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Abstract

In this paper, we use new a-polynomials to get the numerical solution of the fractional ordinary
differential equations. These polynomials are equipped with an auxiliary unknown parameter
a, which is obtained by using the least-squares method. In this method, the approximate
solution is assumed as the sum of the new a-polynomials with unknown coefficients. To
find the unknown coefficients and parameter a, we use the collocation method and solve the
nonlinear system equations by using the least-squares method. In the last section, the restarted
collocation method is used to improve more accurate results. The present method has been
invented for the first time in mathematics. In this method, the optimum value of parameter
a is calculated first and then polynomials with a known value a are used to approximate the
solution of differential equations.

Keywords Fractional ordinary differential equations - Collocation method - Caputo
fractional derivative

Mathematics Subject Classification 65105 - 34A08

Introduction

Today, differential equations play an essential role in the advancement of science and engi-
neering. Some of these equations are dedicated to fractional differential equations, which have
found many applications in various sciences in recent decades. Mathematicians and scien-
tists have discovered various fields to use the fractional calculus such as diffusion processes,
electrochemistry, chaos, finance, plasma physics, medicine, biomathematics, probability,
scattering theory, rheology, potential theory, transport theory [4, 17, 19, 32], thermoelas-
ticity [39], nuclear reactor dynamics [44], mechanical vibrations [16], biological tissues [12,
31].

Many phenomena in different sciences are analyzed as fractional models. The rheologic
properties of some polymers are studied as fractional differential models [6, 40]. Fractional
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phenomena include: modeling the spread of river blindness disease [8], nonlinear modeling
of interpersonal relationships [27, 37], fractional model for Lassa hemorrhagic fever [7],
quantum fractional differential models [47, 51], modeling the spread of computer viruses on
the computer [38], cancer tumor modeling [24, 45]. Ordinary and partial nonlinear fractional
differential equations have many applications in various fields of engineering, physics and
medicine [26, 35, 36].

Mathematicians have proposed many numerical methods for solving fractional differential
equations such as Bayesian inversion [25], Bernoulli wavelet [42, 43], Bernstein polynomials
[5], Boubaker polynomials [41], Chebyshev polynomials [9, 49], Chebyshev wavelet method
[33], finite element method [11, 14, 15, 52], finite difference [11, 15, 50], Galerkin method
[29, 50], fractional-order Lagrange polynomials [46], Jacobi polynomials [10, 34, 48]. Some
fractional ordinary differential equations can be solved by the analytical methods described
in [28].

In this paper, we present a new method for the numerical solution of the following fractional
initial-value problem:

ey

cDgu@) = f(t,u(®), m—1<a<mme 7+,
u0) = uj e R, j=01,....,m—1,

in the Caputo sense for ¢ € [0, T'], where f # 0.

Basic Concepts

There are many types of fractional derivatives and integrals which are suggested by Riemann,
Liouville, Riesz, Letnikov, Griinwald, Weyl, Marchaud, and Caputo. In this paper, we will
consider the fractional initial value problem in the Caputo sense.

Definition 1 The Caputo fractional derivative of order a—th for a function g is written as:

@ oy 1 ()
D5 = s / e @)

where I is the Euler’s Gamma function (or Euler’s integral of the second kind), and m — 1 <
a<m,meZr.

Definition 2 The two—parameter Mittag-Leffler function that plays an important role in the
fractional calculus is defined as

_y </ +
Ea,ﬂ(Z)—jgom, Ol,ﬂER ,z € C. (3)

There are many theorems to show the existence and uniqueness of the solution for the
problem (1). In bellow two important theorems are listed.

Theorem 1 (Existence) Suppose that for some x* > 0 and K > 0, define D = {(t,u) :
t e [0, x*], lu— Z;”;OI tju‘é/j!| < K} and let the continuous function f : D — R and
X := min {X*, (KT (ax + 1)/||f||oo)l/°‘}. Then there exist a function u : [0, x] — R that is
the solution of the fractional Eq. (1).

Proof 1 See Theorem 6.1 in [18]. O
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Theorem 2 (Uniqueness) By the hypothesis of pervious theorem, let the function f : D — R
be continuous and Lipschitz condition w.r.t the second variable, i.e.

[f(t,w)) — f@t, w2)| = L wy —waf,

for some constant L. > 0 and independent of t, wi, and wy. Then there exist a unique
function u : [0, x] — R that is the solution of the fractional Eq. (1).

