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Abstract

This study looked at the dynamics of a prey—predator mechanism with a Holling type II
feature response that integrated prey refuge and the predator community with intra-specific
rivalry. In the absence of a host, prey develops logistically in this model. For instance, the
system’s uniform boundedness is shown. The system’s local stability was tested around a
steady system near the biologically feasible equilibrium stage, and the model’s global stability
was assessed using the Lyapunov function. We often suggest an updated Holling—Tanner
prey—predator scheme in which the predator has a continuous time interval to allow for
the predator’s development cycle. According to previous research, delay destabilises the
mechanism in general, and equilibrium loss of stability occurs as a result of Hopf-bifurcation.
The paper brings out in unambiguous terms the vital role of delay parameters, which show
conditions wherein the coexistence equilibrium achieves stability and the values beyond
which it reports instability. The moment the latency parameters move beyond the initial
values, Hopf bifurcation occurs. The governing equations associated with the direction as
well as the stability of the bifurcating periodic solutions are determined through normal form
theory and the centre manifold theorem. Besides, environmental stochasticity of the white
noise type has an impact on defining the contours of the scheme and the attendant estimates
flowing therein. Numerical computations are often carried out in order to verify and visualise
the various theoretical findings posed. Both mathematically and biologically, the study and
conclusions of this work are intriguing.

B G. Ranjith Kumar
ranjithreddy 1982 @ gmail.com

K. Ramesh
krameshrecw @ gmail.com

K. Lakshminarayan
narayankunderu@yahoo.com

K. Kondala Rao
kkrao.kanaparthi @ gmail.com

Department of Mathematics, Anurag University, Hyderabad 500088, Telangana, India
Department of Mathematics, Vidya Jyothi Institute of Technology, Hydrabad 500075, Telangana, India

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s40819-022-01392-4&domain=pdf
http://orcid.org/0000-0002-9874-5697

209 Page2of21 Int. J. Appl. Comput. Math (2022) 8:209

Keywords Predator—prey interaction - Refuge - Intra-specific competition - Stochastic
stability - Time-delay

Introduction

In our ecological environment, the interaction between prey and predator is a common occur-
rence that exists everywhere. This environmentally friendly scheme is one of the key areas
for mathematical ecology. Some mathematicians and ecologists have shown a considerable
interest in researching prey deprivation in population dynamics during the past couple of
decades [4, 5, 31, 32, 41]. The first to present a model of prey predator in the area was one
of its pioneers in population ecology [8, 9], and it identified differences between observation
and projections of the Lotka—Volterra model [23] of prey predators. The Gause concept was
revamped [2011] by Krivan [20] and the ill-presented model defined.

The prey refuge impact is a phenomenon triggered by environmental heterogeneity. It
alludes to the idea that certain prey may be protected from predators or be unavailable to
them. McNair [28] (1986) did a lot of research on the refuge effect; Jana [17] did a lot of
research on it as well (2013).

The revisiting influence exercises being an impact with regard to prey development,
thereby also pronouncing an effect that is inimical to predators. If one were to go by the
experiments, the part played by the prey’s refuge is indeed highly impactful, determine the
rationale for coexistence of prey and predator, given that it enhances the equilibrium density
of one community prey and brings about assured stability around the positive fixed point.
Any species belonging to the prey category that comes with a massive population is sure
to locate safe places to preserve themselves. A case in point would be rats, which thrive
under adverse conditions once they identify ways and means to find threats from natural
predators [21]. The availability of a prey refuge signals the higher populations of both prey
and predators [28, 34]. Plenty of research has gone into looking at prey refuges with a fine
tooth-comb [10, 39, 43]. Ghosh et al. [10] examined a prey-predator arrangement involving
prey refuge and the availability of food in plenty for the predator. Their calculations revealed
that to enable the co-existence of species, one pre-condition was the assurance of high values
of prey refuge. At the same time, the presence of a very safe shelter for prey implied the
near or total annihilation of the predator. Kar [19] came up with numerous puzzling findings
in relation to the existence of a single global asymptotical stable limit cycle. Despite such
discoveries, only a few researchers [11, 25, 27] have demonstrated that prey refuge is influ-
enced by prey and predator population density. The often made assumption that prey refuge
and predator bio-mass are directly correlated permits a fair degree of realistic understanding
of prey-predator symbiosis. It needs to be said that there are biological environments where
prey refuge is significantly impacted by predator biomass.

Intra-specific rivalry for prey among predators begins the moment the predator-to-prey
ratio is high enough, resulting in individuals in the predator community losing fitness due to a
lack of food [29]. Severe rivalry occurs in blue crab colonies, which exhibit brutal behaviour
as a result of a shortage, resulting in bloodied wounds [6]. Owing to a lack of alternative
food sources, more intense intra-specific rivalry has been observed in a number of predator
species [7]. Finally, in a deterministic setting, rivalry within the predator community may be
favorable for predator species in some conditions.

