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Abstract
In this article, numerical approximations based on generalized fractional Mittag–Leffler
and generalized fractional Laguerre functions are developed. A new suitable formula of
the Laguerre function and its fractional versions is stated and its derivative of fractional order
is evaluated. Also, a new fractional Mittag–Leffler function formula is stated. Numerical
differential and integral Galerkin methods depend on generalized fractional Mittag–Leffler
and generalized fractional Laguerre functions being constructed. The proposed methods are
applied to solving linear and nonlinear differential equations of fractional order. Some differ-
ent examples are included to ensure the applicability and efficiency of the proposed method.

Keywords Generalized fractional Mittag–Leffler function · Generalized fractional Laguerre
function · Galerkin method fractional differential equations · Error estimation
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Introduction

Since the last century, fractional differential equations have played an important role in solv-
ing a lot of physical problems because it can explain a lot of natural phenomena, engineering
theories, economics and commercial models, etc [1–4]. Some of these phenomena are com-
plex and very difficult to understand and solve. However, they can be easily analysed and
solved if they are described by ordinary fractional differential equations.
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Because there is no exact solution to such problems, numerical treatment ofmost fractional
differential equations has become widespread and flourishing in the last two decades.Pedas
and Tamme [5] investigated the numerical solution of fractional differential equations with
initial values by piecewise polynomial collocation methods. They studied the order of con-
vergence and established a super convergence effect for a special choice of collocation points.
Yan et al. [6] introduced an accurate numerical technique for solving differential equations
of fractional order.

We present in this work two approaches that are called differentiation Galerkin methods
and integration Galerkin methods, that have been applied to linear and nonlinear equations
by using two functions of approximation; the first is based on a Laguerre function in gen-
eralized form of the fractional formula of the fractional differential problems. The second
method is based on the generalized fractional Mittag–Leffler function of the fractional differ-
ential equation in the problems which we discussed. The Galerkin Collocation method is an
approximation technique to obtain numerical solutions to differential problems and has some
advantages in dealing with this class of problems. The unknown coefficients can be easily
obtained by using specific numerical programs. Therefore, this method is very efficient and
fast in extracting results [7, 8].

The outline of the paper is as follows: In Sect. 2,we show the definitions of fractional calcu-
lus theory. The properties of the generalized fractional Mittag–Leffler function are explained
in Sect. . 3.1. The formula of the Laguerre function and the generalized fractional Laguerre
function are reformulated to be suitable for approximation in Sects. 3.2 and 3.3. In Sect. 4, we
explain how to use the Galerkin method with linear and nonlinear equations and present four
methods of numerical solution for the given problem, namely theMittag differential Galerkin
method (MDGM), the Mittag integeral Galerkin method (MIGM), the Laguerre differential
Galerkin method (LDGM), and the Laguerre integeral Galerkin method (LIGM). Through
Sect. 5, we show some theorems that are used to calculate the error estimation. In Sect. 6,
we include some different examples in order to illustrate the simplicity and the capability of
the proposed method. Finally, conclusions are presented in Sect. 7.

Preliminaries

In this section, some basic properties of derivatives and integrals of fractional order are
recalled. The widely used definition of Caputo derivatives and integrals is:

Definition 1 [9] The Caputo fractional derivative Dμ
C of order μ > 0, n ∈ N is given by:

Dμ
C f (x) =

{
1

Γ (n−μ)

∫ x
a (x − τ)n−μ−1 f (n)(τ )dτ, x ≥ a, n − 1 < μ < n,

d(n) f (x)
dxn , μ = n.

(1)

The Caputo fractional derivative operator satisfies the following properties [10]: For con-
stants ζk, k = 1, 2, . . . , n, we have:

Dμ
C

n∑
k=1

ζk fk(x) =
n∑

k=1

ζk Dμ
C fk(x), (2)

then

Dμ
C

[
ζ1 f1(x) + ζ2 f2(x) + · · · + ζn fn(x)

]
= [

ζ1 Dμ
C f1(x) + ζ2 Dμ

C f2(x) + · · · + ζn Dμ
C fn(x)

]
. (3)
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Fig. 1 a Fractional derivative of x2 in Eq. (5). b Fractional integral of x2 in Eq. (6)

In fact if μ is an integer, the Caputo differential operator will be identical with the usual
differential operator as:

Dμ
C (x − a)n =

{
Γ (n+1)

Γ (n−μ+1) (x − a)n−μ, n �= 0,
0, n = 0.