Proof2 See Theorem 6.5 in [18]. O

As we know, using the polynomials is very useful for finding the solutions of the initial
value problems, especially in engineering applications. It is due to the simple application of
them. Recently, a new class of polynomials equipped with an auxiliary parameter has been
introduced by the first author in [1] and some applications of it have been shown in [2, 3, 21,
22]. See below for introducing this class.

Definition 3 [1] The a-polynomial functions is defined as follows:

Ao(t) =1, Ay(t) = atUy—1(t) + Un(t), n = 1,
where U, (.) is the second kind of Chebyshev polynomial and a is an auxiliary real parameter.
The following equations are also established:

Anp1(t) =2t A, (1) — Ap—1 (1), n =1, “
Ap(@) = (14 DU (@) + 5Up2(t), n = 2, %)

see [1, 21, 22] for more properties.

Proposition 3 U, is the eigenfunction of the singular Sturm—Liouville problem:

_ d d
[(1—1?) 1/25 ((1 - zz)wa) +n(n + 21U, (1) = 0, 6)

forn=0,1,2,....

Proposition 4 Assume that w(t) = +/1 — t2, then

1
Un, Un)oy = / Un(OUn 0 0)dt = 260, )
-1
L du,(t) dU, (1) 5 1
];1 di 7&) ([)dl = En(n +2)8n7m. (8)
Remark5 Assume that w(t) = +/1 — ¢2, then
! dU, (1)
3 n _
[ o (n——=d1 =0, )
1
/ @ (U, (t)dt = 0. (10)
—1
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The Implementation Method

In this method, the solution of (1) is approximated by the following truncated series form:

N
Yy 2y () =Y ek Ac(t), (11)
k=0
whereci, k =0, 1, ..., N are the unknown coefficients fora € (0, 1]. The collocation points
of the present method on the interval [0, 7] are definedast; = j.Atfor j =0, 1,..., Nsuch
that Ar = % Now we suppose the collocation method for the residual of (1) by collocation
points t; for j =0, 1, ..., N. Therefore, the unknown coefficients ¢, k =0, 1, ..., N and

the unknown auxiliary parameter, a, are obtained by solving the following nonlinear system
of equations:

Res(tj) =0, j=0,1,..., N,
¥(0) =0.

This is a nonlinear system of equations with N + 2 equations and N + 2 unknowns. To
solve this nonlinear system of equations, we are used Mathematica software version 12.0
and FindMinimum command.

Remark6 For 1 < o < 2, the solution of (1) is approximated by the following truncated
series form:

N+1
YO =y @) =) crAi(D), (12)

k=0
where ¢x, k = 0,1,..., N + 1 are the unknown coefficients. We suppose the collocation
method for the residual of (1) by collocation points ¢; for j = 0, 1,..., N, as before.
Therefore, the unknown coefficients ¢x, k = 0,1,..., N + 1 and the unknown auxiliary

parameter, a, are obtained by solving the following nonlinear system of equations:

Res(tj) =0, j=0,1,...,N,
y(0) =0,
y'(0) =0.

We can rewrite the same algorithm for o € (2, 3], and so on.

The Convergence Theorem

Suppose that A = [—1, 1] and Lf)(A) be function Hilbert space with the standard inner
product

1
(f' 8o = / w(1r) f(1)g(n)dt,
-1
where w(t) = ~/1 —t2 is positive weight function and ||.||620 = (.,.). Let N be positive

integer, we will consider the subspace of Li(A) by using the second kind of Chebyshev
polynomials as

Sy =span{Uy, Uy, ..., Un}.
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We define L2 (A)-orthogonal projection as follows:

Py : L1(A) — Sy

N
(Pyv)(t) = ) ciUi (1),
i=0

such that (Pyv — v, ¢), =0, V¢ € Sy. To estimate || Pyv — v||,,, we have the space inter-
polation:

H(Z’R(A) = {vl v is measurable and ||vl|, , p < 00 } ,

oy 172
v ) . (13)

where r > 0 is any real number, and

.
Wl 0,k = (Z

i=0

cd
F42)2H
(t+2) Fr

We define the Sturm—Liouville operator of the second-kind Chebyshev polynomials, R, as
d d
R(U, 1)) = — L (1) — (0 (1) — U, (1)), 14
Un(®)) w ()dt(w()dt (1)) (14)
see [23] Chapter 5.
Proposition 7 R™ is a continuous mapping from Hif"R (A) to L2 (A).