In general, predator reproduction is not instantaneous in response to prey consequences;
rather, there is a discrete time lag required for gestation. As a result, the proposed model has a
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continuous time lag. Time delay causes complex dynamical behaviour in biological processes,
which may lead to limited period oscillations and instability [24]. Specific population growth
fluctuates when the gestation time delay increases and the mechanism becomes unpredictable.
Jana et al. [18] brought to light a prey-predator mechanism involving prey refuge and Holling
type-II functional response that carried a time delay. Ko and Ryu [40] examined the asymptotic
activity that was spatially non-uniform in nature and that involved the presence of a periodic
result below the uniform Neumann boundary state. The spatiotemporal dynamics that put
in the picture a 2D prey-predator model was actually a restricted version of a variant of the
Leslie-Gower model involving a prey refuge [13].

Researchers have zeroed in on the direction as well as the stability of Hopf bifurcation
drawing on delay-induced ecological systems for quite some time now [3,12, 14, 35, 42]. The
primary aim is to look at the manner in which gestational delay is instrumental in determining
crucial aspects of the prey-predator relationship. Some researchers [22, 26] have displayed a
keen interest in embedding white noise as a causal factor vis-a-vis environmental variations
to examine how noise impacts population dynamics. May [26] view a biological system
comprising both white noise and stochastic fluctuation to show that any movement of the
population from the equilibrium point sets up the system for instability? Ripa et al. [30]
researched the influence of noise on populations in general and drew up a general hypothesis
that would account for ambient noise in any biological food chain. Upadhyay et al. [38] also
took up exciting research on how noise impacted an ecological model in real-time with a top
predator, and in the course of research, it came through that the magnitude, trophic levels,
and sensitivity of the community to environmental noise were each paramount as factors
exercising a major impact. Attempts to deploy models of actively interacting populations
became very popular because these models were used to supplement evolutionary mechanism
models from injecting stochasticity at many stages of interactions, the major factor behind
stochasticity in a population [33, 36]. May [26] came to discover that all the parameters
concerning a working model can be manipulated suitably to decrease the values in such a
manner as to stimulate repeated fluctuations.

In order to be more consistent with the actual development of biological populations,
many researchers combine the fractional-order derivative with the time delay in the model
to describe and explore diverse complex systems, such as predator—prey interactions with
memory effect. Because of its memory effects, fractional-order systems have been investi-
gated for modeling realistic phenomena throughout the last few decades. In comparison to
the standard integer-order models with ordinary time derivatives [47-50], this feature makes
fractional-order models more useful for representing real-world processes.

We’re looking at a prey-predator model that includes prey refuge and intra-specific
predator rivalry in this study. We’re interested in merging these subjects and studying the
consequences because many scholars have focused on them separately. According to earlier
study, delay destabilises the mechanism in general, and Hopf-bifurcation causes equilibrium
loss of stability. We show that the delay parameters have a critical value below which the
coexistence equilibrium is stable and an unstable value above which it is unstable. Hopf bifur-
cation occurs when the latency parameters reach their essential levels. This work expected
that stochastic perturbations would be white noise-based, and that these perturbations would
be absorbed into prey and predator groups as described in our study. In the vicinity of the inte-
rior equilibrium point, stochastic differential equations were used to investigate the various
characteristics. We also propose a modified functional response that might be appropriate for
predator—prey interactions in complex habitats. It would be more ideal for laboratory setup
in general, for example, in the Luckinbill experiment [44]. The primary goal of this research
is to look into the impact of prey refuge as well as intra-specific predator rivalry on the
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dynamics of the prey-predator system. We’ve shown that predators’ intra-specific rivalries,
as well as the refuge level of prey, have a key influence in influencing dynamics.

This paper assumed that perturbations involving stochasticity would be white noise based
which would be incorporated into prey and predator communities invoked in our study. The
various aspects were looked into through stochastic differential equations in proximity to
interior equilibrium point. The model in question draws from the predator—prey system:

dx X Bxy
CT:”O_?)_l ’
t +ax (1.1)

dy  cBxy
dr ~ 1+ax

In the nonappearance of predator species y(t), the prey population x(¢) is expected to
expand logistically to its carrying ability K at an inherent growth rate r.« is the predator’s
maximum per capita prey intake rate, a is the amount of prey required for the predator’s
relative biomass growth rate to be half of its maximum, c is a calculation of the food quality
content provided by the prey, which is translated to predator birth, and y is the predator’s
death rate. The term Sx / 1 + ax refers to the predator’s practical reaction. Holling type 11
response function [15] is the name given to this response function.

The model above is gradually extended in the present study from making use of the relation
m € [0, 1). This equation is a measure of the degree or extent of prey refuge to reckon with,
when one assumes that the refuge is defending mx of the prey while leaving (1 — m)x of
the same prey vulnerable to the predator. 6 represents values in terms of prey-predator intra-
specific rivalry. The moment all such assumptions are factored in the equation; it is easy to
see that the reworked system from (1) can now be cast as

dx by B(l —m)xy

—:rx(l——)—i,
dt K 1+a(l —m)x
dy _ cB(l —m)xy
dt ~ 1+a(l —m)x

x() > 0,y@) >0Vt > 0.

(12)
—yy —6y%

Existence and Boundedness of the System
Existence

Theorem 1 Every solution of the system Eq. (1.2) with initial conditions exists in the interval
(0, 00) and x(t) > 0, y(t) > 0Vt > 0.

