural problems [2, 66]. In epidemic
and endemic areas, awareness about dengue will lessen the contact rate between host and
mosquito. Most of the epidemic model [9, 12, 60, 63] address the impact of media coverage
to the spread and control of infectious diseases for social awareness and activity of social
disturbances. Nicholson’s blowflies model [20] can be used for the study of dynamic of dif-
ferential system. In Nepal, Phaijoo and Gurung [49, 50] studied a vector host epidemic model
of dengue disease by considering control measures of the disease and also suggested that
the proper management of human movement between patches helps to reduce the burden of
dengue disease.

The fractional models are useful concord for the disease epidemics which frame the
memory and nonlocal affects [1, 5]. Though fractional calculus was introduced more than
300 years ago and is applied into many fields of science and engineering, the development
of applications is still an important task in the area of fractional calculus [51]. Fractional
calculus has real world applications in science and engineering [65]. Authors in [29, 56] has
studied the stability analysis, uniqueness and existence of dynamical system of fractional
Duffing problem and applied fixed point theory for the stability of epidemic model by using
fractional calculus. Hajiseyedazizi et al. [24] established the existence of a solution for a novel
class of singular q-integro-differential equations on a time scale. Under certain boundary
conditions on the time scale, Samei and Rezapour [58] evaluated the possibility of a solution
for an m-dimensional system of fractional q-differential inclusions using the sum of two
multi-term functions. Fractional-order differential equations are naturally related to systems
with memory which exists in most biological systems. It is applicable with initial value
differential equations [16]. Pooseh et al. [53] studied the fractional-order derivative in the
dengue epidemic and showed a better realistic result than show by the classical model.
Diethelm [15] formalized the fractional-order model for the simulation of an outbreak of
dengue fever using the SIR compartment model. Authors in [26, 27] developed a fractional-
order dengue epidemic models representing the human and mosquito dynamics. The effects
of memory index, α is used in dengue disease transmission model [17, 59]. The fractional-
order mathematical models in epidemic reflect the dynamical behaviors in real-world [65].
Transformation of a classical model into a fractional-order model with the order of memory
level α gives more accurate result [15, 53, 59].

In the present work, the SEIR-SEI compartmental model is used to study transmission
dynamics of dengue disease in Nepal. The model parameters like: birth rate, death rate,
vector incubation rate are determined from the real data [40]. The deterministic model is
used to estimate remaining model parameters applying the method of the least square, which
is based on cumulative data of dengue patients of the year 2019. The reproduction number
is obtained and used to study the stability of model. Furthermore, we formulate the model
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with fractional-order derivative and use the Euler’s method for the numerical simulation of
the model.

Model Formulation

We represent the total mosquito population and the total human population by Nm(t) and
Hh(t) respectively for t > 0. The total population divided into different compartment as:
susceptible (Ms), exposed (Me) infected (Mi ) groups of the vector population and suscep-
tible (Hs), exposed (He), infected (Hi ) and recovered (Hr ) groups of host population. The
schematic diagram is presented in Fig. 2.

The differential equation of the model is as given;

d Hs

dt
= μh Hh − bβh

Hh
Hs Mi − μh Hs

d He

dt
= bβh

Hh
Hs Mi − (μh + αh)He

d Hi

dt
= αh He − (γh + μh)Hi

d Hr

dt
= γh Hi − μh Hr

d Ms

dt
= A − bβv

Hh
Ms Hi − μv Ms

d Me

dt
= bβv

Hh
Ms Hi − (kv + μv)Me

d Mi

dt
= kv Me − μv Mi

(1)

Fig. 2 Flow chart of the model
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Table 1 The parameters used in model

Parameters Biological meaning

μh Natural death (or birth) rate in the human population

μv Natural death (or birth) rate in the mosquito population

βh Transmission probability from mosquito to human population

βv Transmission probability from human to mosquito population

γh Recovery rate in the human population

A Recruitment rate of vector population

αh Host’s incubation rate

kv Vector’s incubation rate

b Biting rate of mosquito

with initial conditions Hs(0) > 0, He(0) ≥ 0, Hi (0) ≥ 0, Hr (0) ≥ 0, Ms(0) > 0, Me(0) ≥
0, Mi (0) ≥ 0

The biological meaning of state variables and the parameters used in the model are pre-
sented in Table 1; where, Hh = Hs + He + Hi + Hr and Nv = Ms + Me + Mi and
d Nv

dt
= A − μv Nv .