Proof 3 For showing this, we will prove that

2m k
d
R™u(t) = (t + 2" g (o) d’;ﬁ’), (15)
k=1

where gy is a rational bounded uniformly function on the whole interval A. It is proved by
induction. For m = 1, we have

dv d*v
Ru(t) =3t— — (1 —1?)—
v(®) dt ( dt?
3t dv t—1 d*v
= r+22<7>—+ r+23(7)—.
t+2 (t+2)?) dt +2 (t +2)) di?
Suppose that for m < n the relation (15) is satisfied. One can easily prove that this relation
is established form =n + 1. O
[o.°]
Proposition 8 For any realr > 0, v € H] p(A), v = 0, U, () then
’ n=0
I1Pvv = vy < N7l 0, &: (16)

for some real constant c.

@ Springer



216 Page6of 32 Int. J. Appl. Comput. Math (2022) 8216

Proof4 First, we suppose that ¥ = 2m. Due to the (6), (7), (14) and integration by parts,

N 2 )
= ;/;\U(I)Un(t)w(t)dt = m/;\v(t)RUn([)w(t)dn
— 2 d 5 . d
= —m/;\l)(f)a(a) ([)EUn(t))dl

= #/ 3(r)i ) <1U (z)) dt
T an(n+2) @ v "

a7
= — H—v(®)U,(t)dt
nn(n+2)/ (w() v()) Q)
=— | Rv(HU, (N (t)dt
ﬂn(n+2)/A v(OUn (1) (1)
=...= ;/ R"v(t)U, (D (t)dt
e 7'[nm (n + 2)m n .
Now according to (15), (17) and definition of H, R(A) we have:
o0
IPvv—vlls = > 0 UL,
n=N+1
> R™u()U, (D ()d1
<cNTPm Y (fA = ) 10,12,
A AR
<N R™|)2 < eNTH )2, g -
Next, we put r = 2m + 1. By (9), (6) and integration by part, we have:
) 2 /R’" OU, 0w (t)dt
Uy = ———— v 1)
" anmn+2)" I "
2 m
e / R v(t) (@ (r) U (0)di (18)
2

- =- = (pm - 3
= /;\dt(R U(Z))dtUn([)w (t)dt.

nnm'H (}’l 4 2)m+1

Now using (8) and (15), the following inequality is obtained:

o0
1Pyv—vl2 = Y 87 Ual2
n=N+1
ad 2
S ([ o oo
= Z Ty Aaw2m+2 —(R™v(t))— U, (t)w’ (t)dt
2 M2
ey T 4+2)7" A dt dt
- i 4 Ja R (0) LU, (e (1)dt H
- 2m—+2
n=N+1 772("1(71 +2)) " ||EUI1 ng
< cN-20mD i IN %(R’"v(t))%U,,(t)&(;)d; ‘d 2
- n
R |,
2 2
< CN72(2m+1) i(RmU) ECN72(2m+1) ’d(Rmv)(t+2)7/2
dt 3 dt 5
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< N2 |2 e

The general result follows from the previous results and space interpolation. O
Theorem 9 Foranyrealr >0, y € H(Z’R(A), we have:
lyn = ylly < de(N =2)7" 131y 0,z 19

Proof 5 Using Eq. (5) and Proposition (8), we get the following inequality:

o0 o0
a a
v = yllo = | > alin| = | Y a4+ DU + Ui (1)
i=N+1 ® i=N+1
Eq.(5) ®
a ad a ad
< ‘1 + 5‘ Z aU®)| + ‘5‘ Z ¢iUi—2(t)
i=N+1 i=N+1

w [}

"N =27Vl 0.8 < dc(N =2)7"[I¥lly 5>

Eq(]6) Eq-(16)

al , a
<1+ 5N T 0 r |5

where @ = max{|1 + 5|, |51}, ¢ = max{c’, ¢"}. O

This theorem shows that the a-polynomial approximation has exponential convergence. The
similar theorems which have been proved in this section can be seen in [20] for the Chebyshev
polynomials of the first kind.