Proof Let
% i, 2 =g,y @1
dt—lx,y,dt—zx,y. .
Jr’wl(x,y)ds i Ya(x,y)ds
Integrating then we obtain x(r) = x(0)e° , y@) = y(0)e° where

x(0), y(0) initial conditions which are positive. Hence the solution is exist and which is
unique on (0, ¢) where 0 < ¢ < oo since Y|, V¥ are continuous functions and locally
Lipschitzian.
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Boundedness

Theorem 2 The solutions of the system Eq. (1.2) with initial conditions x(0) = y(0) > 0 are
uniformly bounded in R2.

Proof Let
1
p=x+-y, (22)
c
do _dx  1dy
dt dt cdt
dp (l x) y 0 ,
—=rx(l——=)—=y——y~,
dt K cy cy
d 2
—p§2rx———rx—zy,
d c

S—L(x—K)2+rK—rx—Zy,
K c

<rK — U(x + %y), where v = min{r, y}

9P a1
—_— xX(r — VpP.
dr = p

On using the theorem in differential inequalities Birkhoff et al., [2], we obtain.
0< p(x,y) < 5+ (p(x(0), y(0) — 5 ) /e and if 1 — o0, 0 < p < 1.

v
Thus, the solutions of the model Eq. (1.1) are exist in the region

2. rkK
Q:{(x,y)eﬂt+.0<p57}’

Hence the system Eq. (1.2) is uniformly bounded.

System Behavior at Positive Equilibrium Point

In ecology, emphasis is always on the stability of co-existing equilibrium. This leads to one
to examine in some detail the local stability in so far as the positive equilibrium of the system,

show in Eq. (1.2), which is given by (x*, y*), where y* = %(% — y) and x* is the
positive root of the following cubic equation.

A1x3+A2x2+A3x+A4 =0 (31)
where A1 = r0a?(1 — m)?, Ay = 2rfa(l —m) — Kroa?(1 — m)?,
Az = 10 + K21 —m)? — 2Krba(l —m) — KaBy (1 —m)?, Ay = —Kro —
Kyp( —m).

To assure the presence of a positive equilibrium point, we adapt two conditions ¢ > ay
and

2réa
1-—<m<1

- (3.2)
Ka B(ch —ay)
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Local Stability

On using the equations of Eq. (1.2) at positive equilibrium, we can obtain the Jacobian matrix
as

—rx*  ap(=m)’x*y*  —p(—m)x*
J = K [l+(;t(lfm)x*]2 I+ (1—m)x* (33)

cpd—m)y* —0y* ’

[1+a(1—m)x*]?
The Latent equation can be obtained from a Jacobian matrix (3.3) is

W+ Ur+U; =0 (3.4)

_ —rx* otﬂ(lfm)2x*y* _ % . rex*y* _ aﬁ@(lfm)zx*y*z Cﬂz(lfm)2x*y*
where Ui = ==+ [atomuep — 00" a0d U2 = "= = I oo rati—m P
The non delayed approach is stable for the situations supplied by the theorem-3 hold.

Theorem 3 The system Eq. (1.2) is said to be locally asymptotically stable if U; <
0, and Uy > 0.The positive equilibrium of the system discussed above, namely, (1.2) is
deemed stable only if the characteristic roots of the Eq. (3.4) are negative or have negative
real parts. This is only feasible if the conditions of Theorem 3apply.

Global Stability

Theorem 4 The system (1.2) is globally asymptotically stable if S;; > 0, and S1;S2 —
(S12)* > 0.

Proof Let the Lyapunov’s function is

L(x,y):x—x*—x*lni+y—y*—y*lnl
x* y*

dL " X Bl —m)y " cf(1 —m)x
o = )[FO_E)_ l+a(1—m)x:|+(y_y )|:1+a(1—m)x _’/_ey}’

(r—v)[-2 . Bl —m)y AU —m)y*
= x—x) _;(x—x )_ T+a(l—m)x  1+a(l —m)x*

+(y_ *)|: cB(l —m)x 0 cB(l —m)x* +0y*:|’

(3.5)

1+a(l —m)x B 1+a(l —m)x*
dL__ r_aﬁ(l—m)z* %2
dar - | K ap |

Bl —m)

g (e —m®) (x = x*)(y =)

1_
—ﬁy—ff+g?g;9&—XﬂU—yW

where A = (1 +a(l —m)x); B = (1 +a(l —m)x*).

‘We consider

dL

7 =St (x — X*)2 — Sy(y — y*)z +281(x —x*) (y — ¥%).
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% = —07S0, whereQ = ((x —x*), (y — y*))T, S denotes a symmetric matrix

S11 Si2
S21 S22
%%[(1 +a(l —m)x*) — c].Here % < 0 when the symmetric matrix S is positive
definite, and this is true if S;; > 0 and S;182» — (512)2 > 0.
Consequently, if the above two requirements are satisfied, the structure in question is
asymptotically stable.