Again introducing the relations, sh = Hs

Hh
, eh = He

Hh
, ih = Hi

Hh
, rh = Hr

Hh
, sv = Ms

A
μv

,

ev = Me
A
μv

, iv = Mi
A
μv

.

The Eq. (1) becomes

dsh

dt
= μh(1 − sh) − Abβh

μv Hh
shiv

deh

dt
= Abβh

μv Hh
shiv − (αh + μh)eh

dih

dt
= αheh − (γh + μh)ih

dev

dt
= bβvih(1 − ev − iv) − (μv + kv)ev

div
dt

= kvev − μviv

(2)

The system of Eq. (2) has the same qualitative behavior as the system of Eq. (1).

Parameter Estimations

The yearly dengue disease information is taken from Epidemiology and Diseases Control
Division (EDCD) and EarlyWarning Reporting System (EWARS) which also includes death
cases from the years 2006 to 2020 [40]. The study includes the new weekly dengue data
available for Nepal in 2019. We used the disease cumulative weekly data for the model
equations. For the prediction of new infected cases C(t) at time t is used for the solution of
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Fig. 3 Cumulative weekly
recorded dengue infection cases
(circle) along with model curve
(line)

Table 2 Estimated model
parameters

Parameters b βh βv αh γh

Values 1 0.1756 0.500 0.0546 0.0500

differential equation [55].

C(t) = ψαheh Nh (3)

where,ψ is the proportion of the reported cases of dengue.We apply the Fourth order Runge–
Kuttamethod for the numerical solution of Eq. (2). Non-linear least square regressionmethod
is used for parameter estimation, which minimizes the sum of the square residuals

P(θ) =
n∑

i=1

[
C(ti ) − C(ti )

]2
(4)

where, θ = {b, βh, βv, αh, γh} to be estimated and C(ti ) and C(ti ) are given available data
and new cases of weekly recorded infectious cases predicted by themodel respectively. In this
study, we use “ode45” (ODE Solver) and “fmincon”(Optimization) tools for simplification
(Fig. 3).

The data available for weekly cumulative dengue infectious cases is fitted to the model
for the estimation of the parameters. Estimated parameters are presented in Table 2.

Preliminaries on Fractional Derivative

Definition 4.1 [14, 39, 51] The Riemann–Liouville’s fractional integral of order α is defined
by

I α
t f (t) = 1

�(α)

∫ t

0

f (s)ds

(t − s)1−α

where α > 0, t > 0, �(α) is gamma function of α
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Definition 4.2 [14, 39, 51] The Caputo fractional derivative of the function f (t) is defined
by

Dα
t f (t) = I n−α

t [ f n(t)] = 1

�(n − α)

∫ t

0

Dn f (s)ds

(t − s)α−n+1 , if n − 1 ≤ α < n

Definition 4.3 [14, 39, 51] The Laplace transform for the Caputo fractional derivative of the
function f(t) is

L [Dα
t f (t)] = sα F(s) −

n−1∑

k=0

sn−k−1 f (k)(0), n ∈ N, n − 1 ≤ α < n (5)

Definition 4.4 [14, 39, 51] The Mittag–Leffler function is defined by,

Eα,β(z) =
∞∑

n=0

zk

�(αk + β)
, α, β > 0 (6)

and the Laplace transform formula for the Mittag–Leffler function is

L [1 − Eα(∓dtα)] = d

s(sα ± d)

L [Eα(∓dtα)] = sα

s(sα ± d)

Theorem 4.1 [14, 16] Consider the two-parameter Mittag–Leffler function Eα,β(z) for some
α, β > 0. The power series defining Eα,β(z) is convergent for all z ∈ C. In other words,
Eα,β(z) is an entire function.