Numerical Examples

In each example in this section, we set the auxiliary parameter a in polynomials {A,, (£)};2,
as shown in the tables of each example. Now with these polynomials {A, (¢)};2, that have
no parameter, we can restart and repeat the pervious algorithm to approximate the solution
for the given fractional differential equations. So the solution of (1) is approximated by the
following function:

N
YO &y () =Y Ar),

k=0

whereci, k =0, 1, ..., N are the unknown coefficients. The collocation points of the present
method on the interval [0, T'] are defined as t; = j.At for j = 0,1,..., N such that
At = % Therefore, the unknown coefficients cx, k = 0, 1, ..., N are obtained by solving
the following nonlinear system of equations:

Res(tj) =0, j=1,..., N,
¥(0) =0.

Then we have a nonlinear system of equations with N 4 1 equations and N + 1 unknowns.
The following example codes are written by Mathematics software version 12.0.
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— =01

=03
— a=05
— =09

Fig. 1 Logarithm error at different values of « for Example 1

Example 1

Let us consider

cDY, ) +y* 1) = f(1),0<a <1,1>0, »
{ y(0) =0, (20)
where

fo = PO _soa O ey IO 5oy (5 = 3" +21%)%,

6 —a) TG -a) T4 —a)

and the exact solution is y(r) = 17 — 3r* + 273, In this example, the present method is
implemented for different «w. Table 1 shows absolute errors at different value of N. According
to the obtained results, increasing the number of collocation points reduces the absolute error
in each constant value «. Therefore, the convergence theorem proved in the previous section
is confirmed. The comparison with other methods is tabulated in the next section. Table 2
shows the absolute errors and the order of convergence,

errorpew
LOg (errar,,ld )
N 9
L old
Og NHEUJ
at t+ = 1. Due to the increase in operations in some values N, the order of convergence

has become negative. Figure 1 shows the logarithm of the error in different values «, which
decreases with increasing value of N.

OoC =

Restarted collocation method: The results obtained in Table 3 is better than the results
obtained in Table 1 and the absolute errors are significantly reduced. In Tables 4 and 5,
the absolute errors of the present method are compared with the Adams and forward Euler
methods [30]. In Tables 4 and 5 , the number of collocation points in the Adams and forward
Euler methods is 640 and 10° points, respectively, and in the present method, 5 collocation
points have been used. Absolute errors in the present method are much less than the absolute
errors of the other two methods, which show the noticeable superiority of the present method.
In Fig. 2 a, the graph of the function is plotted for exact and numerical solutions in @ = 0.6
and N = 5. In Fig. 2 b, the absolute error graph is plotted at « = 0.6 and N = 5. In Fig .3
a and b, graphs of numerical and exact solution and absolute error are plotted at N = 5,
o =0.6, T =2 and a = 0.49320, respectively.
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Fig. 2 Graphs of numerical and exact solution (a), Graph of absolute error (b) for Example 1 at N = 5,
a=0.6,T =1anda = 0.49320

:x::l m

1. x10"14

- 5.x10715
_0.4 )

a « Numerical || — Exact 1210718 L
B 5. x10718

1.x10716
-1.0 5210717}

(a) (b)

Fig. 3 Graphs of numerical and exact solution (a), Graph of absolute error (b) for Example 1 at N = 5,
o =0.6,T =2anda = 0.49320

Example 2

Let us consider

{ cD§ v +y@) = f(1),0<a<1,1>0, o
y(0) =0,
where
4—a
f@ = m,

and the exact solution is y(t) = t4Ea,5(—t"‘) where Eq g(z) is the two parameter Mittag—
Leffler function. We can analyze the behaviour of this example, by the method described in
[28]. Table 6 shows absolute errors at different value of N. According to the obtained results,
increasing the number of collocation points reduces the absolute error in each constant value
«. Therefore, the convergence theorem proved in the previous section is confirmed. The
comparison with other methods is tabulated in the next section. Table 7 shows the absolute
errors and the order of convergence at 7 = 1. Due to the increase in operations in some
values N, the order of convergence has become negative. Figure 4 shows the logarithm of
the error in different values «.