2
and is given by § = |: :| where §11 = ¢ — aﬂ(l‘i;m)y*, S» = 0, S =

Time Delay Analysis

In a prey-predator symbiosis, delay is employed as an instrument to make the model highly
accurate and reliable biologically. Predator reproduction is apparently not possible soon after
prey consumption. Time lag is predictably de rigeur for gestation. Naturally, the delay with
regard to capturing prey and the increase in prey numbers so as to meet the demands of any
predator is a vital parameter in conceiving a workable model. Model Eq. (1.2) involving a
gestational delay () may then be illustrated like given below:

dx X Bl —m)xy

—:rx(l——)—i,
dt K 1+a(l —m)x
dy  cp(l—m)x(t — 1)y
dt ~ 1+a(l—m)x(t —1)

Hopf bifurcation will then be injected into the system Eq. (4.1).

(4.1
—yy —6y%

Theorem 5 The next logical step is to show that Eq. (4.1) experiences Hopf bifurcation on
undergoing endemic equilibrium point when T = 1.

Proof The above system’s Eq. (4.1) Jacobian matrix is.

_rx aﬂ(l—m)zxy —B(l—m)xy
J* = K 7 [l+a(1-m)x)? l+a(l—-m)x
- cpl=—m)y’e’"y —0 ’
[1+a(1—m)x]? y

The Jacobian matrix’s characteristic equation is as follows:

AV +EA+Er+e F =0 (4.2)
_rx _ aBU-m)’xy_ _ rfxy _ fap(l-m)*xy*
where Ey = % +0y — o= s B2 =% o (l_mye?’ 24

_ cpP—m)xy
YT el —mx

For a critical value of T > 0, whenever a latent root of the Eq. (4.2) reaches the imaginary
axis, instability exists.
Substituting A = iw into Eq. (4.2) gives

—&’ + Ey+ Ficoswt +i(Ejw — F sinwt) = 0. (4.3)
The following equations can be obtained on comparing real and imaginary parts,

Fj coswt —w2+E2 =0,
) 4.4)
Eiw — F1sinwt = 0.
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Squaring and adding above two equations
o*+ B’ + B, =0 4.5)

where By = E} — 2E,, and B = E3 — F}.

The criteria for at most one positive solution to above equation are B; positive and B,
negative.

If the criteria mentioned above are met, the Eq. (4.5) has a single positive origin, and we

_ 1 —1[w?-E 2 —
have 7, = _- cos [‘”le] + ;)—(’)T z7=0,1,2,......

Next, we have to show that the system Eq. (4.1) go through Hopf bifurcation at endemic
equilibrium when t = 7p.

DifferentiatingEq. (4.2) with respect to 7, we get
(dx)‘l QA+ E) — Fire™

dt Fiae=t ’
A" @A+E) - Fite ™ 1
<E> - Fiie 2t B A
Substituting A = iwp and from Eq. (4.4), we get
Re($) | = 220 o g} 2, > 0

imivy  Erwd+(0R—Ea)
Hence the system Eq. (4.1) go through the Hopf bifurcation at endemic equilibrium when
T=T7.

The direction and stability of Hopf bifurcation

The last section saw the formulation of conditions under which Eq. (4.1) samples Hopf
bifurcation at positive equilibrium point, where T = tp. This is followed up with determining
the orientation and phase of bifurcating periodic solutions. By using the normal form and
central manifold theory [43], we can be interpreted the results.

Lett =10+u, p € R, x; =x—x%, x =y—y* x; = x;(t) then the system Eq. (4.1)
transformed into FDE and ¢ = (¢1, ¢2)" € C([—1,0], R?)as

x(t) = Ly(xo) + f(w, x), 5.1
where
re*[Ka(1-m)—1-2x*a(1-m)] —[y+6y*]
- T #1(0)
L — K[1+a(1—m)x*] c
w(®) (10+M)< 0 —gy* ><¢2(0)>
0 0 ¢1(—1))
+(to + M) cr(K—x* ( , (5.2)
(K[H%rn))] 0) $2(=D)
and

_ el O _ pU-m)gi 0)$2(0)
K T+a(1—m)¢; (0) . (5.3)

cB—m)¢1(=1)¢>(0) 2
l+ot(1—n11)¢1(—21) - 0¢>2 )

fu, x) = (o +p)

Using Riesz representation theorem, it can be shown that there exists a function n (¢, 1)

0
of bounded variation for ¢ € [—1, 0], such that L, (¢) = f dn(,0)¢ () for ¢ € C.
-1
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As a matter of fact, it is up to choose.