Fractional Dengue DiseasedModel

Pooseh et al. [53], Diethelm [15] and [17, 26, 27] introduced the fractional order derivative
for different classical integer model. The memory effect plays a significant role in the trans-
mission of the dengue disease from host to vector and vector to host which is taken as same
in the model. Other parameters like birth, death, recovery rate do not have own memory. The
Caputo fractional-order derivative model for the classical model Eq. (1) is,

Dα
a Hs = μh Hh − bαβh

Hh
Hs Mi − μh Hs

Dα
a He = bαβh

Hh
Hs Mi − (μh + kh)He

Dα
a Hi = kh He − (γh + μh)Hi

Dα
a Hr = γh Hi − μh Hr

Dα
a Ms = A − bαβv

Hh
Ms Hi − μv Ms

Dα
a Me = bαβv

Hh
Ms Hi − (kv + μv)Me

Dα
a Mi = kv Me − μv Mi

(7)
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where, 0 < α ≤ 1 and the initial conditions of the fractionalmodel are Hs(0) > 0, He(0) ≥ 0,
Hi (0) ≥ 0, Hr (0) ≥ 0, Ms(0) > 0, Me(0) ≥ 0, Mi (0) ≥ 0, for all t ≥ 0. Here,

Dα
a Hh = Dα

a (Hs + He + Hi + Hr ) = 0

and for the mosquito population

Dα
a M = Dα

a (Ms + Me + Mi )

= Dα
a (A − μv M)

Positiveness and Boundedness

Consider the dynamic of Caputo fractional model Eq. (7) in the feasible region

W = {y : y(t) = (Hs, He, Hi , Hr , Ms, Me, Mi ) ∈ R
7+ ∪ {0}}

Theorem 6.1 (Generalized Mean Value Theorem) [42] Let 0 < α ≤ 1, f (t) ∈ C[a, b] and
if Dα

t f (t) ∈ C[a, b], then

f (t) = f (a) + 1

�(α)
(Dα

t f )(s)(t − a)α with a < s < t ∀ t ∈ (a, b] (8)

Remark 6.1 Let f (t) ∈ C[a, b] and Dα
t f (t) ∈ C[a, b] for 0 < α ≤ 1

(i) If Dα
t f (t) ≥ 0, ∀t ∈ (a, b), then f (t) is nondecreasing.

(ii) If Dα
t f (t) ≤ 0, ∀t ∈ (a, b), then f (t) is nonincreasing.

Lemma 6.1 The set W attracts all positive solutions of the model Eq. (7) for given initial
conditions with t ≥ 0.

Proof By applying theorem (6.1) and the Remark (6.1) for existence of the solution of the
model Eq. (7) in (0,∞) with given initial conditions, we get the following relations,

Dα
t Hs

∣∣∣∣
Hs=0

= μh Hh > 0

Dα
t He

∣∣∣∣
He=0

= bαβh

Hh
Hs Hi ≥ 0

Dα
t Hi

∣∣∣∣
Hi =0

= kh He ≥ 0

Dα
t Hr

∣∣∣∣
Hr =0

= γh Hi ≥ 0

Dα
t Ms

∣∣∣∣
Ms=0

= A > 0

Dα
t Me

∣∣∣∣
Me=0

= bαβh

Hh
Ms Hi ≥ 0

Dα
t Mi

∣∣∣∣
Mi =0

= kv Me ≥ 0

Hence, the set W is non -negative orthant in R7+ for all t ≥ 0. 	
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Theorem 6.2 The solution y(t) of the model Eq. (7) uniformly bounded.

Proof From the model Eq. (7) we get,

Dα
t Hh(t) = 0 (9)

Dα
t M(t) = A − μv M(t) (10)

For Eq. (9), we get Hh(t) = k and Hh(0) = k, where k is arbitrary constant. That means,
Hh(t) is bounded.

