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Abstract
This study provides analytical approximate solutions to classes of nonlinear differential
equations with generalized Caputo-type fractional derivatives. The Adomian decomposition
method is successfully extended andmodified to handle the considered fractionalmodels.Our
study displays the useful features of the modified scheme as an effective technique for pro-
viding series solutions to differential equations involving the studied fractional derivatives.
Analytical solutions to generalized Caputo-type fractional derivative models are discussed
and numerical comparisons with a predictor-corrector method are made to verify the appli-
cability, accuracy and efficiency of the method. The influence of the generalized fractional
derivative parameters on the dynamics of the studied fractional models is discussed. The
used modified method is expected to be effectively employed to handle numerous general-
ized Caputo-type fractional derivative models.

Keywords Fractional differential equation · Generalized Caputo derivative · Adomain
decomposition method · Predictor-corrector method

Introduction

Fractional differential equations (FDEs) appeared in the modeling and treatment of some
real phenomena in several fields such as biology, chemistry, physics, fluid mechanics, epi-
demiology, viscoelasticity, finance and engineering and other areas of science were presented
in [1–5]. The emergence of FDEs is due to the fact that the non-local nature of fractional
derivative operators can be used as a distinct mathematical tool to more accurately describe
dynamic systems involving memory effects [6–10]. The growing interest in applications
involving FDEs makes it necessary to expand, develop and improve stable and robust ana-
lytical and numerical methods for solving such models. For instance, some methods such as
variational iteration method [11, 12], homotopy analysis method [13, 14], Adomain decom-
position method [15, 16], Laplace transform method [17, 18] and predictor corrector method
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[19, 20] have been developed to solve FDEs where the fractional derivative is taken in the
sense of Caputo defined below. In the literature, many definitions of fractional derivatives
have been proposed as most of them are based on definitions of fractional integrals such as

Riemann-Liouville : Iα
a+ f (x) = 1

�(α)

∫ x

a
(x − τ)α−1 f (τ )dτ, x > a, (1)

Hadamard : Iα
a+ f (x) = 1

�(α)

∫ x

a

(
log

x

τ

)α−1
f (τ )

dτ

τ
, x > a, (2)

Katugampola : I α,ρ

a+ f (x) = ρ1−α

�(α)

∫ x

a
τρ−1(xρ − τρ)α−1 f (τ )dτ, x > a, ρ > 0,

(3)

where α > 0 and a ≥ 0. Depending on the Riemann–Liouville definition, which is one of
the most studied, the Riemann–Liouville and Caputo fractional derivatives of order α > 0
are defined as

RDα
a+ f (x) = Dn I n−α

a+ f (x) = 1

�(n − α)

dn

dxn

∫ x

a
(x − τ)n−α−1 f (τ )dτ, x > a, (4)

C Dα
a+ f (x) = I n−α

a+ Dn f (x) = 1

�(n − α)

∫ x

a
(x − τ)n−α−1 f (n)(τ )dτ, x > a, (5)

respectively, such that a ≥ 0, n − 1 < α ≤ n and n ∈ IN . As an extension of the Riemann–
Liouville fractional integral, Osler [21] highlighted a useful generalization of the fractional
integral of a function f with respect to the function h as

I α,h
a+ f (x) = 1

�(α)

∫ x

a
h′(τ )(h(x) − h(τ ))α−1 f (τ )dτ, x > a, (6)

where α > 0. In case of h(x) = x , h(x) = log x and h(x) = xρ/ρ, the generalized
fractional integral operator given in Eq. (6) reduces to the Riemann–Liouville, Hadamard
and Katugampola fractional integral operators given in Eqs. (1), (2) and (3), respectively.
Furthermore, if α, β > 0 and γ > −1 the generalized fractional integral given in (6)
satisfies the following properties

Iα,h
a+ I β,h

a+ f (x) = Iα+β,h
a+ f (x), (7)

Iα,h
a+
(
h(x) − h(a)

)γ = �(γ + 1)

�(γ + α + 1)

(
h(x) − h(a)

)γ+α
. (8)

According to the generalization given in Eq. (6), the generalized Riemann–Liouville-type
and the Caputo-type fractional derivatives of order α > 0 are identified as

RDα,h
a+ f (x) = 1

�(n − α)

(
1

h′(x)
d

dx

)n ∫ x

a
h′(τ )(h(x) − h(τ ))n−α−1 f (τ )dτ, x > a, (9)

C Dα,h
a+ f (x) = 1

�(n − α)