_ rx*[Ka(l=m)—1=2x*a(1-m)] —[y+6y*]
N, n) =(r +pn) K[I+a(1—m)x*] c 5(1)
0 —Oy*

where & is the Dirac

- 0 0

—(T+up cr(K—x*) 5@ +1).
K[1+a(1—m)x*]

delta function. For ¢ € C'([—1, 0], R?), define

¢'(®); ¥ €[~1,0)

0
A(wg = /dn S(s): 9 =0, 54
~1
And
R(u)p = :0; velnlo (5.5)
fu, ¢); & =0.
Then the system Eq. (5.1) can be modifies as operator equation given below
x(t) = AW Xr + R(w) X, (5.6)
Define
—d
fs(s), s €0, 1]
A*W) =4 0 (5.7
/dnT(z, 0P (=), s =0
-1
and a bilinear form is given by
0 v
W), 9 =700 - [ [ e~ 0anoa 58)
—16=0

where x () = n(, 0). Then A(0) and A* are adjoint operators. We initial require to figure the
eigen vectors of A(0) and A* relating to iwt and —iwt, individually. Let ¢ = (1, )T etwT?
is the eigen vector of A(0) corresponding to iwt, then A(0)g = iwtgq. Then from A(0),
Eq. (5.2) and Eq. (5.5)

. rx*[Ka(l-m)—1-2x*a(1-m)] [y+0y*]
lw + * .
'L'( K[1+a(1—m)x*] c )q(o) — (g)

cr(K—x*) T —
— R 1e io+0y*

701‘(K7x*)e*""7
- K[1+a(l—m)x*](io+0y*) *
Likewise, let g*(s) = D(1, h*)T ¢/®7 be the characteristic vector of A* relating to —i @7 .
Employing the definition of A* and Eq. (5.2), (5.3), (5.4) and (5.5), computing becomes
easy

Therefore, we are able to get ¢(0) = (1, m7T, where h =

i 0 +0y*) .
* — D 1’ h* T LTS — D l, [ LwTS
q*(s) (1,n*) e ( BT e
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In order to ensure (¢*, g) = 1, we require computing the value of D from (5.7) we have

[a* ). ) =D(1, &)1, w7

0 9
f/ﬁ 1 A ) —oTE=N gn9)(1, h)T e de
1

0
—Dl1+nn* - / (1, E*)ﬁeimdn(ﬁ)(l, mT
-1

_ e k — x* _
_Dleni e R ) ) |

k[1+a(l —m)x*]
1

1+h?+7?(%)e—iﬁ '

The notations used in Gopal swamy and He [16] are made use of in the section to follow.
The main job is computing the coordinates of the centre manifold Cyp at u = 0.

Let us consider,

Thus, we can choose D as D =

z=(q" X:), W(t, 9) = X; — 2Re{zq}. (5.9)
On the center manifold Cy, we have
Wi, 9) =W(z,z, 0),

where
22 72
Wz, z, 9) = W20?+W11ZE+ Woz?+... (5.10)

z and 7 are local coordinates for center manifold Cy in the direction of ¢* and g*.
For solution X; € Cyp of Eq. (5.6), since © = 0, we have.

d
%(t) = iwtz+q*(0)f(0, W(z,Z,0) + 2Re{z ¢}) éf iowtz +q*(0) fo(z,Z). We rewrite
this equation as
z(t) = iwtz(t) + 8(2, 2),
where
2 =2 2=
s _ z _ z °z
8z, 2 =970 fo(z,2) = 8207 + 81T+ g0 + 821 (5.11)
It follows from Eqgs. (5.9) and (5.10) that

2
X, (%) = W(t, ) +2Re{z()g (1)} = Wzo(l?)% + Wiz
(5.12)

2
W02 () S+ (L) ™24 (17) e 72
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It follows together with Eq. (5.3) that

- B R S TURL o
22,2 =7g (O)f(O,Xt):TD(l’h ) cBU=—m) X1 (=D X5 (0)
T+a(1—m) X1, (0)

2 =2
= — Z _ Z
- —ID{Z +Z4+ W2%>(0)3 + W 0)zz + W(§§’(0)3 + }

r WD E D s DL
X % 7+7+ Wy, (0)?+W11 0)zz+ Wy, (0)?+...

2 =2
— Z _ Z
+8(1 —m) <hz +hZ+ Wyp) 0 + W 02z + WO(?(O)E + )

2 =2
A1 —a( - m)(z +7+ Wz((l))(O)% + W02z + W(gy(m% + )

27
+2(1 — m)* x (22 +7 +2z?,+2W1(11)(0)z2?,+2W2(é)(0)% + ) - H

+TDI cB(1 — m)
ioT | = iwT 1 22 1 1 z

RS W2<0>(—1)‘? + W (=Dzz+ Wéz)(—l)'? +..

e iz W05+ WO 0res s W)
x| hz +hz + Wy, (0)3 + Wi (0)zz + Wy, (0)? + .

. . 2 =2
x {1 —a(l— m)(ze’“” +7617 4 Wz((l])(—l)% +wh(—Dzz+ W(g)(—l)% + )
27
xa(1 - m)2<zze_2”‘” + 22620 4 2774 ZE(4W]) (< De T+ ZWZ((I))(—l)ek’“”)> - }
S R SR

—01hz +hzZ + Wy, (O)?+W11 0)zz + Wy, (0)3+"' .