From Eq. (10), we get

Dα
t M(t) + μv M(t) = A

Taking Laplace Transform on both sides,

sαL [M(t)] − sα−1M(0) + μvL [M(t)] = A

s

L [M(t)]{sα + μv} = A

s
+ sα−1M(0)

L [M(t)] = A

s(sα + μv)
+ M(0)

sα−1

sα + μv

Taking Laplace inverse on both sides

M(t) = A

μv

L −1
[

μv

s(sα + μv)

]
+ M(0)L −1

[
sα−1

sα + μv

]

Using the definition (4.4), we get

= A

μv

(
1 − Eα(−μv tα)

)
+ M(0)Eα(−μv tα)

= A

μv

−
(

A

μv

− M(0)

)
Eα(−μv tα)

M(t) = A

μv

− M1Eα(−μv tα)

M(t) ≤ A

μv

Here, M1 =
(

A
μv

− M(0)

)
. From theorem (4.1) Eα,1(−μv tα) is bounded for all t ≥ 0.

Thus, the solution of model (7) is uniformly bounded and system will remain in W (from
Lemma 6.1). 	
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Uniqueness of Solution

Introducing the relations, sh = Hs

Hh
, eh = He

Hh
, ih = Hi

Hh
, rh = Hr

Hh
, sv = Ms

A
μv

, ev = Me
A
μv

,

iv = Mi
A
μv

, L = A

μv Hh
bαβh and W = bαβv . The Eq. (7) becomes

Dα
t sh = μh(1 − sh) − Lshiv

Dα
t eh = Lshiv − (αh + μh)eh

Dα
t ih = αheh − (γh + μh)ih

Dα
t ev = Wih(1 − ev − iv) − (μv + kv)ev

Dα
t iv = kvev − μviv

(11)

The system of Eq. (11) also satisfy non-negative with uniformly boundedness and has a
biologically feasible region. Let us defined a region as

W1 = {(sh, eh, ih, em, im) ∈ R
5+;max(|sh |, |eh |, |ih |, |ev|, |iv| ≤ B)}

where B is a finite positive value.

Lemma 7.1 [34] Consider the system

Dα
t y(t) = f (t, x), t0 > 0 (12)

with initial condition y(t0) = yt0 , where α ∈ (0, 1], f : [t0,∞) × W → R
n, C ⊆ R

n, if
local Lipschitz condition is satisfied by f (t, x) with respect to x, then there exists a solution
of (12) on [t0,∞) × W which is unique.

Theorem 7.1 For the initial value of each D0 = (sh(0), eh(0), ih(0), ev(0), iv(0)) ∈ W1 and
there exists a unique solution of D(t) ∈ W1 of system of Eq. (11) for all t ≥ 0.

Proof Using the approaches [34, 35], let us define a relation Z(D) = {Z1(D), Z2(D), Z3(D),

Z4(D), Z5(D)}, where

Z1(D) = μh(1 − sh) − Lshiv

Z2(D) = Lshiv − (αh + μh)eh

Z3(D) = αheh − (γh + μh)ih

Z4(D) = Wih(1 − ev − iv) − (μv + kv)ev

Z5(D) = kvev − μviv

(13)
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For any D, D ∈ W1,

||Z(D) − Z(D)|| = |Z1(D) − Z1(D)| + |Z2(D) − Z2(D)| + |Z3(D) − Z3(D)|
+ |Z4(D) − Z4(D)| + |Z5(D) − Z5(D)|

= |μh(1 − sh) − Lshiv − μh(1 − sh) + Lshiv |
+ |Lshiv − (αh + μh)eh − Lshiv + (αh + μh)eh |
+ |αheh − (γh + μh)ih − αheh + (γh + μh)ih |
+ |Wih(1 − ev − iv) − (μv + kv)ev − Wih(1 − ev − iv) + (μv + kv)ev |
+ |kvev − μviv − kvev + μviv |

≤ |μh(sh − sh)| + |2L(shiv − shiv)| + |(αh + μh)(eh − eh)|
+ |αh(eh − eh)| + |(γh + μh)(ih − ih)| + |W (ih − ih)| + |W (evih − evih)|
+ |W (ivih − ivih)| + |(μv + kv)(ev − ev)| + |kv(ev − ev)| + |μv(iv − iv)|