∫ x

a
h′(τ )(h(x) − h(τ ))n−α−1

(
1

h′(τ )

d

dτ

)n

f (τ )dτ, x > a, (10)

respectively, where n − 1 < α ≤ n and n ∈ IN . In case of h(x) = x , the fractional operators
(9) and (10) reduces to (4) and (5), respectively. Therefore, theRiemann–Liouville andCaputo
fractional derivative operators with respect to the function h given in Eqs. (9) and (10) can
be considered as generalizations of the fractional derivative operators given in Eqs. (4) and
(5). This topic has been a source of inspiration to researchers due to its importance and use
in many fields including physics, control theory of dynamical systems etc. [18, 22–25].
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On the other hand, the Adomain decomposition method (ADM), introduced by Adomain
in 1980 [26], has received great interest due to its rapid convergence [27, 28] and ease of use
to provide analytical solutions for various functional equation types in many engineering and
physical applications. This method has some merits over other methods; It gives analytical
series solutions without using linearity or perturbation, in addition, it transforms a non-linear
functional equation into a series of linear equations that can be solved straightforwardly and
directly. Some numerical comparisons between the ADM and other methods are presented
in [29–31], while improved versions and modifications of the ADM can be found in [32–
34]. Moreover, the method has been modified to handle non-linear differential equations of
fractional order, where the fractional derivative is taken in the sense of Caputo [15, 16, 33,
35–38].

In [20], a novel predictor-corrector algorithm was developed for providing numerical
approximate solutions to IVPs involving generalized Caputo-type (G-C) fractional deriva-
tives. According to our knowledge, analytical solutions for IVPs including G-C fractional
derivatives have not been presented yet. Therefore, motivated by the recent developments
of mathematical models that include G-C fractional derivatives and the challenging issues
to solve such models, a modification of the ADM has been proposed in this paper to solve
nonlinear IVPs containing the studied fractional derivatives. The main objective of the cur-
rent paper is to construct analytical fractional power series solutions of the studied models.
In addition, to demonstrate the effectiveness and efficiency of the used modified scheme in
obtaining approximate solutions, numerical comparisons are made with a predictor-corrector
method by means of some illustrative examples.

This paper is organized as follows. Definitions, notations, and properties of G-C fractional
operators are introduced in section 2. In section 3, approximate analytical solutions of IVPs
involving FDEs with the studied G-C fractional derivatives are derived by a modified scheme
of Adomain decomposition method. Next, some test problems of the studied models using
some special cases of the function h, are examined in section 4 to show the merits of the
proposed scheme. Numerical comparisons between the proposed scheme and a predictor-
corrector method are made. Finally, some concluding remarks are made in section 5.

Preliminaries

This section recalls some definitions, characteristics and properties of the G-C fractional
derivative operator identified in Eq. (10). In real-life problems, the Caputo fractional deriva-
tive has been widely used in modelling many functional differential problems in science
and engineering because it has many features similar to those of ordinary derivatives. The
initial conditions for IVPs involving Caputo derivatives can be expressed in terms of the
initial values of integer order derivatives [39, 40]. Therefore, several Caputo-type fractional
derivatives have been introduced and studied. For example, the Caputo–Hadamard fractional
derivative of order α > 0 is defined as [41]

CH Dα
a+ f (x) = 1

�(n − α)

∫ x

a

(
log

x

τ

)n−α−1
(

τ
d

dτ

)n

f (τ )
dτ

τ
, x > a, (11)

and the Caputo–Katugampola fractional derivative of order α > 0 is introduced as [25]

C Dα,ρ

a+ f (x) = ρα−n+1

�(n − α)

∫ x

a
τρ−1 (xρ − τρ

)n−α−1
(

τ1−ρ d

dτ

)n
f (τ )dτ, x > a,

(12)
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where ρ > 0, a ≥ 0, n − 1 < α ≤ n and n ∈ IN . Now, using the generalization given in Eq.
(6), we introduce an alternative characterization of the G-C fractional derivative given in Eq.
(10). Let h be any strictly increasing function on [a, b] which has a continuous derivative on
(a, b) such that h′(x) �= 0 on [a, b]. The G-C fractional derivative of f with respect to the
function h of order α, n − 1 < α ≤ n and n ∈ IN , is defined as [24]

C Dα,h
a+ f (x) = I n−α,h

a+

(
1

h′(x)
d

dx

)n

f (x), a < x < b. (13)

Let h ∈ Cn[a, b] such that h′(x) > 0 on [a, b]. Define the space of functions ACn
h [a, b]

as

ACn
h [a, b] =

{
f : [a, b] −→ IR and

(
1

h′(t)
d

dt

)n−1

f ∈ AC[a, b]
}

, (14)

where AC[a, b] is the space of absolutely continuous functions on [a, b].

Remark 1 If f ∈ ACn
h [a, b] and n−1 < α ≤ n, then the G-C fractional derivative of f with

respect to the function h exist almost everywhere on [a, b] [18].

Remark 2 Let f ∈ Cn+m[a, b], such that n, m ∈ IN , and n − 1 < α ≤ n. Then [24]

C Dα,h
a+

(
1

h′(x)
d

dx

)m

f (x) = C Dα+m,h
a+ f (x), n − 1 < α ≤ n. (15)

Remark 3 Let α > 0 and f ∈ C1[a, b]. Then [24]
C Dα,h

a+ Iα,h
a+ f (x) = f (x). (16)

Theorem 1 The relationship between the G-C fractional derivative and the generalized frac-
tional integral with respect to function h, where f ∈ Cn[a, b] and n − 1 < α ≤ n, is given
by [24]

I α,h
a+ C Dα,h

a+ f (x) = f (x) −
n−1∑
j=0

1

j !
(
h(x) − h(a)

) j
[(

1

h′(t)
d

dt

) j

f (t)

]

t=a

, a < x < b.