(4)

If the function become xn then the Caputo fractional derivative is:

Dμ
C x

n =
{

Γ (n+1)
Γ (n+1−μ)

xn−μ, n > μ − 1,
n xn−1 μ = n.

(5)

The fractional integral of xn is defined by:

Iμxn =

⎧⎪⎨
⎪⎩

Γ (n+1)
Γ (n+1+μ)

xn+μ, x > 0, n > μ − 1,
xn+1

n+1 , x > 0, μ = n,

ξn+1, x = 0,

(6)

To demonstrate the definitions of fractional differentiation and integration, we use matlab
and take n = 2 as an example, and μ is changed from 0 to 3, as shown in Fig. 1.

Some Properties of Approximating Polynomials

Generalized Fractional Mittag–Leffler Function

The Mittag–Leffler function of one-parameter is defined as [11]:

Eβ(x) =
∞∑
k=0

xk

Γ (βk + 1)
, β > 0, x ∈ R. (7)
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The Mittag–Leffler function of two-parameter is given by [11]:

Eβ,γ (x) =
∞∑
k=0

xk

Γ (βk + γ )
, β, γ > 0, x ∈ R. (8)

As a special case, we have Eβ,1(x) = Eβ(x) and E1,1(x) = E1(x) = ex . The finite version
of the Mittag–Leffler function in the two-parameter finite of any integer n is given by [12]:

Eβ,γ
n (x) =

n∑
k=0

xk

Γ (βk + γ )
, β, γ > 0, x ∈ R, (9)

that is:

Eβ,γ
n (x) = xn

Γ (βn + γ )
+ xn−1

Γ (β(n − 1) + γ )
+ · · · + x

Γ (β + γ )
+ 1

Γ (γ )
, (10)

so, we can write:

Eβ,γ
n (x) = xn

Γ (βn + γ )
+ function of lower degrees. (11)

The definition of generalized Mittag–Leffler function is:

Eα(x) =
∞∑
k=0

xαk

Γ (αk + 1)
, α > 0, x ∈ R, (12)

the modify is:

Eα(x) =
�α�∑
k=0

xαk

Γ (αk + 1)
, α > 0, x ∈ R. (13)

From Eq. (13), we show the first GMLF modification as:

Eγ
α (x) =

�α�∑
k=0

xαk

Γ (αk + γ )
, α, γ > 0, x ∈ R, (14)

Eβ,γ
α (x) =

�α�∑
k=0

x
α

�α� k

Γ (βk + γ )
, α, β, and γ > 0, x ∈ R. (15)

The fractional version of theMittag function of two parameters in Eq. (15) is the general case
of the usual Mittag function in Eq. (9). When α = n, the two Eqs. (9) and (15) are identical.

The fractional order derivative of Eq. (15) is defined by:

Dμ
C E

β,γ
α (x) =

�α�∑
k=0

Γ ( α
�α�k + 1)

Γ ( α
�α�k − μ + 1)Γ (βk + γ )

x
α

�α� k−μ
, α, β, and γ > 0, x ∈ R. (16)

The fractional order integral of Eq. (15) is defined by:

IμEβ,γ
α (x) =

�α�∑
k=0

Γ ( α
�α�k + 1)

Γ ( α
�α�k + μ + 1)Γ (βk + γ )

x
α

�α� k+μ
, α, β, and γ > 0, x ∈ R. (17)
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Laguerre Function

The generalized Laguerre polynomials Lμ,n(x), n = 0, 1, 2, . . . and μ > −1 can be defined
on the interval [0,∞) [13] by:

(n + 1)Lμ,n+1(x) = (2n + μ + 1 − x)Lμ,n(x) − (n + μ)Lμ,n−1(x), x ∈ R, (18)

where Lμ,0(x) = 1 and Lμ,1(x) = 1+ μ − x . The explicit formula of generalized Laguerre
polynomials is given by:

Lμ,n(x) =
n∑

k=0

(−1)k
Γ (n + μ + 1)xk

Γ (k + μ + 1)Γ (n − k + 1)Γ (k + 1)
, x ∈ R. (19)

Generalized Fractional Laguerre Functions

Here, we will give the representation of the Laguerre type functions Lγ,β
n (x) that is related

by the fractional order. We know that the Laguerre Rodrigues’ formula [14] is defined by:

Lβ,γ
n (x) = x−βeγ x

Γ (n + 1)
Dn(xn+βe−γ x ), (20)

the fractional order of Laguerre polynomial (20) is:

Lβ,γ
α (x) = x−βeγ x

Γ (α + 1)
Dα(xα+βe−γ x ). (21)

Using the Leibniz rule for fractional derivative [15] that states:

Dα(u(x)v(x)) =
�α�∑
k=0

(α

k

)
Dα−ku(x)Dkv(x), (22)

using Eqs. (21) and (22) becomes:

Lβ,γ
α (x) = x−βeγ x

Γ (α + 1)

�α�∑
k=0

(α

k

)
Dα−k xα+βDke−γ x . (23)

By using Eqs. (4) and (23) we get:

Lβ,γ
α (x) = x−βeγ x

Γ (α + 1)

�α�∑
k=0

(α

k

)Γ (α + β + 1)

Γ (k + β + 1)
xk+β(−γ )ke−γ x ,

=
�α�∑
k=0

(−γ )k
Γ (α + β + 1)

Γ (k + 1)Γ (α − k + 1)Γ (k + β + 1)
xk . (24)

Lemma 1 Let Lβ,γ
α (x) be a generalized fractional Laguerre polynomial. Then the fractional-

order derivative of it is defined by:

Dμ
C L

β,γ
α (x) =

�α�∑
k=1

(−γ )k
Γ (α + β + 1)

Γ (k − μ + 1)Γ (α − k + 1)Γ (k + β + 1)
xk−μ, (25)

where x ∈ R, μ > 0 and α, β, γ > 0.
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Lemma 2 Let Lβ,γ
α (x) be a generalized fractional Laguerre polynomial. Then the fractional-

order integral of it is defined by:

I ηLβ,γ
α (x) =

�α�∑
k=0

(−γ )k
Γ (α + β + 1)

Γ (k + μ + 1)Γ (α − k + 1)Γ (k + β + 1)
xk+μ, (26)

where x ∈ R, μ > 0 and α, β, γ > 0.

Methods of Numerical Solution

Galerkin Method

Let us begin with an abstract issue presented as a weak formulation on a Hilbert space
L2 [a, b] to introduce Galerkin’s technique, with the following inner product as:

(u, v) =
∫ b

a
u(x) v(x) dx, u(x), v(x) ∈ L2 [a, b]. (27)

Now, consider the differentiable problem is F(u) = 0 and let

ua(x) =
n∑

k=0

akϕk(x), (28)

is an approximate solution, then Galerkin method finds the unknowns by solving the system:

(F(ua), ϕk) = 0, k = 0, 1, . . . , n. (29)

It is known as Weak Galerkin formulation [16].

Differential Galerkin Method

Linear Equation

Consider the linear multi-order fractional differential equation with initial conditions:

Ar (x)D
μr
C y(x) +

r−1∑
k=1

Ak(x)D
μk
C y(x) + y(x) = f (x), x ∈ [0, 1], (30)

y(i)(x) = di , i = 0, 1, 2, . . . , �μr� − 1, (31)

where 0 < μ1 < · · · < μr−1 < μr , Ak(x), k = 1, 2, . . . , r , f (x) are known continuous
functions on [0, 1] and di , i = 0, 1, 2, . . . , �μr� − 1, are given constants.

Let

y(x) =
n∑

i=0

ai M
αi (x), Dμr

C y(x) =
n∑

i=1

ai D
μr
C Mαi (x), (32)

where Mαi (x) ∈ {Eβ,γ
αi (x), Lβ,γ

αi (x)} and ai , i = 0, 1, 2, . . . , n, are anonymous constants.
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Substituting from Eq. (32) into Eqs. (30) and (31) we obtain:

Ar (x)
n∑

i=1

ai D
μr
C Mαi (x) +

r−1∑
k=1

Ak(x)
n∑

i=1

ai D
μk
C Mαi (x) +

n∑
i=1

ai M
αi (x) − f (x) = 0,

(33)
n∑

i=0

ai M
αi (0) = d0. (34)

Then

R j (a1, a2, . . . , an) = Ar (x j )
n∑

i=1

ai D
μr
C Mαi (x j ) +

r−1∑
k=1

Ak(x j ) ∗
n∑

i=1

ai D
μk
C Mαi (x j ) +

n∑
i=1

ai M
αi (x j ) − f (x j ) = 0, (35)

where j = 1, 2, . . . , n, and

Rn+1(a1, a2, . . . , an) =
n∑

i=0

ai M
αi (0) − d0 = 0. (36)