≤ |μh(sh − sh)| + |2L B(sh − sh)| + |2L B(iv − iv)| + |W B(ev − ev)|
+ |2W B(ih − ih)| + |W B(iv − iv)| + |(αh + μh)(eh − eh)|
+ |αh(eh − eh)| + |(γh + μh)(ih − ih)|
+ |W (ih − ih)| + |(μv + kv)(ev − ev)| + |kv(ev − ev)| + |μv(iv − iv)|

≤ (μh + 2L B)|(sh − sh)| + (2W B + W + γh + μh)|(ih − ih)|
+ (2αh + μh)|(eh − eh)|
+ (μv + 2kv + W B)|(ev − ev)| + |(2L B + μv + W B)(iv − iv)|

≤ V ||D − D||

Where, V = max{μh + 2L B, 2W B + W + γh + μh, 2αh + μh, μv + 2kv + W B, 2L B +
μv + W B}. Thus, Z(D) satisfies the Lipschitz condition with respect to D. Hence, from
Lemma (7.1), D(t) has a unique solution of Eq. (11) with initial condition D0. 	


Stability of Model

Basic Reproduction Number

Basic reproduction number [68] is the expected number of secondary infections caused by
a single infectious individual during their entire infectious lifetime. Using next-generation
operator method [67, 68], we find the expression for R0. For this, we find the matrices F
(infection new cases term) and V (transition terms) of Eq. (11). Here, L = A

μv Hh
bαβh ,

β = (αh + μh), k = γh + μh and W = bαβv .

F =

⎛

⎜⎜⎝

0 0 0 L
0 0 W 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ and V =

⎛

⎜⎜⎝

−β 0 0 L
0 −(kv + μv) 0 0
αh 0 −k 0
0 kv 0 −μv

⎞

⎟⎟⎠
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Also,

V −1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

− 1
β

0 0 0

0 − 1

kv + μv

0 0

− αh

kβ
0 −1

k
0

0 − kv

kvμv + μ2
v

0 − 1

μv

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

FV −1 =

⎛

⎜⎜⎜⎜⎜⎝

0 − kv L

kvμv + μ2
v

0 − L

μv

− Wα

kβ
0 − W

k
0

0 0 0
0 0 0 0

⎞

⎟⎟⎟⎟⎟⎠

The spectral radius of the next generation matrix is

R0 =
√

αh LW kv

kβμv(kv + μv)

which is threshold condition equivalent to reproduction number of the model.

R0(α) =
√

b2ααhkvβhβv A

Hhμ2
v(γh + μh)(αh + μh)(kv + μv)

(14)

The basic reproduction number in dimensionless form is

R0 =
√

b2αhkvβhβv A

Hhμ2
v(γh + μh)(αh + μh)(kv + μv)

(15)

Equilibrium Points

For the evaluation of equilibrium points, the system of Eq. (11) is formed as

Dα
t sh = Dα

t eh = Dα
t ih = Dα

t ev = Dα
t iv = 0

So, using L = A
μv Hh

bαβh , β = (αh + μh), k = γh + μh and W = bαβv

μh(1 − sh) − Lshiv = 0

Lshiv − βeh = 0

αheh − kih = 0

Wih(1 − ev − iv) − (μv + kv)ev = 0

kvev − μviv = 0

(16)
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After solving, we get a diseases free equilibrium (DFE) point E0 = (1, 0, 0, 0, 0) and the
endemic equilibrium (EE) point E∗ = (s∗

h , e∗
h, i∗h , e∗

v, i∗v ) where,

s∗
h = (kv + μv)(Wαhμh + kμv)

Wαh(kv(L + μh) + μhμv)

e∗
h = μhμvkβ(kv + μv)[R2

0 − 1]
Wβαh(kv(L + μh) + μhμv)

i∗h = μ2
hμvkβ(kv + μv)[R2

0 − 1]
Wβk(kv(L + μh) + μhμv)

e∗
v = μhμ2

vkβ[R2
0 − 1]

Lkv(αhμh W + kμvβ)

i∗v = μhμvkβ[R2
0 − 1]

L(αhμh W + kμvβ)

(17)

Asymptotic Behaviour

Lemma 8.1 [36, 38, 48] Consider the fractional-order system

Dα
t y(t) = f (t, x), t0 > 0 (18)

with initial condition y(t0) = t0, where α ∈ (0, 1], f ∈ R
n. The system is said to be locally

asymptotically stable iff |arg(λi )| > απ
2 for all eigenvalues λi where, i = 1, 2, 3, . . . which

is obtained from given Jacobian matrix.