(5.13)

We obtain the following on comparing the coefficients with (4.10),
220 = 2?5{—(% +(1— m),s) + hﬁ*[cﬁ(l — m)e~ 17T Gh]},
= r - -
g1l = ZID{—(E +B(1 — m)Re{h} + K" [cB(1 — m)Re(h} — ehh])},
g = 2?5[—(2 +B(1 — m)ﬁ) + Ik [cﬁ(l — M) — eﬁ] }
-pl_r | 1 2 2 7wl
821 = TD[—E(4W11(O) +2W,0(0)) — B(1 —m) {2W11(0) + W3(0) + hW5,(0)

W 0) = 2a(1 = m) (1 +2R)} + " {eBA = m) (Wh (@™

— (5.14)
+Wao (=T + 2Wao (=) — 2ha(1 — m)

—2ha(l —m)e 2% — 2ha(l — m)) —40hWE (0) — 20RW3,(0)}].
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However, we require to solve Who () and Wy (¢9) in Eq. (5.14). From Eq. (5.6) and
Eq. (5.9), we have

W =X, —2-2q=AW —2Re[g"(0) fo, (@)}, ¥ €[-1,0),

= AW —2Re{q"(0) fog ()} + fo. © =0, (5.15)
def AW+ H(z, Z,0).

where
22 72
(z,z,0) = H20(0)5+H11(19)Z2+H02(19)5 + .. (5.16)

Substituting the series concerned into Eq. (5.15) and making a comparison of coefficients
leads to the following equations

(A —2i0oT)Wr(¥) = —Hao(9), AW11(¥) = —Hp1(9)... (5.17)
From (4.14), we know that for 8 € [—1, 0),
H(z, Z,9) = —=7"(0) fog (9) — ¢*(0) fo(9) = —g(z, Dg(P) — g(z, DGW).  (5.18)
Comparing the coefficients with Eq. (5.16), yields
Hy(¥) = —g20q9(F) — 8029 (D), (5.19)
and
Hi(9) = —g11q(®) — 119 (). (5.20)
From (5.17) and (5.19)
W = 2imT Wag + 8209 + 8029 -
and g = (1, h)e!®T? | therefore

i _ io PR _
Wao = E{)qelme + gozqe_zme + E1621w19’ (5.21)
0T 30T

where E| = (E fl), E 52)) represents an invariant vector in 2-dim plane. Also, from (5.15)
and (5.20), we get

i iz __
Wi = — 81 w70 LEllg —ioTo | b (5.22)
wT wT

where E; = <E£]), Eéz) ) represents an invariant vector in 2-dim plane. We shall try to find
suitable £1 and E3 in the below. From the definition of A and (5.17), we get

0
/dn Woo = 2io TWho — Hyg, (5.23)
2
and
0
/dn Wi =—-Hn (5.24)

-1
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where n(¥) = n(0). By (5.15), we have

_ s - —(f+d-mp) )
H0(0) = —g20q(0) — g9 (0) +2f<h(cﬂ(1 e _gp) )’ (5.25)
and
_ = = - —(£+,3(1—m)Re{h})>
Hi1(0) = —g119(0) — g1;9(0) +2t<cﬂ(1 — m)Relh) — 6nh )" (5.26)

Substituting (5.21) and (5.25) into (5.23) and noticing that.
o __
(iwtl - f e”‘””dn(z?))q(O) =0, and
-1
0

—iwTl —/e*imﬂdn(ﬂ) 7(0) =0.
-1

we get
° (s )
R BT - —(p+d—m)B
2 I _ Zl(ul’ﬂd 19 E — 2 k + ( 2 .
IwT fe n() 1 T h(cﬂ(l—m)eilwr—eh)
—1
This leads to
. rx*[Ka(l—-m)—1-2x*a(1—m)]  [y+0y*]
(2"" + (K[1+o)t(lfm)x*] c ) |
cr (K —x* _2iaT -
— Rl 2iw +0y*

_( —(p+1-mp) )
~ T\ (B —m)e™'®T —0h) )

It follows that

[y+0y*]
po_ 2| —Gra-mp) e
Al h(cB(l —m)e T — Oh) 2iw+Oy*
and
. rx*[Ka(l-m)—1-2x*a(1—m)]
E® 2|20+ RT+a(I—m)x*] —(p+ (1 —=m)p)
1 - (K — * hi— - .
A _K[i:-gz(ljin))x*]e 2iwT cB(1 —m)e~i@% —oh

where

re*[Ka(1-m)—1-2x*a(1-m)]  [y+6y*]
( K[l+o)t(lfm)x*] c
cr(K—x* _iaT —
B G 2iw +0y*
Similarly, substituting (5.22) and (5.26) into (5.24)

rx*[Ka(1—-m)—1=2x*a(1-m)] [y+6y*]
< ‘ )El

2iw +

KlT+a(I—m)x*]
__aKx) o dimr gox
Kll+a(l—m)x*] y

_ 2( — (£ + B —m)Re{h}) )
cB(1 —m)Re{h} — Ohh
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It follows that

oy*
ED — 2| =(z + B —m)Re{h}) [ytiy]
B|cB(1 —m)Re{h} — Ohh 2iw + 0y*
and *[Ka(l—m)—1—-2x*a(1—-m)]
o— rx a(l—m)—1—2x"o(l—m
E§2) _ o|2ie+ Kl+a(I—m)x*] —(z +B(1 —m)Re{h})
— B (K —x* i —
— ) T cB(1 — m)Re{h) — Ohh
where
rx*[Ka(l-m)—1-2x*a(1-m)] [y+6y*]
B — K[1+o(1—m)x*] c
- cr(K—x* _2ieT
T Klra(d—m)x ¢ e oy*

This enables determination of Wy (¢}) and Wy () from what is available in (5.21) and
(5.22). Additionally,g>; in (5.14) may be expressed in the form of delay and other related

parameters.C1(0) = 25’—? 220811 — 2lgnl? — 4‘8032\2> + 8

_RelC1(0)
Re{1'(1)}

B2 = 2Re{C1(0)},

M2 =

_ Im{C1(0)} + waIm{X' (D)}

wT

The concomitant values which measure the characteristics of a bifurcating periodic solu-
tion in the center manifold at the critical value 7.