Equations (35) and (36) in view of the Galerkin Eq. (29) become:

G j (a1, a2, . . . , an) =
n∑

k=1

wk

[
Ar (x j )

n∑
i=1

ai D
μr
C Mαi (x j ) +

r−1∑
k=1

Ak(x j ) ∗
n∑

i=1

ai D
μk
C Mαi (x j ) +

n∑
i=1

ai M
αi (x j ) − f (x j )

]
Mαk (x j ) = 0, (37)

where j = 1, 2, . . . , n, and

Gn+1(a1, a2, . . . , an) =
n∑

k=1

wk

[ n∑
i=0

ai M
αi (0) − d0

]
Mαk (x j ) = 0, (38)

with w0 = wn = 1/2, wk = 1, k = 1, 2, . . . , n − 1. So we can construct an unconstrained
optimization problem with objective function as:

r(a1, a2, . . . , an) =
n∑
j=0

G2
j (a1, a2, . . . , an) =

n∑
j=0

( n∑
k=1

wk

[
Ar (x j ) ∗

n∑
i=1

ai D
μr
C Mαi (x j ) +

r−1∑
k=1

Ak(x j )
n∑

i=1

ai D
μk
C Mαi (x j ) +

n∑
i=1

ai M
αi (x j )

− f (x j )

]
Mαk (x j )

)2

+
( n∑

k=1

wk

[ n∑
i=0

ai M
αi (0) − d0

]
Mαk (x j )

)2

. (39)
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The solution of Eq. (39) defines the anonymous coefficients ai , i = 1, 2, . . . , n, and so
the numerical solution y(x) is defined by Eq. (32).

Nonlinear Equation

Consider the nonlinear multi-order fractional differential equation with initial conditions:

Ar (x) D
μr
C y(x) +

r−1∑
k=1

Ak(x)y(x) D
μk
C y(x) + y(x) = f (x), x ∈ [0, 1], (40)

y(i)(x) = di , i = 0, 1, 2, . . . , �μ� − 1, (41)

where 0 < μ1 < · · · < μr−1 < μr , Ak(x), k = 1, 2, . . . , r , f (x) are known continuous
functions on [0, 1] and di , i = 0, 1, 2, . . . , �μr� − 1, are given constants.

Let

y(x) =
n∑

i=0

ai M
αi (x), Dμr

C y(x) =
n∑

i=1

ai D
μr
C Mαi (x), (42)

where Mαi (x) ∈ {Eβ,γ
αi (x), Lβ,γ

αi (x)} and ai , i = 0, 1, 2, . . . , n, are anonymous constants.
Substituting from Eq. (42) into Eqs. (40) and (41) we obtain:

Ar (x)
n∑

i=1

ai D
μr
C Mαi (x) +

r−1∑
k=1

Ak(x)
( n∑

i=0

ai M
αi (x)

)
∗

( n∑
i=1

ai D
μk
C Mαi (x)

)
+

n∑
i=0

ai M
αi (x) − f (x) = 0, (43)

n∑
i=0

ai M
αi (0) = d0. (44)

Then

R j (a1, a2, . . . , an) = Ar (x j )
n∑

i=1

ai D
μr
C Mαi (x j ) +

r−1∑
k=1

Ak(x j )
( n∑

i=0

ai ∗

Mαi (x j )
)( n∑

i=1

ai D
μk
C Mαi (x j )

)
+

n∑
i=0

ai M
αi (x j ) − f (x j ) = 0, (45)

where j = 1, 2, . . . , n, and

Rn+1(a1, a2, . . . , an) =
n∑

i=0

ai M
αi (0) − d0 = 0. (46)

Equations (45) and (46) in view of the Galerkin Eq. (29) become:

G j (a1, a2, . . . , an) =
n∑

k=1

wk

[
Ar (x j )

n∑
i=1

ai D
μr
C Mαi (x j ) +

r−1∑
k=1

Ak(x j ) ∗

( n∑
i=0

ai M
αi (x j )

)( n∑
i=1

ai D
μk
C Mαi (x j )

)
+

n∑
i=0

ai M
αi (x j ) − f (x j )

]
∗

Mαk (x j ) = 0, (47)
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where j = 1, 2, . . . , n, and