Restarted collocation method: The results obtained in Table 8 are better than the results
obtained in Table 6 and the absolute errors are significantly reduced. In this example, the

@ Springer



Page 150f32 216

Int. J. Appl. Comput. Math (2022) 8:216

90-90L9S1°8 90-967€88'1 90-20LYL9'€ 90-9€SP8L'6 90-90LEVS'T $0-986880'T 90-99€5£0°C 90-9090LE ¥ 0¢
90-9999¢+'8 LO-TOSTT Y 90-9L9TE6'€ LO-96LSSH'T 90-9¢17LST L0-929679'T 90-9978SL'T LO-0VLLT Y 0z
90-9€6005'8 £0-200950°S 90-966€8L°€ L0-91966€'T 90-915S9+'C LO-LOSST'T 90-9TLEYY'T 80-9€7L8T'T St
90-976559'8 90-3LL8OY'T 90-21¥106°€ L0-968781°C 90-31¥SSH'T 60-270856'S 90-201L£9'T LO-38Y620'T 01
90-9LSS0L'S §0-070160'T 90-9€7S8T'S 90-3LSTIE'E 90-9€SPLT Y 90-249219°C 90-968L58°C L0-276980°6 S

v 60="n v So=n v €0=n v 1o="» N

7 o[dwexy 10§ | = [ 1B s10110 9)njosqe ay) jo uostedwo) 9 ajqel

pringer

Qs



Int. J. Appl. Comput. Math (2022) 8:216

Page 16 of 32

216

9CCL €0~ 90-2617¢88"1 8LLEOI— 90-2¢S18L°6 L29E 01— G0-°86880°[ 0ceL'SO— 90-2090LE Y 0¢
SLIL00 LORT0EI TV 89¢1'00— LO26LSSY'T 7961 10— L0-9296¢9'1 66L1°01— LO=0VLLTY 0c
€LTST0 L0-200950°S 1960°10 L0-91966¢'1 911eL0— LO-3LOSST'T 101L°€0 80-9€TL8TC Sl
1LS6'C0 90-2LL8OY'T °eT6't0 L0-268T81'C S9LL'80 60-210856°S 61¥1°¢0 LO-28¥6C0°1 01
- §0-220¥60°1 - 90-2LSTIEE - 90-2¥9C19°C - L0-2¥6980°6 S

20 60="0 20 go=n 20 €0=20 20 ro=m» N

7 odwexy 10§ | = [ 18 90UaGI0AUOD JO JOPIO PUE SIOLID AInjosqe ay) jo uostedwo) / ajqey

pringer

as



Int. J. Appl. Comput. Math (2022) 8:216 Page170f32 216
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Fig.4 Logarithm error at different values of « for Example 2

present method is implemented for different « values. In Tables 9 and 10 , the absolute errors
of the present method are compared with the Adams and forward Euler methods [30]. In
Tables 9 and 10, the number of collocation points in the Adams and forward Euler methods
is 640 and 10° points, respectively, and in the present method, 20 collocation points have
been used. Absolute errors in the present method are much less than the absolute errors of the
other two methods, which show the noticeable superiority of the present method. In Fig. 5 a,
the graph of the function is plotted for exact and numerical solutions ino = 0.9 and N = 20.
In Fig. 5 b, the absolute error graph is plotted at « = 0.9 and N = 20. In Figs. 6 a and b,
graphs of numerical and exact solution and absolute error are plotted at N = 10, o = 0.4,
T =3anda = 2.41145 x 1077, respectively.

Example 3

Let us consider

cD§,y(0) +y1)=f1),0<a<2,1>0,

y(0) =0, 0 <a=<2), (22)
y'(0) =0, (1<a=x<2),
where
f) = Wﬁ + 31,

and the exact solution is y () = r3+%. A complete description of the behavior of this example

also can be done by the method of [28]. In this example, the present method is used for
twomodes, 0 <o <1 and 1 < « < 2. Table 11 shows absolute errors at different value of
N. According to the obtained results, increasing the number of collocation points reduces
the absolute error in each constant value «. Therefore, the convergence theorem proved in
the previous section is confirmed. The comparison with other methods is tabulated in the
next section. Table 12 shows the absolute errors and the order of convergence at 7 = 1.
Due to the increase in operations in some values N, the order of convergence has become
negative. Figure 7 shows the logarithm of the error in different values «, which decreases
with increasing value of N. In this figure, it is observed that the error value in integer values
« is less than non—integer values.