Theorem 8.1 The disease free equilibrium E0 is locally asymptotically stable if R0 < 1 and
unstable if R0 > 1.

Proof The Jacobian matrix J (E0) of the Eq. (11) about the diseases free equlibrium point is

J (E0) =

⎡

⎢⎢⎢⎢⎣

−μh 0 0 0 −L
0 −β 0 0 L
0 αh −k 0 0
0 0 W −kv − μv 0
0 0 0 kv −μv

⎤

⎥⎥⎥⎥⎦

The characteristics equations is;

|J (E0) − λI | = 0 (19)

where the eigenvalue is λ = −μh and for remaining Jacobian matrix of order 4 is

J1(E0) =

⎡

⎢⎢⎣

−λ − β 0 0 L
αh −λ − k 0 0
0 W −λ − kv − μv 0
0 0 kv −λ − μv

⎤

⎥⎥⎦ = 0

The characteristic equation of J1(E0) is as

λ4 + λ3 p1 + λ2 p2 + λp3 + p4 = 0 (20)

where

p1 = k + β + kv + 2μv
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p2 = k(kv + 2μv + β) + β(kv + 2μv + k)

p3 = (kv + μv)(kβ + kμv + βμv) + kβμv

p4 = (kv + μv)kβμv[1 − R2
0]

Here, the parameters p1, p2, p3 are non-negative and p4 is positive when R0 < 1.
The approaches followedby [6, 25, 36, 62] for the characteristicEq. (19) and the eigenvalue

is λ = −μh and remaining are determined by polynomial Eq. (20). So,

|arg(λ)| = π >
απ

2

where, α ∈ (0, 1]. Similarly, the argument of roots of characteristic polynomial Eq. (20) are
also greater than απ

2 in similar processes. Form the Lemma 8.1, we conclude that DFE is
locally asymptotically stable for R0 < 1. 	


Theorem 8.2 The endemic equilibrium E∗ = (s∗
h , e∗

h, i∗h , e∗
v, i∗v ) of the system of Eq. (11) is

locally asymptotically stable if R0 > 1 and unstable if R0 < 1.

Proof The Jacobian matrix evaluated at endemic equlibrium point E∗ in (17) of the system
of Eq. (11) is

J (E∗) =

⎡

⎢⎢⎢⎢⎣

−a1 0 0 0 −a3
a2 −β 0 0 a3
0 αh −k 0 0
0 0 a4 −a5 −a6
0 0 0 kv −μv

⎤

⎥⎥⎥⎥⎦

where

a1 = μh + L
μhμvβ[R2

0 − 1]
b3

,

a2 = L
μhμvβ[R2

0 − 1]
b3

,

a3 = b1
(Wαhμh + kμv)

Wαhb2
,

a4 = W

[
1 − μhμ2

vkβ[R2
0 − 1]

Lkvb3
− μhμvβ[R2

0 − 1]
b3

]
,

a5 =
[

kv + μv + μ2
hμvb1[R2

0 − 1]
b2

]
,

a6 = μ2
hμvb1[R2

0 − 1]
b2

,

b1 = kv + μv,

b2 = kv(L + μh) + μhμv,

b3 = αhμh W + kμvβ
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The characteristic equation of J (E∗) is as

λ5 + λ4α + λ3n2 + λ2n3 + λn4 + n5 = 0 (21)

where,

n1 = [a1 + a5 + k + β + μv]
n2 = [a1a5 + a1k + a5k + a6kv + a1β − a5β + kβ + a1μv