Gn+1(a1, a2, . . . , an) =
n∑

k=1

wk

[ n∑
i=0

ai M
αi (0) − d0

]
Mαk (x j ) = 0, (48)

with w0 = wn = 1/2, wk = 1, k = 1, 2, . . . , n − 1. So we can construct an unconstrained
optimization problem with objective function as:

r(a1, a2, . . . , an) =
n∑
j=0

G2
j (a1, a2, . . . , an) =

n∑
j=0

( n∑
k=1

wk

[
Ar (x j )

n∑
i=1

ai D
μr
C Mαi (x j ) +

r−1∑
k=1

Ak(x j ) ∗
( n∑

i=0

ai M
αi (x j )

)( n∑
i=1

ai D
μk
C Mαi (x j )

)
+

n∑
i=0

ai M
αi (x j ) −

f (x j )

]
Mαk (x j )

)2

+
( n∑

k=1

wk

[ n∑
i=0

ai M
αi (0) − d0

]
Mαk (x j )

)2

. (49)

The solution of Eq. (49) defined the anonymous coefficients ai , i = 1, 2, . . . , n, and so
the numerical solution y(x) is defind by Eq. (42).

Integeral Galerkin Method

Linear Equation

Consider the linear multi-order fractional differential equation with initial conditions:

Ar (x)D
μr
C y(x) +

r−1∑
k=1

Ak(x)D
μk
C y(x) + y(x) = f (x), x ∈ [0, 1], (50)

y(i)(x) = di , i = 0, 1, 2, . . . , �μr� − 1, (51)

where 0 < μ1 < · · · < μr−1 < μr , Ak(x), k = 1, 2, . . . , r , f (x) are known continuous
functions on [0, 1] and di , i = 0, 1, 2, . . . , �μr� − 1, are given constants.

Firstly, we apply the integral operator Iμr on Eq. (50) to become:

Ar (x)y(x) +
r−1∑
k=1

Ak(x)I
μr−μk y(x) + Iμr y(x) = Iμr f (x). (52)

Assume that the solution of the fractional linear differential Eq. (50) can be written as:

y(x) =
n∑

i=0

bi M
αi (x), Iμr y(x) =

n∑
i=0

bi I
μr Mαi (x), (53)

where Mαi (x) ∈ {Eβ,γ
αi (x), Lβ,γ

αi (x)} and bi , i = 0, 1, 2, . . . , n are anonymous constants.
Substituting from Eq. (53) into Eq. (52) we have:

Ar (x)
n∑

i=0

bi M
αi (x) +

r−1∑
k=1

Ak(x)
n∑

i=0

bi I
μr−μk Mαi (x)

+
n∑

i=0

bi I
μr Mαi (x) = Iμr f (x). (54)
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Then

R j (a1, a2, . . . , an) = Ar (x j )
n∑

i=0

bi M
αi (x j ) +

r−1∑
k=1

Ak(x j ) ∗
n∑

i=0

bi I
μr−μk Mαi (x j ) +

n∑
i=0

bi I
μr Mαi (x j ) − Iμr f (x j ) = 0, (55)

Rn+1(a1, a2, . . . , an) =
n∑

i=0

bi M
αi (0) − d0 = 0. (56)

Equations (55) and (56) in view of the Galerkin Eq. (29) become:

G j (a1, a2, . . . , an) =
n∑

k=1

wk

[
Ar (x j )

n∑
i=0

bi M
αi (x j ) +

r−1∑
k=1

Ak(x j ) ∗
n∑

i=0

bi I
μr−μk Mαi (x j ) +

n∑
i=0

bi I
μr Mαi (x j ) − Iμr f (x j )

]
Mαk (x j ) = 0, (57)

where j = 1, 2, . . . , n, and

Gn+1(a1, a2, . . . , an) =
n∑

k=1

wk

[ n∑
i=0

bi M
αi (0) − d0

]
Mαk (x j ) = 0, (58)

with w0 = wn = 1/2, wk = 1, k = 1, 2, . . . , n − 1.
So we can construct an unconstrained optimization problem with objective function as:

r(a1, a2, . . . , an) =
n∑
j=0

G2
j (a1, a2, . . . , an) =

n∑
j=0

( n∑
k=1

wk

[
Ar (x j )

n∑
i=0

bi M
αi (x j )

+
r−1∑
k=1

Ak(x j ) ∗
n∑

i=0

bi I
μr−μk Mαi (x j ) +

n∑
i=0

bi I
μr Mαi (x j )

−Iμr f (x j )

]
Mαk (x j )

)2

+
( n∑

k=1

wk

[ n∑
i=0

bi M
αi (0) − d0

]
Mαk (x j )

)2

. (59)

The solution of Eq. (59) defined the anonymous coefficients bi , i = 1, 2, . . . , n, and so
the numerical solution y(x) is defind by Eq. (53).

