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Abstract
In this paper, the symmetry group method is used to obtain similarity reductions for general-
ized symmetric coupled Burgers-type equations. Two different cases for similarity reductions
yield, therefore two different ordinary differential equations are solved. Many new different
traveling wave solutions in the form of rational wave solutions, kink soliton, and periodic
wave solutions are given with their Illustration graphics. The obtained solutions are novel
and cover other obtained solutions in the literature. Finally, some graphs for the obtained
shock and kink wave solutions will given to illustrate the wave propagation behavior.

Keywords Symmetric Coupled Burgers Equations · Symmetry method · Traveling wave
solutions · Solitary waves

Introduction

Oneof themost famous equations inmathematical physics isBurger’s equation. This equation
yields because of merging both nonlinear wavemotion with linear diffusion. The existence of
viscous terms helps control wave-breaking, and smooth out shock discontinuities so that, we
know that the obtained solutions will behave well and smoothly. Additionally, in the inviscid
limit, as the diffusion term becomes very small, the smooth viscous solutions converge
non-uniformly to the appropriate discontinuous shock wave. Many applications for Burger’s
equations and their generalization canbe found inweather problems, boundary layer behavior,
acoustic transmission, shock weave formation, mass transport turbulence, and traffic flow [1–
5]. Moreover, coupled Burger’s equations are one of the very important classes of systems
of nonlinear parabolic and hyperbolic partial differential equations which models basic flow
equations describing unsteady transport problems.
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In this paper, we are going to use symmetry group analysis to investigate invariant trans-
formations and exact solutions for one of those generalized Burgers systems; namely, the
symmetric coupled Burgers equations (SCBE) [1–3]

φt = 1

2
φxx + 1

2
ψxx + 3φφx + 5ψφx + 3φψx + 5ψψx

−4φ3 − 4φ2ψ + 4φψ2 + 4ψ3,

ψt = 1

2
φxx + 1

2
ψxx + 3ψψx + 5φψx + 3ψφx + 5φ φx

+4φ3 − 4ψ2φ + 4ψφ2 − 4ψ3, (1)

where φ = φ(x, t) ,ψ = ψ(x, t). The SCBE (1) was first discussed by Foursov in [1] as one
of the symmetric integrable coupled Burgers type equations. Also, Wazwaz in [3] studied the
SCBE system by using Hirota’s bilinear method to find its integrability property, and both
kink and singular kink solutions were obtained.

The motivation of our work is to reduce system (1) by the symmetry method and obtain
more novel solutions for it that also cover other solutions obtained before [1–3]. Moreover,
some graphs for the obtained shock and kink wave solutions will given to illustrate the wave
propagation behavior.

Methodology and Fundamental equations

Recently, many new methodologies constructed to solve nonlinear partial differential equa-
tions like Hirota’s bilinear method, Bäcklund transformation method, the Riccati equation
method, the sine-Gordon equation method, and direct similarity reduction method, the sym-
metry reduction method etc. [6–38].

In this section we are going to apply the symmetry method to reduce the SCBE as follows
[4, 5, 20, 22, 25], and [29]:

1- The SCBE system can be written in the form,

L1(φ, ψ) = φt − 1

2
φxx − 1

2
ψxx − 3φφx − 5vφx − 3φψx

−5ψψx + 4φ3 + 4φ2ψ − 4φψ2 − 4ψ3,

L2(φ, ψ) = ψt − 1

2
φxx − 1

2
ψxx − 3ψψx − 5φψx − 3ψφx

−5φ φx − 4φ3 + 4ψ2φ − 4ψφ2 + 4ψ3, (2)

2- To find the invariant transformations of the SCBE system, put the following symmetry
operators

S1(φ, ψ) = A φt + B φx − C

S2(φ, ψ) = Aψt + B ψx − E . (3)

where A = A(x, t, φ, ψ), B = B(x, t, φ, ψ), C = C(x, t, φ, ψ) , and E =
E(x, t, φ, ψ) are the infinitesimals to be found later.