(17)

Remark 4 In particular, if 0 < α ≤ 1, we get

Iα,h
a+ C Dα,h

a+ f (x) = f (x) − f (a). (18)

Theorem 2 The relationship between the generalized Riemann–Liouville-type and the G-C
fractional derivatives of order α > 0, with f ∈ Cn[a, b] and n − 1 < α ≤ n, is given by
[24]

C Dα,h
a+ f (x) = RDα,h

a+

⎧⎨
⎩ f (x) −

n−1∑
j=0

1

j !
(
h(x) − h(a)

) j
[(

1

h′(t)
d

dt

) j

f (t)

]

t=a

⎫⎬
⎭ ,

a < x < b. (19)
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Theorem 3 Let gβ(x) = (h(x) − h(a))β and β > n − 1. Then, for α > 0, [24]

C Dα,h
a+ gβ(x) = �(β + 1)

�(β − α + 1)
gβ−α(x), x > a. (20)

In the case of n > m, where n, m ∈ IN , we have

C Dα,h
a+ gm(x) = 0. (21)

Theorem 4 Suppose there exists some p ∈ IN with α, β > 0 and β, α + β ∈ [p − 1, p].
Then, for f ∈ C p[a, b], we have [24]

C Dα,h
a+

C Dβ,h
a+ f (x) = C Dα+β,h

a+ f (x). (22)

The Adomain DecompositionMethod

The ADM has been successfully implemented in handling IVPs of functional equation types
including nonlinear ODEs and PDEs for both integer and fractional orders. This section
proposes a modified scheme of the ADM as an effective tool for producing approximate ana-
lytical solutions to IVPs that include nonlinear Caputo-type fractional differential equations.
The principle of the proposed scheme is to express the solution as an infinite series of function
components where the components are given by fractional powers of (h(x) − h(a)). Here,
the goal is to find approximate analytical solution for the IVP

{
C Dα,h

a+ y(x) + R(y(x)) + N (y(x)) = g(x), a < x < b,
y(k)(a) = yk0 , k = 0, 1, ..., n − 1,

(23)

where n − 1 < α ≤ n, n ∈ IN , C Dα,h
a+ is the G-C fractional derivative operator given in Eq.

(13), R is a linear operator, N represents a nonlinear operator and g is the source function.
Suppose h is any strictly increasing function on [a, b] and has a continuous derivative on
(a, b) such that h′(x) �= 0 on [a, b] and let y ∈ Cn[a, b]. At first, for a < x < b the IVP
(23) is equivalent, in view of Theorem 1, to the integral equation

y(x) + Iα,h
a+ R(y(x)) + Iα,h

a+ N (y(x))

= Iα,h
a+ g(x) +

n−1∑
j=0

1

j !
(
h(x) − h(a)

) j
[(

1

h′(t)
d

dt

) j

y(t)

]

t=a

. (24)

The modified scheme suggests the solution y(x) be decomposed by the series

y(x) =
∞∑
j=0

y j (x), (25)

and the nonlinear term N (y) be expressed as

N (y(x)) =
∞∑
j=0

A j (x), (26)

where the Adomian polynomials A j (x) can be evaluated using the relation [42]

A j (x) = 1

j !

[
d j

dλ j
N
( ∞∑

i=0

λi yi (x)

)]

λ=0

, j ≥ 0. (27)
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Inserting the series given in Eqs. (25) and (26) into the integral Eq. (24), we get

∞∑
j=0

y j (x) = y00 + h(x) − h(a)

h′(a)
y10 + ... + 1

(n − 1)!
(
h(x) − h(a)

)n−1

[(
1

h′(t)
d

dt

)n−1

y(t)

]

t=a

+I α,h
a+ (g(x)) − I α,h

a+

⎛
⎝R

⎛
⎝ ∞∑

j=0

y j (x)

⎞
⎠
⎞
⎠− I α,h

a+

⎛
⎝ ∞∑

j=0

A j (x)

⎞
⎠ . (28)

Consequently, The modified scheme produces the series solution y(x) = ∑∞
j=0 y j (x),

where the term function y j (x), j = 0, 1, · · · , can be obtained recursively by using the
formula⎧⎪⎪⎨

⎪⎪⎩
y0(x) =

n−1∑
j=0

1

j !
(
h(x) − h(a)

) j
[(

1

h′(t)
d

dt

) j

y(t)

]

t=a

+ Iα,h
a+ (g(x)) ,

y j+1(x) = −Iα,h
a+
(R (y j (x)))− Iα,h

a+
(
A j (x)

)
, j ≥ 0,

(29)

where A j (x) is determined using Eq. (27). Clearly, if our decomposition series
∑∞

j=0 y j (x)
converges and if we apply the G-C fractional derivative operator to Eq. (28), using Remark
3 and Theorem 3, we get

C Dα,h
a+

∞∑
j=0

y j (x) = g(x) − R
⎛
⎝ ∞∑

j=0

y j (x)

⎞
⎠−

∞∑
j=0

A j (x). (30)

Therefore, since
∑∞

j=0 A j (x) = N (∑∞
i=0 yi (x)

)
, y(x) = ∑∞

j=0 y j (x) is exactly a solution
of the IVP (23). The convergence of the ADM has been discussed by Cherruault in [28, 43].