Nonlinear Equation

Consider the nonlinear multi-order fractional differential equation with initial conditions:

Ar (x) D
μr
C y(x) +

r−1∑
k=1

Ak(x)y(x) D
μk
C y(x) + y(x) = f (x), x ∈ [0, 1], (60)

y(i)(x) = di , i = 0, 1, 2, . . . , �μr� − 1, (61)

where 0 < μ1 < · · · < μr−1 < μr , Ak(x), k = 1, 2, . . . , r , f (x) are known continuous
functions on [0, 1] and di , i = 0, 1, 2, . . . , �μr� − 1, are given constants.
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Firstly, we apply the integral operator Iμr on Eq. (60) to become:

Ar (x)y(x) +
r−1∑
k=1

Ak(x)I
μr (y(x) I−μk y(x)) + Iμr y(x) = Iμr f (x). (62)

Assume that the solution of Eq. (60) can be written as:

y(x) =
n∑

i=0

bi M
αi (x), Iμr y(x) =

n∑
i=0

bi I
μr Mαi (x), (63)

where Mαi (x) ∈ {Eβ,γ
αi (x), Lβ,γ

αi (x)} and bi , i = 0, 1, 2, . . . , n are anonymous constants.
Substituting Eq. (63) into Eq. (62) we get:

Ar (x)
n∑

i=0

bi M
αi (x) +

r−1∑
k=1

Ak(x)I
μr

( n∑
i=0

bi M
αi (x)

n∑
i=0

bi I
−μk Mαi (x)

)

+
n∑

i=0

bi I
μr Mαi (x) − Iμr f (x) = 0. (64)

Then

R j (a1, a2, . . . , an) = Ar (x j )
n∑

i=0

bi M
αi (x j ) +

r−1∑
k=1

Ak(x j )I
μr

( n∑
i=0

bi ∗

Mαi (x j )
n∑

i=0

bi I
−μk Mαi (x j )

)
+

n∑
i=0

bi I
μr Mαi (x j ) − Iμr f (x j ) = 0, (65)

Rn+1(a1, a2, . . . , an) =
n∑

i=0

bi M
αi (0) − d0 = 0. (66)

Equations (65) and (66) in view of the Galerkin Eq. (29) become:

G j (a1, a2, . . . , an) =
n∑

k=1

wk

[
Ar (x j )

n∑
i=0

bi M
αi (x j ) +

r−1∑
k=1

Ak(x j )I
μr

( n∑
i=0

bi M
αi (x j )

n∑
i=0

bi I
−μk Mαi (x j )

)
+

n∑
i=0

bi I
μr Mαi (x j ) −

Iμr f (x j )

]
Mαk (x j ) = 0, (67)

where j = 1, 2, . . . , n, and

Gn+1(a1, a2, . . . , an) =
n∑

k=1

wk

[ n∑
i=0

bi M
αi (0) − d0

]
Mαk (x j ) = 0, (68)

with w0 = wn = 1/2, wk = 1, k = 1, 2, . . . , n − 1. So we can construct an unconstrained
optimization problem with objective function as:
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r(a1, a2, . . . , an) =
n∑
j=0

G2
j (a1, a2, . . . , an) =

n∑
j=0

( n∑
k=1

wk

[
Ar (x j )

n∑
i=0

bi M
αi (x j )

+
r−1∑
k=1

Ak(x j )I
μr

( n∑
i=0

bi M
αi (x j ) ∗

n∑
i=0

bi I
−μk Mαi (x j )

)
+

n∑
i=0

bi I
μr Mαi (x j )

−Iμr f (x j )

]
Mαk (x j )

)2

+
( n∑

k=1

wk

[ n∑
i=0

bi M
αi (0) − d0

]
Mαk (x j )

)2

. (69)

The solution of Eq. (69) defined the anonymous coefficients bi , i = 1, 2, . . . , n, and so the
numerical solution y(x) is defind by Eq. (63).