3- To Calculate the Frèchet derivatives F1(L1, φ, ψ,�,�) of L1(φ, ψ) and F2(L2, φ,
ψ,�,�) of L2(φ, ψ) in directions of� and�, and replacing� and� in F1and F2 by S1(φ,
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ψ) and S2(φ, ψ) respectively, we get

F1(L1, φ, ψ, S1(φ, ψ), S2(u, v)) = [S1(φ, ψ)]t − 1

2
[S1(φ, ψ))]xx − 1

2
[S2(φ, ψ)]xx

−3φx [S1(φ, ψ)] − 3φ[S1(φ, ψ)]x − 5φx [S2(φ, ψ)]
−5ψ[S1(φ, ψ)]x − 3ψx [S1(φ, ψ)] − 3φ[S2(φ, ψ)]x
−5ψx [S2(φ, ψ)] − 5ψ[S2(φ, ψ)]x + 12φ2[S1(φ, ψ)]
+8φψ[S2(φ, ψ)] + 4φ2[S2(φ, ψ)] − 4ψ2[S1(φ, ψ)]
−8φψ[S2(φ, ψ)] − 12ψ2[S2(φ, ψ)], (4)

F2(L2, φ, ψ, S1(u, v), S2(u, v)) = [S2(φ, ψ)]t − 1

2
[S1(φ, ψ)]xx − 1

2
[S2(φ, ψ)]xx

−3ψx [S2(φ, ψ)] − 3ψ[S2(φ, ψ)]x − 5ψx [S1(φ, ψ)]
−5φ[S2(φ, ψ)]x − 3φx [S2(φ, ψ)] − 3ψ[S1(φ, ψ)]x
−5φx [S1(φ, ψ)] − 5φ[S1(φ, ψ)]x + 12ψ2[S2(φ, ψ)]
+4ψ2[S1(φ, ψ)] + 8φψ[S2(φ, ψ)] − 8φψ[S1(φ, ψ)]
−4φ2[S2(φ, ψ)] − 12φ2[S1(φ, ψ)]. (5)

Substitute from (3) into Eqs. (4) and (5), then collect the coefficients of the derivatives of φ

and ψ in Eqs. (4) and (5) and equating it by zero, we get the following partial differential
system

Ax = 0, Aφ = 0, Aψ = 0, Bφ = 0, Bψ = 0, Eφψ + Cφψ = 0,
1

2
Eψ − 1

2
Cφ − Bx + 1

2
At = 0,

−1

2
Cψ + 1

2
At − Bx + 1

2
Eφ = 0,

Eψψ + Cψψ = 0,

2(ψ − φ)Cψ + (5ψ + 3φ)Ev − 1

2
Bxx + Exψ + Cxψ − (5ψ + 3φ)Bx + 3C

+5E + (5ψ + 3φ)At − (5ψ + 3φ)Cφ + 1

2
Eφφ + 1

2
Cφφ = 0,

1

2
Cxx + 1

2
Exx + 4(φψ2 − φ2ψ + ψ3 − φ3)At + 4(φ2ψ − φψ2 + φ3 − ψ3)Cφ

+4(φψ2 − φ2ψ + ψ3 − φ3)Cψ + (5ψ + 3φ)Cx − 4(3φ2 − ψ2 + 2φψ)C

−Ct + (5ψ + 3φ)Ex + 4(3ψ2 − φ2 + 2φψ)E = 0,

−(5φ + 3ψ)Cψ + (5ψ + 3φ)Eφ + 3C + 5E − 1

2
Bxx + Exφ + Cxφ + Bt

−(5ψ + 3φ)Bx + (5ψ + 3φ)At = 0,
1

2
Cψ + 1

2
At − Bx − 1

2
Eφ = 0,

1

2
Eφφ + 1

2
Cφφ = 0,
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−1

2
Bxx + 3E + Cxφ + 5C + Exφ + 2φEφ + 5φAt + 3ψ At − 3ψBx − 5φBx

−2ψEφ + 5φCφ + 3ψCφ − 3ψEψ − 5φEψ = 0,
1

2
Exx + 1

2
Cxx − Et + 4(ψ3 − φ3 + φψ2 − φ2ψ)Eψ + 4(φ2ψ + φ3 − φψ2 − ψ3)At

+4(φ3 − ψ3 + φ2ψ − φψ2)Eφ + (3ψ + 5φ)Cx + 4(2φψ − ψ2 + 3φ2)C

+(3ψ + 5φ)Ex + 4(φ2 − 3ψ2 − 2φψ)E = 0,

−1

2
Bxx + 3E + Exψ + Cxψ + Bt + 5C − (5ψ + 3φ)Eφ + (5φ + 3ψ)At

+(5φ + 3ψ)Cψ − (5φ + 3ψ)Bx = 0,
1

2
Cφ − 1

2
Eψ + 1

2
At − Bx = 0. (6)

By solving the above partial differential system, we get

A = c1t + c2,

B = 1

2
c1x + c3,

C = (ψ − φ)h(x) − 1

2
c1ψ,

E = (φ − ψ)h(x) − 1

2
c1φ, (7)

where c1, c2 and c3 are arbitrary constants, h(x) is an arbitrary function of x . Therefore, the
Lie algebra generators of the SCBE system are given by

χ1 = t
∂

∂t
+ 1

2
x

∂

∂x
− 1

2
ψ

∂

∂φ
− 1

2
φ

∂

∂ψ
,

χ2 = ∂

∂t
,

χ3 = ∂

∂x
,

χh = (ψ − φ)
∂

∂φ
+ (φ − ψ)

∂

∂ψ
. (8)

By comparison with [5], the SCBE system is integrable if the symmetries obtained are of
third (if h(x) = 0) and fourth order symmetries, it means that the generator χh should be
zero. Therefore, h(x) = 0 and φ = ψ .