Theorem 6 The parameter i is used to identify the direction of the Hopf bifurcation. The
Hopf bifurcation is supercritical (subcritical) when o positive (negative) and bifurcating
periodic solutions arise if T > T(t < T).

Stability Analysis of Stochastic Model

In ecology, deterministic models seldom provide biological variation which is normally
explained by the tacit belief that stochastic variations in broad populations are minor enough to
be overlooked. Only if the dynamical structures shown by deterministic models remained after
stochastic effects were applied would they be ecologically beneficial. Since the environmental
variability in a terrestrial system is high over both short and long time periods, it is likely that
the system will evolve internal structures to deal with short-term variability while minimising
the impact of long-term variability, resulting in improved outcomes when the system is
analysed with white noise. Temperature, humidity, pests and viruses, air contamination, and
other conditions all play a role in species reproduction [37]. Since populations’ physical and
biological conditions are unpredictable, population growth can be seen as a stochastic rather
than a deterministic mechanism [38]. The following stochastic differential equations will
be used to describe the model method (1) in this case: It may be then safe to conclude that
the perturbations which are stochastic in characteristics (Model 1) show an indubitably high
tendency to white noise. Also, the perturbations are proportional to the distance from the
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origin and are susceptible to environmental fluctuations. The stochastic differential system
of Eq. (1.2) is seen below, and it has the same equilibria as the system before it Eq. (1.2).

dx X Bl —m)xy
Zon(1-2) -
dt K l+a(l —m)x

dy  cB(l —m)xy

dir ~ 1+a(l —m)x

+ 7 (x — x*)déll,

—yy — 0y + Yoy — y*)d&/!. 6.1)

The linearized Stochastic Differential Equations corresponding to the positive equilibrium
V, is given by

dp@t) = f(p))dt +g(p))dé (1) (6.2)
where p(t) = (p1 (1), pz(t))T and f(p(t)) is the variation matrix J (x, y)

Tipr O
(») = [ ]
8P 0 Mop2

Let C l*2([0, +00) x N2, 9%+) be the family of nonnegative functions. W (z, p) defined

on [0, +00) x %R? is a continuously differentiable function with respect to t and twice with
respect to p.
The differential operator L is first defined for a L_function W (¢, p) given by the equation
below:
( IW(, p)

oW 1
LW(t, p) = + T (p) (’ b Hg{f@)% (p)] (6.3)

W _ aW W 9w PWa.p) _ (2w .
= col ( a1 Ip 8p3)’ and e = \aprap; )- i, j = 1,2,T denotes transpose.

The trivial solution marked for (6.2) must be proven to be globally asymptotically stable
through probability [1, 39].

Theorem 7 Suppose that Y2 < 2(— - M) Y2 < 2(0y*)hold. Then, the

(I+a(1—m)x*)?
trivial solution of (6.2)is asymptotically mean square stable.

Proof Let us consider the Lyapunov function

1
W(p) = [w1 pi+w2p3] (6.4)

here wy, w, are nonnegative constants are to be taken as in the given below.

B rx* af(l —m)x*y* —B( —m)x*
LW (u) = w; |:<_K + (14'0!(1—7’”))6*)2)[)1 + (l-l—a(l—m)x*)pz:|pl

_BU—my* 6.5)
w2|:(1+a(1_m)x*)2171 Oy P2:|P2

W (s,
Mg(p)].

+1T T(p)
—Tr
T8 (D=5

with 377 [ g7 (5% ¢(p) | = 3[un 170} + w23 p3].
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—B(1—m)x* _ _cBU—m)y*
Tra(T—m)x* U1 = (e (l—m)x

rx* aB(l —m)>x*y* 1_, 2 1, 2
LWp)=—|— -2 "2 7 —(oy* - =
(p) ( % Q+a(—mx? 2 1 Jwipy Yy 512 w2 py

If in (6.5) we choose 72 wy, then

Based on theorem (7), it is surmised that the trivial solution of (6.1) is indeed globally
asymptotically stable.

Numerical Simulations

We offer numerical examples in this part to corroborate the theoretical analysis presented in
the previous sections.