Restarted collocation method: In this example, to compare the present method with high
order scheme [13], the maximum absolute error max; |y(#;) — yn(#;)| is used. In Table 13,
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0.035pm

0.030 ]
« Numerical N 1
0.025 S

(a) (b)

Fig. 5 Graphs of numerical and exact solution (a), Graph of absolute error (b) for Example 2 at N = 20,
«=09,T=1anda = 241145 x 10~/

(a)
Fig. 6 Graphs of numerical and exact solution (a), Graph of absolute error (b) for Example 2 at N = 10,
@=04,T =3anda = 2.41145 x 1077

we assume that 0 < o < 1 and we get the results for « = 0.2, 0.5, 1. It is observed that the
number of collocation points in the present method is less than the high order scheme and
the results obtained in this method are better than the results of the high order scheme.

In Table 14, we assume that 1 < o < 2 and we get the results for « = 1.5, 2. In this case,
the number of collocation points in the present method is less than the high order scheme
and the results obtained are better than the results of the high order scheme. In Fig. 8 a, the
graph of the function is plotted for exact and numerical solutions in = 1.5 and N = 20. In
Fig. 8 b, the absolute error graph is plotted at = 1.5 and N = 20. In Figs. 9 a and b, graphs
of numerical and exact solution and absolute error are plotted at N = 10, ¢« = 1.3, T =4
and a = 0.57594, respectively. In Figs. 10 a and b, graphs of numerical and exact solution
and absolute error are plotted at N = 40, « = 2, T = 3 and a = 0.03264, respectively. It
can be observed that the error value decreases as the number of collocation points increases.

Example 4

Assume the following nonlinear one—dimensional fractional Bratu equation:

cDf yt)+eW =0,1<a<2,

¥(0) = y'(0) = 0, @3)
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Fig.7 Logarithm error at different values of « for Example 3

where the exact solution is y(t) = 2Ln (sech (ﬁ . Table 15 shows maximum absolute

errors at different values of N and o = 2. According to the obtained results, increasing the
number of collocation points reduces the maximum absolute error.

Restarted collocation method: In Table 16, the maximum absolute errors are compared by
placing the unknown parameter value of a at different values of N and « = 2. In Fig. 11,
graphs of numerical and exact solution are shown at different values of « and N = 15. In
Figs. 12 a and b, graphs of numerical and exact solution and absolute error are plotted at
N =30, o =2 and a = 0.38308, respectively. In Figs. 13 a and b, graphs of numerical and
exact solution and absolute error are plotted at N = 30, = 2, T = 5 and a = 2.83486,
respectively. In Figs. 14 a and b, graphs of numerical and exact solution and absolute error
are plotted at N = 40, « = 2, T = 5 and a = 2.2.28497, respectively. It can be observed
that the error value decreases as the number of collocation points increases.

Example 5

Assume the following nonlinear multi—order fractional differential equation:

eDE (1) +cDy y(©) + ¢ DY y(1) + Y3 (1) = £(0),
1 /(3 9 (24)
y©0) =0, y()=3, vy (§):g,

where y(t) = % is the exact solution and the function f is obtained by the exact solution

ato = %, B = %, y = %. Table 17 shows maximum absolute errors at different values of

Nanda = % B = %, y = %. According to the obtained results, increasing the number of
collocation points reduces the maximum absolute error.

Restarted collocation method: In Table 18, the maximum absolute errors are compared by
placing the unknown parameter value of a at different values of N and o = 15—1 B = %, y = %.
In Figs. 15 a and b, graphs of numerical and exact solution and absolute error are plotted
at N = 20, a = %, B = %, y = % and a = —0.18988, respectively. In Figs. 16 a
and b, graphs of numerical and exact solution and absolute error are plotted at N = 15,

a=Y =3y =3 T=5anda=2.09970 x 102, respectively.
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Table 14 Comparison of the maximum absolute errors for Example 3 at« = 1.5 and o = 2

Method N a=15 a a=2

High order scheme [13] 10 2.77960e-04 - 5.96260e-04 -

Present method 5 1.82812e-04 -1.67190e-06 1.05840e-15 -4.35680e-08
High order scheme[13] 20 1.80790e-05 - 4.05150e-05 -

Present method 10 2.85591e-06 3.13550e-07 4.42162e-15 2.15430e-08
High order scheme [13] 40 1.15140e-06 - 2.63170e-06 -