Remark 5 Let f (x) = ∑n−1
j=0

1
j !
(
h(x)− h(a)

) j [( 1
h′(t)

d
dt

) j
y(t)

]
t=a

+ Iα,h
a+ (g(x)). In order

to facilitate the calculations, the presented approach can be improved by dividing the function
f by a series of infinite components [44]. In this case, assume that the function f can be
represented by the series f (x) = ∑∞

j=0 f j (x). Then, the series solution y(x) = ∑∞
j=0 y j (x)

to the IVP (23) can be obtained where the term function y j (x), j = 0, 1, · · · , satisfies the
formula ⎧⎨

⎩
y0(x) = f0(x),
y1(x) = f1(x) − Iα,h

a+ (R (y0(x))) − Iα,h
a+ (A0(x)) ,

y j+1(x) = f j+1(x) − Iα,h
a+
(R (y j (x)))− Iα,h

a+
(
A j (x)

)
, j ≥ 1.

(31)

For application purposes, we may truncate the infinite series
∑∞

j=0 y j (x) at the N -th term

and use the resulting partial sum
∑N−1

j=0 y j (x), where N ∈ IN , as an approximation to the
solution y(x).

Applications

This section derives analytical approximate solutions to IVPs involving FDEswith the studied
G-C fractional derivatives. In this regard, the modified scheme presented in the previous
section is implemented to provide approximate solutions for the studied models using some
special cases of the function h, where the function h is assumed to be any strictly increasing
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function on [a, b] which has a continuous derivative on (a, b) such that h′(x) �= 0 on [a, b].
Numerical comparisonsweremade between the proposed scheme and the universal predictor-
corrector (P-C) method, introduced in [20], using the Mathematica software package. The
universal P-C algorithm has proven to be an efficient, stable and accurate tool in providing
approximate numerical solutions for the studied IVPs. Numerical simulation of the studied
models was carried out to show the influence of the considered derivative parameters on their
dynamics.

Example 1 First, we consider the fractional IVP
{

C Dα,h
0+ y(x) = 2 y(x) − y2(x) + 1, 0 < α ≤ 1, 0 < x ≤ 1,

y(0) = 0,
(32)

where C Dα,h
0+ is the G-C fractional derivative operator of order α. The exact solution of (32),

when h(x) = x and α = 1, is given as follows [45]

y(x) = 1 + √
2 tanh

[√
2 x + 1

2
log

(√
2 − 1√
2 + 1

)]
. (33)

Applying the integral operator I α,h
0+ to both sides of Eq. (32), using Theorem 1 and the relation

(8), we obtain

y(x) = Iα,h
0+ (2 y(x)) − Iα,h

0+ (y2(x)) + (h(x) − h(0))α

�(α + 1)
. (34)

Our modified scheme suggests the series solution y(x) = ∑∞
j=0 y j (x), such that the

nonlinear term N (y) = y2 be expressed as y2(x) = ∑∞
j=0 A j (x), where the component

function y j (x), j = 0, 1, · · · , can be obtained recursively by using the formula
⎧⎨
⎩

y0(x) = (h(x) − h(0))α

�(α + 1)
,

y j+1(x) = Iα,h
0+ (2 y j (x) − A j (x)), j ≥ 0,

(35)

and

A j (x) = 1

j !

⎡
⎣ d j

dλ j

( ∞∑
i=0

λi yi (x)

)2
⎤
⎦

λ=0

, j ≥ 0. (36)

The Adomain polynomials A j , j = 0, 1, · · · , can be calculated as
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A0 = y20 ,
A1 = 2 y0y1,
A2 = 2 y0y2 + y21 ,
A3 = 2 y0y3 + 2 y1y2,
A4 = 2 y0y4 + 2 y1y3 + y22 ,

...

(37)

Therefore, utilizing the recurrence relation (35), we get the series solution

y(x) =
∞∑
j=1

c j (h(x) − h(0)) jα , (38)

123
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where

c1 = 1

�(α + 1)
,

c2 = 2

�(2α + 1)
,

c3 = −�(2α + 1) + 4�(2α + 1)2

�(α + 1)2�(3α + 1)
,

c4 = −2�(2α + 1)2 − 4�(3α + 1)�(α + 1)

�(α + 1)2�(2α + 1)�(4α + 1)
,

c5 = 2�(2α + 1)�(4α + 1)

�(α + 1)3�(3α + 1)�(5α + 1)
,

...