Example 1 Taking the various estimates as » = 0.207; K = 52.1;8 = 0.948;m =
0.047; ¢ = 0.955;

¢ =0.631;y = 0.081;0 = 0.218 and we examine time series and phase portraits under
different -time delays. Figure 1 and Fig. 2 confirm how the variation of time delay impacts
the dynamical behavior of the model. If T = 0.6 then positive equilibrium is asymptotically

=
Predator 08l

Predator

] 500 1000 1500 2000

Prey Prey

Fig. 1 The directions and phase portrait of the system Eq. (3.4) taking the time delay t = 0.6

Predator

0 500 1000 1500 2000 0 0.5 1 15
Prey
Prey

Fig. 2 The direction and phase portrait of the model Eq. (3.4) taking the time delay t = 0.8
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Fig. 3 The stochastic directions of n ‘ ‘ ‘ ‘

the model (6.1) taking the white
noise intensities 1or 1
T} =0.05& Y, = 0.07 and J ﬁM |
T? < 0.3007 & Y7 = 1.0630

(Theorem (7))

Population Densities

4
38.75 38.8 38.85 389 38.95 39

Fig. 4 The stochastic directions of 18
the model (6.1) taking the white
noise intensities

T =02&Y,; =04and Y7 < 14
0.3007 & Y3 = 1.0630(Theorem
)

Population Densities
=

2 . . . .
38.75 388 38.85 389 38.95 39

stable (Fig. 1) and if 7 = 0.8 then positive equilibrium loses its stability and a family of
periodic solutions bifurcates from positive equilibrium and a Hopf bifurcation exist.

Example 2 We got the following graphs by taking the various estimates as r = 0.26; K =
52;8 = 0.08;m = 0.01;¢ = 0.05;¢c = 0.8;y = 0.31;0 = 0.218. with various values of
white noise intensities and the method satisfy the Theorem (7) conditions for these parameter
values. The Figures (Fig. 3, Fig. 4, and Fig. 5) clearly demonstrate that when the white noise
strength increases, the populations begin to converge at a point of equilibrium with wildly
arbitrary oscillations.

Example 3 In Figs. 6 and 7, we look at time series diagrams of various estimates of m and 6
the same other constraints as in Example 1. We observe when the minimal value of 6 = 0.1
and increasing refuge values then the scheme interchanged the oscillatory bearing by a stable
equilibrium. If & = 0.5 and varying refuge, we see that the present system does not change
its stable behavior. This remark enables us that for a larger intra-specific competition in
predators, the prey refuge does not affect the system behavior.

Conclusions

The paper concerned itself with a prey-predator relationship, with a prey refuge in the picture,
and rivalry between predators. It was further assumed that the mechanism with regard to
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Fig. 5 The stochastic directions of 18 " " "
the model (6.1) taking the white 166 ,
noise intensities
T =04&Y, =0.6and Y7 < 145
0.3007 & Y7 = 1.0630(Theorem 8 1t ]
k-
) 2.l |
[
2
g 8 ]
pis ]
o i
A7 88 w885 ) 8.9 39

] - .
45 = Predator |

~

x(),y(t)
N
o
e
x(®).y()

-

~--_

0 L
0 2 300 400 500 0 100
Time Time

8

Fig. 6 The time series trajectories of the system Eq. (1.2) for fixed & = 0.1 with two various values of
m = 0.2, 0.5 respectively

predator reaction obeyed the Holling type II format. While there can be little argument that
a refuge is essential for biological management of pests, increasing the rate of refuge can
lead to a tragic increase in prey density and a swift outbreak of population growth. The paper
commenced with an elaboration on the boundedness of the system and then dealt with the
local stability around the positive equilibrium point. The equations essential to proving with
a high degree of certainty the nature of the stability of the system and the direction it takes
were formulated with the help of normal form theory and the centre manifold theorem. The
main effect of white noise on stochastic differential systems was a foregone conclusion from
the equations. Under conditions of environmental fluctuations; equations were derived and
solved to reveal parameters requisite for achieving global asymptotic stabilization.

The study’s key finding is that time delay and environmental fluctuations are two essential
features of real-time equation applications that cannot be overlooked. This research also
shows that the prey refuge has no effect on predator behavior when there is more intra-
specific competition.

The term "refuge" refers to a critical component in the biological management of prey
predator populations. Increased refuge levels, on the other hand, can result in an increase
in prey individuals and, as a result, prey population outbreaks. Hotspots of high spider mite
densities in almond orchards, according to Hoy [45], can initiate orchard-wide outbreaks.
These hotspots are places where the predator is having difficulty controlling the prey, and thus
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50
a5t ’
o

351

"o 100 200 300 400 500 )

Time Time
Fig. 7 The time series trajectories of the system Eq. (1.2) for fixed & = 0.5 with two various values of
m = 0, 0.5 respectively

can be classified as prey refugia. In a variety of predator—prey settings, our model can also be
utilised to explain real-world population dynamics. For example, in an aquatic system with
patchy habitat, the model can be used to depict the dynamics of predator—prey interaction.
Conservation biologists may find the theoretical results valuable in preserving species in
real-world ecological systems.

Many topics for further research are open based on the stated findings. Spice dispersion
can be accounted for using spatial diffusion terms, and diffusion-induced instabilities can
be studied. The impact of geographical diffusion in the model using the Valenti et al. [46]

technique is another promising subject for further research.
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