+ a5μv + kμv + βμv]
n3 = [a1a5k + a1a6kv + a6kkv + a1a5β + a1kβ + a5kβ

+ a6kβ + a1a5μv + a1kμv + a5kμv

+ a1βμv + a5βμv + kβμv]
n4 = [a1a6kkv − a3a4kvαh + a1a5kβ + a1a6kvβ + a6kkvβ

+ a1a5kμv + a1a5βμv + a1kβμv + a5kβμv]
n5 = [a1kβ(a6kv + a5μv) − αhkva3a4(a1 − a2)]

According to Routh–Hurwitz criterion followed in [4, 37, 38], we have the following asso-
ciated conditions,

D1 = n1 > 0, D2 =
∣∣∣∣
n1 n3

1 n2

∣∣∣∣ > 0, D3 =
∣∣∣∣∣∣

n1 n3 n5
1 n2 n4

0 n1 n3

∣∣∣∣∣∣
> 0

D4 =

∣∣∣∣∣∣∣∣

n1 n3 n5 0
1 n2 n4 0
0 n1 n3 n5
0 1 n2 n4

∣∣∣∣∣∣∣∣
> 0 D5 =

∣∣∣∣∣∣∣∣∣∣

n1 n3 n5 0 0
1 n2 n4 0 0
0 n1 n3 n5 0
0 1 n2 n4 0
0 0 n1 n3 n5

∣∣∣∣∣∣∣∣∣∣

> 0

As followed by ni > 0 for all i = 1, 2, 3, 4, 5 and the relation n1 > 0, n2 > 0, n3 > 0, n4 >

0, n5 > 0, n1n2n3 > n2
3+n2

1n4, (n1n4−n5)(n1n2n3−n2
3−n2

1n4) > n5(n1n2−n3)
2+n1n2

5
is satisfied when R0 > 1. Hence, the equilibrium point E∗ is locally asymptotically stable.
Which complete the proof. 	


Basic Reproduction Number R0 With Model Parameters

Figures 4 and 5 are simulated to observe the impacts of model parameters on the basic
reproduction number. Figure 4a describes the relation between R0, α, and bα , which suggests
that when level of memory increases (α → 0), bα increases and R0 ∝ bα . When biting rate
increases, basic reproduction number R0 also increases while R0 decreases with the decrease
in α (Fig. 4b). The variation in the value of R0 versus the transmission rate of host βh and
recovery rate γh is shown in Fig. 5a. R0 increases with increase in βh and R0 decreases
with increase in γh . From Fig. 5b the relation of R0, transmission rate of vector βv and
host incubation rate αh is observed. The figures show that R0 can be effectively reduced or
increased with respective change in parameters βv and αh .
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Fig. 4 Relation between a R0, α, bα , b R0, b, α

Fig. 5 Relation between a R0, γh , βh and b R0, αh , βv

Numerical Results and Discussion

There are different numerical methods discussed in [28, 33, 41, 69] for the solution of the
fractional order system of equation. The simulation technique used for the model (11) is the
Euler’s method, which can be expressed as;

Consider the initial value problem

Dα
t θ(t) = l(t, θ(t)), q ≤ t ≤ r , θ(q) = θ0 (22)

where, ti = q + ih, i = 0, 1, 2, 3, . . . , n and h = r−q
n . The Euler’s method for (22) is,

θ(ti+1) = θ(ti ) + hα

�(α + 1)
l(ti , θ(ti )) (23)

Applying (23) to the model Eq. (11) we can write the equations for all i = 1, 2, . . . , n −1,
t > 0 as;
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Fig. 6 a Fractional-order model validation, b simulation of sh , eh , ih , ev, iv at α = 0.92

sh(ti+1) = sh(ti ) + hα

�(α + 1)

(
μh(1 − sh(ti )) − Lsh(ti )iv(ti )

)

eh(ti+1) = eh(ti ) + hα

�(α + 1)

(
Lsh(ti )iv(ti ) − (αh + μh)eh(ti )

)

ih(ti+1) = ih(ti ) + hα

�(α + 1)

(
αheh(ti ) − (γh + μh)ih(ti )