Further, from the infinitesimal symmetries given by Eqs. (8), the following possibilities
exist for the reduction of system (1)

(i) c1 �= 0, c2 �= 0, c3 �= 0,
(ii) c1 = 0, c2 �= 0, c3 �= 0.

The new independent and dependent similarity variables corresponding to cases I and II
can be obtained by solving the following equation

dt

A (t, x, φ, ψ)
= dx

B (t, x, φ, ψ)
= du

C (t, x, φ, ψ)
= dv

E (t, x, φ, ψ)
. (9)
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Reductions and new solutions

In this section we are going to find the reductions of system (1) into nonlinear ordinary
differential system in the independent similarity variable ζ and the new dependent variable
g

Case (i):
From Eq. (9) with conditions h(x) = 0 and φ = ψ

dt

c1t + c2
= dx

1
2c1x + c3

= dφ

− 1
2c1φ

= dψ

− 1
2c1ψ

. (10)

So that, we get

ζ = (x + 2 c3
c1

)2

t + c2
c1

, φ = ψ =
(
t + c2

c1

)− 1
2

g(ζ ). (11)

Inserting Eq. (11) into (1), the SCBE is reduced to the following nonlinear single ordinary
differential equation:

1

2
g + ζ g′ + 4ζ g′ + 2g′ + 32ζ

1
2 gg′ = 0. (12)

Assume that the solution of (12) takes the form

g = A1ζ
−1
2 + A2ζ

1
2 , (13)

where A1, A2 are constants to determine it, substitute from (13) into (12) and collect the
powers of ζ , then equate it by zero, an algebraic system is obtained. Solve it by Maple
program, the following values are given

A1 = 1

8
, A2 = − 1

16
. (14)

By inserting (14) into (13) , then using it in (11), the SCBE has the new rational solution

φ1(x, t) = ψ1(x, t) = 1

8
(
x + c3

c1

) − x + c3
c1

16
(
t + c2

c1

) , with c1 �= 0 (15)

Case (ii)
From Eq. (9)

dt

c1t + c2
= dx

1
2c1x + c3

= dφ

0
= dψ

0
(16)

The associated new similarity variables are

ζ = c2
c3

x − t, φ = ψ = g(ζ ). (17)
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The SCBE system is reduced to the following Ricatti equation

g′ + c22
c23

g′′ + 16
c2
c3

gg′ = 0. (18)

Integrating Eq. (18) with respect to ζ, we obtain

g + c22
c23

g′ + 8
c2
c3

g2 = c4, (19)

where c4 is an arbitrary integration constant. Equation (19) can be rewritten as

g′ = c4
c23
c22

− c23
c22

g − 8
c3
c2

g2. (20)

Now, Eq. (20) has the following hyperbolic and periodic wave solutions

g2(ζ ) = 1

16

[
−c3
c2

+
√
c23
c22

+ 32
c4c3
c2

tanh

(
1

2

c3
c2

√
c23
c22

+ 32
c4c3
c2

(ζ + ζ0)

)]
, c4 < 0,

(21)

g3(ζ ) = 1

16

[
−c3
c2

+
√
c23
c22

+ 32
c4c3
c2

coth

(
1

2

c3
c2

√
c23
c22

+ 32
c4c3
c2

(ζ + ζ0)

)]
, c4 < 0,

(22)

g4(ζ ) = − 1

16

[
c3
c2

+
√

−32
c4c3
c2

− c23
c22

tan

(
1

2

c3
c2

√
−32

c4c3
c2

− c23
c22

(ζ + ζ0)

)]
, c4 > 0,

(23)

g5(ζ ) = − 1

16

[
c3
c2

−
√

−32
c4c3
c2

− c23
c22

cot

(
1

2

c3
c2

√
−32

c4c3
c2

− c23
c22

(ζ + ζ0)

)]
,c4 > 0,

(24)

g6(ζ ) = − 1

16

c3
c2

[
1 − tanh

(
1

2

c23
c22

(ζ + ζ0)

)]
, c4 = 0, (25)

g7(ζ ) = − 1

16

c3
c2

[
1 − coth

(
1

2

c23
c22

(ζ + ζ0)