Present method 20 5.59480e-08 2.56440e-04 4.75866e-14 -4.97630e-09
High order scheme[13] 80 7.26570e-08 - 1.67560e-07 -

Present method 30 2.98144e-08 1.92010e-06 5.43948e-14 -6.05070e-09

- 9.x10"
] « Numerical || — Exact 8.x1072
asl 7.x10°8
8.x10~

4 5.x10
4.x1078
3.x1078

'
0.0 2 0.4 0.8 0.8 1.0
(a)

Fig. 8 Graphs of numerical and exact solution (a), Graph of absolute error (b) for Example 3 at N = 20,
a=15and T =1

Fig. 9 Graphs of numerical and exact solution (a), Graph of absolute error (b) for Example 3 at N = 10,
a=13,T =4anda = 0.57594
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200

« Numerical 5.x
150 F ]

Fig. 10 Graphs of numerical and exact solution (a), Graph of absolute error (b) for Example 3 at N = 40,
a=2,T =3anda = 0.03264

Table 15 Comparison of the

N N Error a oC CPU Time(s)

maximum absolute errors and

order of convergence for 5 0.04254-05 0.23825 _ 0.0

Example 4 ata =2
10 9.95860e-09 —0.41425 13.1485 0.05
15 7.20757e-13 —0.15610 23.5129 0.08
20 5.55667e-14 0.46672 08.9081 0.10
30 3.52496e-13 0.38308 —04.5564 0.37

Table 16 Comparison of the N Error 4

maximum absolute errors for

Example 4 ata =2 5 4.74203¢-05 0.23825
10 4.82666e-09 —0.41425
15 2.45592e-13 —0.15610
20 1.00566e-13 0.46672
30 9.43690e-15 0.38308

08}

osl

Fig. 11 Graphs of numerical and exact solution at different values of « for Example 4 at N = 15
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(b)

08 1.0

Fig. 12 Graphs of numerical and exact solution (a), Graph of maximum absolute error (b) for Example 4 at

N =30, =2and a = 0.38308

(a)

o

Error

21074}

1x107 L

(b)

Fig. 13 Graphs of numerical and exact solution (a), Graph of absolute error (b) for Example 4 at N = 30,

a=2,T =5and a = 2.83486

(a)

21078

1.x1078

5.x107%

Fig. 14 Graphs of numerical and exact solution (a), Graph of absolute error (b) for Example 4 at N = 40,

a=2,T =5and a = 2.2.28497

Table 17 Comparison of the
maximum absolute errors and

order of convergence for Example

_ 11 _ 3 _5
Sata=5.B=37.v=73

@ Springer

N Error a oC

10 2.80209e-07 —0.04392 -

15 3.07133e-07 —0.08302 —0.2263
20 1.41168e-07 —0.18988 02.7020
25 1.71267e-07 —0.19300 —0.8661
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i b omons Error a

Bxamplesat 10 7.81420e-17 —0.04392

a=73.b=37r=3 15 1.01897¢-16 —0.08302
20 5.02986¢-17 —0.18988
25 7.18866¢-14 —0.19300

(a) (b)

Fig. 15 Graphs of numerical and exact solution (a), Graph of maximum absolute error (b) for Example 5 at

N=20,a=4 p=2y=3anda=-0.18988

o[~ vamenca .
107"

Fig. 16 Graphs of numerical and exact solution (a), Graph of absolute error (b) for Example 5 at N = 15,
a=Y p=3y=3T=5ada=209970x 1072

Conclusion

As you have seen, the present method has been invented for the first time in mathematics. In
this method, the optimum value of parameter a is calculated first and then polynomials with
a known value a are used to approximate the solution of differential equations. As you can
see in this paper, the present method has more accurate results than the other two methods.
A much smaller number of collocation points is used in the present method. The absolute
error in this method is much less than the other two methods. By looking at the tables and
figures in this paper, the present method achieves better results in the integer values of «.
These results are predictable because the classical derivative is used in the correct values.
As shown in this paper, the convergence of the present method is guaranteed. This method
is easily implemented to solve the fractional ordinary differential equations. The simplicity
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of using a-polynomials in fractional derivatives can be one of the advantage points of the
present method, which creates less complexity to solve. Another point is that in this paper, we
see the difference in error results in solving ordinary fractional differential equations in the
restarted step and before it, which greatly reduces the application of the auxiliary parameter
in a-polynomials.
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