The ProposedMethods

We present four methods of numerical solution for the given problem, namely the Mittag
differential Galerkin method (MDGM), the Mittag integeral Galerkin method (MIGM), the
Laguerre differential Galerkin method (LDGM), and the Laguerre integeral Galerkin method
(LIGM).

Error Analysis

Theorem 1 [12]: Let y(x) and yn(x) ∈ C∞[0, 1] be approximated by Eq. (32), then for every
x ∈ [0, 1], there exists � ∈ [0, 1], such that:

y(x) − yn(x) = Γ
(
β(n + 1) + γ

)
(n + 1)! Eβ,γ

n+1(x)y
(n+1)(�), (70)

and the estimated error is:

||y(x) − yn(x)|| ≤ Γ
(
β(n + 1) + γ

)
(n + 1)! Eβ,γ

n+1(x)Max�∈[0,1]||y(n+1)(�)||. (71)

Theorem 2 [12]: Let y(x) ∈ C∞[0, 1] satisfies Eq. (30) and it is approximated by Eq. (32)
then for every x ∈ [0, 1], there exists � ∈ [0, 1] such that the residual is estimated by:

R(x) ≤ Γ
(
β(n + 1) + γ

)
(n + 1)! Eβ,γ

n+1(x)

[ ν∑
k=1

ck(x)D
αk Eβ,γ

n+1

]
Max�∈[0,1]||y(n+1)(�)||. (72)

Theorem 3 [17]: Suppose y(x) and its (μ − 1) order derivatives are absolutely continuous
in [0,∞) and satisfies:

e
−x
2 x1+k+α y(k)(x) → 0 as x → ∞, k = 0, 1, . . . , μ, and

V 2 =
∫ ∞

0
x1+α+μe−x [y(μ+1)(x)]2dx, is finite, μ ≥ 1,

then for the Mittag expansion from Eq. (32), we have:

|ak | ≤ V√
k(k − 1) . . . (n − μ)

√
Γ (k + 1)√

Γ (1 + k + α)
. (73)
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Fig. 2 Comparison of a numerical solution of problem 1 between MIGM and LIGM, with α = 0.8, ρ = 3

Theorem 4 [8]: Assume that y(x) satisfies the hypothesis of Theorem 3. If y(x) and yn(x)
are expressed by Eq. (32), then yn(x) converges to y(x) as n → ∞.

Theorem 5 [8]: under the hypothesis of Theorem 3 and Theorem 4., the approximate frac-
tional order drivative Dμ

C yn(x) converges to Dμ
C y(x) as n → ∞.

Theorem 6 under the hypothesis of the previous theorems, the approximate fractional order
integral Iμ yn(x) converges to Iμ y(x) as n → ∞.

Proof As in [8]. �


Numerical Experiments

Problem 1 We consider the problem [12]:

Dμy(x) + y(x) = Γ (ρ + 1)

Γ (ρ + 1 − μ)
xρ−μ + xρ, x ∈ [0, 1], μ ∈ (0, 1], (74)

with y(0) = 0, the exact solution of this problem is y(x) = xρ .

Figure 2 presents a comparison between MIGM and LIGM with μ = 0.9, ρ = 3.
Figure 3 presents a comparison between the fractional and integral orders of a numerical

solution by using MIGM.
Table 1 presents the numerical solution of this problem by using the integration Galerkin

method with α = 3.5 and different fractionl orders of μ.
Table 2 presents a comparison between the fractional and integral orders of a numerical

solution by using LIGM.

Problem 2 Consider the equation [18]:

D1.5y(x) = x1.5y(x) + 4

√
x

π
− x3.5, 0 < x ≤ 1, (75)
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Fig. 3 Comparison between fractional and integral orders of a numerical solution of problem 1 by using
MIGM

Table 1 Numerical solution of problem1,withα = 3.5 and different fractionl ordersμ by using the integration
Galerkin method

μ 0.7 0.8 0.9 1.0

MIGM γ = 0.5 6.38969e−13 1.32645e−13 6.37060e−13 3.86578e−13

ρ = 3.5 γ = 1.0 1.33769e−13 1.06214e−11 1.89399e−12 1.03880e−12

β = 0.5 γ = 1.5 6.98462e−13 2.42475e−13 6.00932e−13 5.80761e−13

LIGM β = 0.5 3.17687e−13 1.19210e−13 2.80466e−13 2.89143e−13

ρ = 3.0 β = 1.0 8.24068e−12 5.38636e−13 5.24287e−11 3.34383e−13

γ = 1.5 β = 1.5 6.67916e−12 2.54138e−11 4.50100e−12 1.15272e−11

Table 2 Numerical solution of
problem1, with
μ = 0.9, β = 0.5 and γ = 1.5
by using LIGM in eq (24)

ρ α ‖ error ‖
3.0 3.9 3.48316e−14

4.0 1.37629e−13

4.0 4.6 3.33895e−13

4.0 6.38371e−11

with the following initial conditions y(0) = 0, y
′
(0) = 0 and exact solution y(x) = x2.