)]
, c4 = 0, (26)

g8(ζ ) = − c3

8c2 − c3ζ0 exp

[
c23
c22

ζ

] , c4 = 0. (27)

where ζ0 is an arbitrary integration constant.
By inserting Eqs. (21)–(27) into (17) , the following Kink soliton solutions and periodic

wave solutions are constructed for the Coupled symmetric Burgers-Type Equations

φ2(x, t) = ψ2(x, t) = 1

16

[
−c3
c2

+
√
c23
c22

+ 32
c4c3
c2

tanh

(
1

2

c3
c2

√
c23
c22

+ 32
c4c3
c2

(
c2
c3

x − t + ζ0

))]
, c4 < 0, (28)
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Fig. 1 The rational solution (15) with c1 = c2 = c3 = 1

Fig. 2 The shock wave solution (28) with c2 = 1, c3 = c4 = −1, ς0 = 0

123
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Fig. 3 Kink wave solution (29) with c2 = 1, c3 = c4 = −1 and ς0 = 0

Fig. 4 The periodic wave solution (30) with c2 = c4 = 1, c3 = −1 and ς0 = 0

φ3(x, t) = ψ3(x, t) = 1

16

[
−c3
c2

+
√
c23
c22

+ 32
c4c3
c2

coth

(
1

2

c3
c2

√
c23
c22

+ 32
c4c3
c2

(
c2
c3

x − t + ζ0

))]
, c4 < 0, (29)

φ4(x, t) = ψ4(x, t) = − 1

16

[
c3
c2

+
√

−32
c4c3
c2

− c23
c22

123
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Fig. 5 The periodic wave solution (31) with c2 = c4 = 1, c3 = −1 and ς0 = 0

Fig. 6 Plot of the shock wave solution (32) with c2 = c3 = 1 and ς0 = 0

tan

(
1

2

c3
c2

√
−32

c4c3
c2

− c23
c22

(
c2
c3

x − t + ζ0

))]
, c4 > 0, (30)

φ5(x, t) = ψ5(x, t) = − 1

16

[
c3
c2

−
√

−32
c4c3
c2

− c23
c22

cot

(
1

2

c3
c2

√
−32

c4c3
c2

− c23
c22

(
c2
c3

x − t + ζ0

))]
,c4 > 0, (31)
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Fig. 7 Plot of the dark kink wave solution (33) with c2 = c3 = 1 and ς0 = 0

Fig. 8 Plot of the traveling wave solution (34) with c2 = c3 = 1 and ς0 = 0
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φ6(x, t) = ψ6(x, t) = − 1

16

c3
c2

[
1 − tanh

(
1

2

c23
c22

(
c2
c3

x − t + ζ0

))]
, c4 = 0,

(32)

φ7(x, t) = ψ7(x, t) = − 1

16

c3
c2

[
1 − coth

(
1

2

c23
c22

(
c2
c3

x − t + ζ0

))]
, c4 = 0,

(33)

φ8(x, t) = ψ8(x, t) = − c3

8c2 − c3ζ0 exp

[
c23
c22

(
c2
c3
x − t

)] , c4 = 0.

(34)

Results and discussion

Burgers’ equation is yield because of merging both nonlinear wave motion with linear
diffusion. Existence of viscous term helps control the wave-breaking, smooth out shock
discontinuities so that, we know that the obtained will be well-behaved and smooth solution.
Additionally, in the inviscid limit, as the diffusion term becomes very small, the smooth
viscous solutions converge non-uniformly to the appropriate discontinuous shock wave. In
the following are some graphs for the obtained solutions (28)–(34) to illustrate the shock and
kink waves behavior for the obtained solutions.(See Figs. 1, 2, 3, 4, 5, 6, 7, and 8)

The above figures illustrate both discontinuously and smoothly wave propagation for the
obtained shock, kink, and periodic wave solutions .

Conclusion

In this paper, the SCBE is studied by using the symmetry method due to Steinberg. The
obtained symmetries are infinite symmetries, but according to Foursov in [1], the SCBE
system is integrable and symmetric if it has a third and a fourth-order symmetry; therefore,
h(x) = 0 and φ=ψ . After that, the SCBE under two different cases is transformed to only one
reduced nonlinear ordinary differential equation. By obtaining solutions for the reduced dif-
ferential equations, new exact solutions for the SCBE system are obtained. Furthermore, the
graphs for the obtained shock, kink, and periodic wave solutions illustrate both discontinu-
ously and smoothly wave propagation. Finally, we could conclude that the obtained solutions
for the SCBE system are new and cover other solutions obtained before [3].
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