(39)

In Tables 1, 2 and 3, we show approximate solutions produced using our modified scheme
of the ADM (yADM ) when N = 10 and the approximate solutions produced using the
universal P-Cmethod (yP−C ) to the IVP (32), for somevalue ofα andρ,with three cases of the
function h (h(x) = xρ , h(x) = exp(ρx) and h(x) = log(ρx +1)). Furthermore, the solution
behavior of the fractional model given in the IVP (32) regarding the different cases of the
function h against the variable x is described in Figs. 1 and 2. Figure 1 pictures approximate
solutions produced using our modified scheme when N = 10, the approximate solutions
produced using the universal P-C method and the exact solution, where h(x) = x . Figure
2 pictures approximate solutions produced using our modified scheme when N = 10 and
the approximate solutions produced using the universal P-C method, where h(x) = exp(ρx)
and h(x) = log(ρx + 1). In Fig. 3, we draw the absolute error of the approximate solutions
obtained using our modified scheme when h(x) = x and α = 1.

Table 1 Numerical solutions to the IVP (32) for some values of α and ρ with h(x) = xρ

x α = 1, ρ = 1 α = 0.95, ρ = 0.75 α = 0.925, ρ = 0.8 α = 0.9, ρ = 0.85
yADM yP−C yADM yP−C yADM yP−C yADM yP−C

0.2 0.24197680 0.24197679 0.44193869 0.44193863 0.42626838 0.42626831 0.41299792 0.41299784

0.4 0.56781217 0.56781212 0.83336967 0.83336932 0.82501353 0.82501308 0.81872335 0.81872277

0.6 0.95356648 0.95356611 1.19243201 1.19243247 1.19672585 1.19672670 1.20214633 1.20214792

0.8 1.34635489 1.34636351 1.49438921 1.49448065 1.50836050 1.50850789 1.52188591 1.52212147

1 1.68926577 1.68949817 1.73095023 1.73153905 1.74857293 1.74946030 1.76399667 1.76527464

Table 2 Numerical solutions to the IVP (32) for some values of α and ρ with h(x) = exp(ρx)

x α = 1, ρ = 1 α = 0.95, ρ = 0.75 α = 0.925, ρ = 0.8 α = 0.9, ρ = 0.85
yADM yP−C yADM yP−C yADM yP−C yADM yP−C

0.2 0.27297780 0.27297779 0.21713206 0.21713205 0.25138824 0.25138821 0.28945927 0.28945923

0.4 0.74018277 0.74018266 0.53429729 0.53429720 0.61748533 0.61748518 0.70764006 0.70763977

0.6 1.38760351 1.38761805 0.96563953 0.96563876 1.10091565 1.10091427 1.23591605 1.23592095

0.8 1.97879183 1.97864984 1.45347137 1.45353182 1.60339344 1.60373268 1.73169335 1.73280925

1 2.38102099 2.29197016 1.87625781 1.87702568 1.99263521 1.98786882 2.10829564 2.06680756
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Table 3 Numerical solutions to the IVP (32) for some values of α and ρ with h(x) = log(ρx + 1)

x α = 1, ρ = 1 α = 0.95, ρ = 0.75 α = 0.925, ρ = 0.8 α = 0.9, ρ = 0.85
yADM yP−C yADM yP−C yADM yP−C yADM yP−C

0.2 0.21711626 0.21711625 0.18467040 0.18467039 0.21185488 0.21185487 0.24177783 0.24177780

0.4 0.45599353 0.45599350 0.37807756 0.37807752 0.42931762 0.42931755 0.48460089 0.48460077

0.6 0.69826460 0.69826453 0.57503421 0.57503411 0.64686993 0.64686976 0.72229190 0.72229159

0.8 0.92918213 0.92918203 0.76715360 0.76715336 0.85410992 0.85410938 0.94247218 0.94247091

1 1.13938985 1.13938973 0.94801786 0.94801717 1.04398862 1.04398720 1.13813549 1.13813412

Fig. 1 Plots of approximate
solutions and exact solution for
the IVP (32) when α = 1 and
ρ = 1: Exact solution (black
line); Modified scheme of ADM
(blue line); Universal P-C method
(red line)

Fig. 2 Plots of approximate solutions for the IVP (32) when α = 1 and ρ = 1: Modified scheme of ADM
(blue line); Universal P-C method (red line)

Fig. 3 Plots of absolute error for
the IVP (32) when α = 1 and
ρ = 1
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From the numerical results displayed in Tables 1, 2 and 3 and Figs. 1, 2 and 3, we can
notice that the approximate solutions produced using ourmodified scheme ofADMare highly
compatiblewith those obtained using the universal P-Cmethod. Certainly, the accuracy of our
scheme can be improved by adding more terms to the truncated series approximate solutions.