)

ev(ti+1) = ev(ti ) + hα

�(α + 1)

(
Wih(ti )(1 − ev(ti ) − iv(ti )) − (μv + kv)ev(ti )

)

iv(ti+1) = iv(ti ) + hα

�(α + 1)

(
kvev(ti ) − μviv(ti )

)

withsh(t0) = sh0, eh(t0) = eh0, ih(t0) = ih0, ev(t0) = ev0, iv(t0) = iv0

(24)

For the numerical simulation, We have taken a 32 week’s data of nepal from July 2019 to
December 2019. In this year, monsoon started fromMarch, so the dengue cases were reported
to appear fromMay affecting over 68 districts out of 77 districts of Nepal [43]. Around 97%
dengue cases in Nepal are fromTerai andmid-mountain region [23, 57]. According to Central
Bureau of Statistics 2011 [10], the population size of Nepal is 26.5 million and around 51%
population are living in Terai region. So, 20 million peoples are considered as a susceptible
population for dengue cases. 1

μh
and 1

μv
are respectively the maximum life span of host and

vector population taken as 1
365×70 and 1

50 per day respectively [7, 50]. The vector incubation

rate kv = 1
15 per day is taken for simulations [7, 55]. The parameters value taken fromTable 2

and the initial values are taken according to available data of Nepal [40].
Figure 6a, presents the solution of classical model and the fractional-order model taking

real infectious disease cases data ofNepal. This shows that the fractional order systemfit better
than the classical model systemwhen thememory level α = 0.92. The numerical simulations
of sh, eh, ih, ev, iv are displayed in Fig. 6b for α = 0.92. When the suspectible humans
come in contact with the infectious mosquito, they become infected. Then the suspectible
population size decreases and the infected (exposed) population size starts to increase. This
infected population size decreases after attaining its peak as the infected (exposed) people
become infectious showing the symptoms of diseases and some infected people may die due
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Fig. 7 Numerical simulation for the model (11) by using the Caputo derivative for (α =
1, 0.98, 0.95, 0.92, 0.9)

to the natural cause. The infectious population size initially increases and the population size
decreases later, due to recovery and natural death. The similar dynamics can be observed in
the mosquito population (Fig. 6b).

Figure 7a–e are simulated with different values of α taking time in weeks and keeping
other parameters constant. With the change in α there is a significant change in the disease
dynamics. Interestingly, it is observed that sh drops rapidly in short period of time with the
decrease in the values of α (Fig. 7a). There is noticeable variation in disease transmission
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with the change in the different values of α. eh and ih also complete the chain of infection
with increase value of the memory. Similar, dynamics of the populations can be observed
with small change of memory α. It is observed that the variation of fractional order α has a
great influence on the infection level of dengue in both vector and host populations.

Conclusion

Fractional-order calculus has wide applications in real life problems. Nowadays, this cal-
culus is being used in epidemic diseases modeling to obtain better results. Fractional-order
derivative is used in the classical integer model (SEIR-SEI). The theoretical and epidemi-
ological aspects of the dynamical behaviour of the diseases are studied in detail using the
fractional-order system. The disease-free equilibrium is seen locally asymptotically stable
whenever the associated basic reproduction number R0 < 1, and the endemic equilibrium is
observed to be locally asymptotically stable whenever R0 > 1. We obtained feasible results
for the dynamics of dengue infection with the variation in the memory index α. Present study
suggests that index of the memory has a logical effects for the system. The fractional-order
model can explore the dengue epidemic disease transmission more accurately rather than
the integer-order model under an appropriate choice of memory level. The transformation in
fractional-order model with a small change in α produces a large change in the transmission
dynamics. From the study of data structure of infectious cases, overall model dynamics shows
that R0 = 3.26, and we observed that before July R0 is less than unity, August–September
R0 is greater than unity where infections cases is in peak and after October R0 is less than
unity. This is due to the lack of preventive measures in society and a seasonal behaviours
(temperature, rainfall). So, these behaviours can be introduced in the future work for an
appropriate study of dengue disease spread in Nepal.
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