Example 2 Next, we consider the fractional IVP
⎧⎪⎨
⎪⎩

C Dα,h
0+ y(x) = −γ y(x) − μy3(x), 1 < α ≤ 2, x > 0,

y(0) = 1

2
,

y′(0) = 0,

(40)

where γ, μ ∈ IR and C Dα,h
0+ is the G-C fractional derivative operator of order α. Applying

the integral operator I α,h
0+ to both sides of Eq. (40), using Theorem 1, we obtain

y(x) = 1

2
− Iα,h

0+
(
γ y(x) + μy3(x)

)
. (41)

Our modified scheme suggests the series solution y(x) = ∑∞
j=0 y j (x), such that the

nonlinear term N (y) = y3 be expressed as y3(x) = ∑∞
j=0 Bj (x), where the component

function y j (x), j = 0, 1, · · · , can be obtained recursively by using the formula⎧⎨
⎩

y0(x) = 1

2
,

y j+1(x) = −Iα,h
0+
(
γ y j (x) + μBj (x)

)
, j ≥ 0,

(42)

and

Bj (x) = 1

j !

⎡
⎣ d j

dλ j

( ∞∑
i=0

λi yi (x)

)3
⎤
⎦

λ=0

, j ≥ 0. (43)

In Tables 4, 5 and 6, we exhibit approximate solutions produced using our modified
scheme of ADM (yADM ) when N = 10 and the approximate solutions produced using the
universal P-C method (yP−C ) to the IVP (40), for some value of α and ρ, with three cases
of the function h (h(x) = xρ , h(x) = exp(ρx) and h(x) = log(ρx + 1)), where γ = 2
and μ = 1. Furthermore, the solution behavior of the fractional model given in the IVP (40)
regarding the different cases of the function h against the variable x is described in Fig. 4.
Figure 4 pictures approximate solutions produced using our modified scheme when N = 10
and the approximate solutions produced using the universal P-C method, where h(x) = xρ ,
h(x) = exp(ρx) and h(x) = log(ρx + 1), when α = 2, ρ = 1, γ = 2 and μ = 1.

Table 4 Numerical solutions to the IVP (40) for some values of α and ρ with h(x) = xρ

x α = 2, ρ = 1 α = 1.9, ρ = 0.5 α = 1.9, ρ = 0.75 α = 1.8, ρ = 0.85
yADM yP−C yADM yP−C yADM yP−C yADM yP−C

0.2 0.47770450 0.47770450 0.37427596 0.37427597 0.43959219 0.43959219 0.44444487 0.44444487

0.4 0.41319208 0.41319208 0.26973253 0.26973255 0.34509110 0.34509111 0.34786212 0.34786213

0.6 0.31304496 0.31304497 0.17815858 0.17815858 0.23881880 0.23881883 0.23544838 0.23544840

0.8 0.18674685 0.18674687 0.09697656 0.09697600 0.13010457 0.13010441 0.11971720 0.11971615

1 0.04528874 0.04528800 0.02464469 0.02463874 0.02464469 0.02463874 0.00889859 0.00885588
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Table 5 Numerical solutions to the IVP (40) for some values of α and ρ with h(x) = exp(ρx)

x α = 2, ρ = 1 α = 1.9, ρ = 0.5 α = 1.9, ρ = 0.75 α = 1.8, ρ = 0.85
yADM yP−C yADM yP−C yADM yP−C yADM yP−C

0.2 0.47273325 0.47273325 0.49150352 0.49150352 0.48082510 0.48082510 0.46824604 0.46824604

0.4 0.37111431 0.37111431 0.46546573 0.46546573 0.41939762 0.41939763 0.37656842 0.37656842

0.6 0.17164022 0.17164024 0.41939762 0.41939763 0.30825409 0.30825411 0.22437130 0.22437131

0.8−0.11792146−0.11798533 0.35110235 0.35110236 0.14623252 0.14623245 0.02531048 0.02528487

1 −0.32611352−0.41060157 0.25964352 0.25964354−0.05421445−0.05427170−0.16948011−0.18111427

Table 6 Numerical solutions to the IVP (40) for some values of α and ρ with h(x) = log(ρx + 1)

x α = 2, ρ = 1 α = 1.9, ρ = 0.5 α = 1.9, ρ = 0.75 α = 1.8, ρ = 0.85
yADM yP−C yADM yP−C yADM yP−C yADM yP−C

0.2 0.48144329 0.48144329 0.49294836 0.49294836 0.48545656 0.48545656 0.47633673 0.47633673

0.4 0.43793084 0.43793084 0.47600490 0.47600490 0.45260762 0.45260762 0.42919104 0.42919104

0.6 0.38175318 0.38175318 0.45260762 0.45260762 0.41003723 0.41003724 0.37287354 0.37287355

0.8 0.32001642 0.32001644 0.42495720 0.42495720 0.36261782 0.36261783 0.31397099 0.31397100

1 0.25683017 0.25683019 0.39459353 0.39459354 0.31330646 0.31330647 0.25584964 0.25584966

Fig. 4 Plots of approximate solutions for the IVP (40) when α = 2 and ρ = 1: Modified scheme of ADM
(blue line); Universal P-C method (red line)
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Clearly, from the numerical results displayed in Tables 4, 5 and 6 and Fig. 4, we can
deduce that the approximate solutions produced using our modified scheme of ADM are in
high agreement with those obtained using the universal P-C method. The accuracy of the
approximate solutions provided using our scheme can be improved when N becomes large.

Example 3 Finally, we consider the fractional IVP⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C Dα,h
0+ u(x, t) = ∂ z

∂x2
u(x, t) + a u(x, t) − b u2(x, t), 0 < α ≤ 1, t > 0,

u(x, 0) = 1(√
b
a + exp

(√
a
6 x
))2 , (44)

where a, b > 0 and C Dα,h
0+ is the G-C fractional derivative operator with respect to the vari-

able t of orderα. The exact solution of the IVP (44), when h(t) = t andα = 1, is given by [46]

u(x, t) = 1(√
b
a + exp

(√
a
6 x − 5a

6 t
))2 . (45)

Applying the integral operator I α,h
0+ with respect to the variable t to both sides of Eq. (44),

using Theorem 1, we obtain

u(x, t) = 1(√
b
a + exp

(√
a
6 x
))2 + Iα,h

0+
(

∂ z

∂x2
u(x, t) + a u(x, t) − b u2(x, t)

)
. (46)

Our modified scheme suggests the series solution u(x, t) = ∑∞
j=0 u j (x, t), such that the

nonlinear termN (u) = u2 be expressed as u2(x, t) = ∑∞
j=0 C j (x, t), where the component

function u j (x, t), j = 0, 1, · · · , can be obtained recursively by using the formula
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u0(x, t) = 1(√
b
a + exp

(√
a
6 x
))2 ,

u j+1(x, t) = Iα,h
0+
(

∂ z

∂x2
u j (x, t) + a u j (x, t) − b C j (x, t)

)
, j ≥ 0,

(47)

and

C j (x, t) = 1

j !

⎡
⎣ d j

dλ j

( ∞∑
i=0

λi ui (x, t)

)2
⎤
⎦

λ=0

, j ≥ 0. (48)

Here, to examine the accuracy of the suggested algorithm, we evaluated approximate
solutions of the fractional model given in the IVP (44) in the case of fixation of the space
variable x . In Tables 7, 8, 9 and 10, we show approximate solutions produced using our
modified scheme of ADM (yADM ) when N = 10 and x = 1 to the IVP (44), for some
value of α, ρ, a and b with three cases of the function h (h(t) = tρ , h(t) = exp(ρt) and
h(t) = log(ρt + 1)). Figure 5 pictures approximate solutions produced using our modified
scheme when x = 1 and N = 10 against the exact solution of the IVP (44) where α = 1 and
ρ = 1 for some values of a and b. In Fig. 6, we draw the absolute error of the approximate
solutions obtained using our modified scheme when h(t) = t and α = 1, where x = 1.
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Table 7 Numerical solutions to the IVP (44) for some values of α and ρ, when a = 1.25 and b = 2.75, with
h(t) = tρ and x = 1

t α = 1, ρ = 1 α = 0.95, ρ = 0.75α = 0.925, ρ = 0.8α = 0.9, ρ = 0.85α = 0.8, ρ = 0.9
yADM yExact sol. yADM yADM yADM yADM

0.2 0.13081663 0.13081663 0.14702227 0.14562564 0.14442142 0.14922092

0.4 0.15699533 0.15699533 0.17526943 0.17428327 0.17344536 0.17967721

0.6 0.18449756 0.18449755 0.20025097 0.20003733 0.19991012 0.20655611

0.8 0.21251557 0.21251543 0.22291507 0.22360541 0.22431458 0.23068876

1 0.24024310 0.24024114 0.24360686 0.24521484 0.24676978 0.25240814

Table 8 Numerical solutions to the IVP (44) for some values of α and ρ, when a = 1.25 and b = 2.75, with
h(t) = exp(ρt) and x = 1

t α = 1, ρ = 1 α = 0.95, ρ = 0.75 α = 0.925, ρ = 0.8 α = 0.9, ρ = 0.85 α = 0.8, ρ = 0.9

0.2 0.13353206 0.12846354 0.13140044 0.13453716 0.14328338

0.4 0.16950563 0.15399710 0.15977449 0.16579711 0.17894807

0.6 0.21561047 0.18440642 0.19329021 0.20233012 0.21772195

0.8 0.27027533 0.21966427 0.23163813 0.24345138 0.25855982

1 0.32880278 0.25877744 0.27328888 0.28712534 0.30012455

Table 9 Numerical solutions to the IVP (44) for some values of α and ρ, when a = 1.25 and b = 2.75, with
h(t) = log(ρt + 1) and x = 1

t α = 1, ρ = 1 α = 0.95, ρ = 0.75 α = 0.925, ρ = 0.8 α = 0.9, ρ = 0.85 α = 0.8, ρ = 0.9

0.2 0.12859144 0.12551844 0.12792716 0.13048725 0.13819124

0.4 0.14849973 0.14201555 0.14586060 0.14983992 0.16035819

0.6 0.16651140 0.15699275 0.16186659 0.16681298 0.17872462

0.8 0.18279493 0.17066677 0.17628452 0.18189261 0.19438483

1 0.19753248 0.18318979 0.18933797 0.19538674 0.20795072

Table 10 Numerical solutions to the IVP (44) for some values of α and ρ, when a = 3 and b = 8, with
h(t) = tρ and x = 1

t α = 1, ρ = 1 α = 0.95, ρ = 0.75 α = 0.925, ρ = 0.8 α = 0.9, ρ = 0.85 α = 0.8, ρ = 0.9
yADM yExact sol. yADM yADM yADM yADM

0.2 0.12199016 0.12199016 0.15623671 0.15344255 0.15104367 0.16173831

0.4 0.17667468 0.17667555 0.21303710 0.21125339 0.20975008 0.22141571

0.6 0.22988107 0.22991561 0.25611964 0.25570459 0.25547116 0.26723470

0.8 0.27481554 0.27484331 0.29036372 0.29268984 0.29589218 0.33602799

1 0.31535203 0.30882348 0.33439469 0.35144729 0.37615790 0.59058949
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Fig. 5 Plots of approximate solutions and exact solution for the IVP (44) when h(t) = t and α = 1, where
x = 1: Exact solution (black line); Modified scheme of ADM (blue line)

Fig. 6 Plots of absolute error for the IVP (44) when h(t) = t and α = 1, where x = 1

Clearly, from the numerical results displayed in Tables 7 and 10 and Figs. 5 and 6, where
the exact solution is known, we can observe that the approximate solutions produced using
our modified scheme of ADM are very close to the exact solution. Figs. 7 and 8 show the
solution behavior of the fractional model given in the IVP (44) regarding the different cases
of the function h against the variable t when x = 1. They picture approximate solutions
produced using our modified scheme of ADM when N = 10 for some values of α, ρ, a and
b.

Conclusion

In this work, a modified scheme of the ADM has been developed for the treatment of IVPs
involving FDEs with the studied G-C fractional derivatives. We have employed some special
cases of the function h for the numerical simulation task. There are some concluding remarks
to be discussed here. Firstly, the proposed scheme has been successfully implemented to
provide approximate analytical solutions to the considered fractional models. Secondly, the
results of the discussed test problems confirm that the approximate solutions produced by
the proposed scheme of ADM are close to the exact solution in the integer-order case when
h(x) = x and are highly compatible with those obtained using the universal P-C method in
the other cases. Thirdly, it is believed that the proposed scheme of the ADM can be further
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Fig. 7 Plots of modified scheme of ADMapproximate solutions for the IVP (44) when a = 1.25 and b = 2.75,
where x = 1: α = 0.95, ρ = 0.75 (black); α = 0.925, ρ = 0.8 (blue); α = 0.9, ρ = 0.85 (red); α = 0.8,
ρ = 0.9 (green)

Fig. 8 Plots of modified scheme
of ADM approximate solutions
for the IVP (44) when a = 3 and
b = 8, where x = 1: α = 0.95,
ρ = 0.75 (black); α = 0.925,
ρ = 0.8 (blue); α = 0.9,
ρ = 0.85 (red); α = 0.8, ρ = 0.9
(green)

implemented in exhibiting approximate analytical solutions for several models involving the
studied G-C fractional derivatives.
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40. Stojanović, M.: Numerical method for solving diffusion-wave phenomena. J. Comput. Appl. Math.
235(10), 3121–3137 (2011)

41. Jarad, F., Abdeljawad, T., Baleanu, D.: Caputo-type modification of the Hadamard fractional derivatives.
Adv. Differ. Equ. 2012, 142 (2012). https://doi.org/10.1186/1687-1847-2012-142

42. Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic
Publishers, Dordrecht (1994)

43. Cherruault, Y., Adomian, G., Abbaoui, K., Rach, R.: Further remarks on convergence of decomposition
method. Int. J. Bio-Med. Comput. 38(1), 89–93 (1995)

44. Wazwaz, A.M., El-Sayed, S.M.: A new modification of the Adomain decomposition method for linear
and nonlinear operators. Appl. Math. Comput. 122(3), 393–405 (2001)

45. Hamarsheh, M., Ismail, A.I., Odibat, Z.: An analytic solution for fractional order Riccati equations by
using optimal homotopy asymptotic method. Appl. Math. Sci. 10(21), 1131–1150 (2016)

46. Odibat, Z., Baleanu, D.: A linearization-based approach of homotopy analysis method for non-linear
time-fractional parabolic PDEs. Math. Methods Appl. Sci. 42(18), 7222–7232 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

123

https://doi.org/10.1186/1687-1847-2012-142

	Analytical Approximate Solutions for Differential Equations with Generalized Caputo-type Fractional Derivatives
	Abstract
	Introduction
	Preliminaries
	The Adomain Decomposition Method
	Applications
	Conclusion
	References