Figure 4 presents the numerical solution of this problem by using MDGM and LDGM with
α = 10 and fractional order (μ = 1.5), and we compare our results with those obtained by
reference [18] that used the BPs method.

Table 3 presents a comparison between the fractional and integral orders of this problem
by using LDGM when α = 1.5 and ρ = 2.0.
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Fig. 4 Comparison of a numerical solution of problem 2 betweenMDGM, LDGMandBPs [18] , withμ = 1.5

Table 3 Numerical solution of
problem 2, with
μ = 1.5, ρ = 2.0, β = 0.5 and
γ = 1.5 by using LDGM in Eq.
(24)

α ‖ error ‖
2.0 2.38645e−14

2.8 4.61467e−15

3.0 3.09844e−12

3.9 1.76828e−12

5.0 1.20229e−10

4.5 2.67260e−12

Problem 3 Consider the problem [12]:

Dμy(x) − x3y2(x) = Γ (ρ + 1)

Γ (ρ + 1 − μ)
xρ−μ − x2ρ+3, x ∈ [0, 1], μ ∈ (0, 1], (76)

with y(0) = 0. The exact solution of this problem is y(x) = xρ . A simple case of this problem
is solved in [19].

Table 4 presents the numerical solution of this problemwithα = 2.5 and a different fractional
order (μ) by the differentiation Galerkin method.

In Fig. 5, the numerical solution of this problem is compared betweenMDGMandLDGM,
by using fractional and integral orders.

Problem 4 We consider the following fractional differential equation with initial condition
[20]:

Dμy(x) + 2y(x)y′(x) + y′(x) = f (x), 0 < x ≤ 1, 0 < μ ≤ 1, y(0) = 0. (77)
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Fig. 5 Comparison of numerical
solution of problem 3 between
LDGM in (a, b) and MDGM in
(c, d), by using fractional and
integral orders

Table 4 Numerical solution of problem 3, with α = 2.5 and different fractionl orderμ by using differentiation
Galerkin method

μ 0.7 0.8 0.9 1.0

MDGM β = 0.5 3.12453e−06 2.08210e−06 1.46483e−06 1.02732e−06

ρ = 2.5 β = 1.0 1.69730e−06 1.17681e−06 8.89661e−07 6.97972e−07

γ = 1.0 β = 1.5 7.54446e−07 5.38613e−07 4.31492e−07 3.67180e−07

LDGM β = 0.0 8.90434e−07 6.24105e−07 5.19198e−07 4.76376e−07

ρ = 2.0 β = 0.5 1.42230e−06 1.51702e−06 2.51159e−06 3.41104e−06

γ = 1.5 β = 1.0 6.08354e−05 9.07079e−06 4.38750e−06 1.51638e−05

Table 5 Numerical solution of problem 4, with α = 2.8 and different fractionl orders μ

μ 0.7 0.8 0.9 1.0

MIGM β = 0.5 3.11026e−06 2.97656e−06 2.81201e−06 7.81661e−07

ρ = 2.8 β = 1.0 1.28595e−06 1.22102e−06 1.14236e−06 3.40158e−07

γ = 1.0 β = 1.5 3.64675e−07 3.39923e−07 3.10801e−07 1.11200e−07

LIGM β = 0.5 9.89881e−07 1.03782e−06 1.09275e−06 1.15363e−06

ρ = 2.0 β = 1.0 1.10049e−06 1.11757e−06 1.13208e−06 1.14069e−06

γ = 0.5 β = 1.5 7.04557e−06 7.43009e−06 7.71774e−06 7.86836e−06

We take f (x) = 2ρx2ρ−1 + ρxρ−1 + Γ (ρ+1)
Γ (ρ−μ+1) x

ρ−μ. The exact solution of this problem is
y(x) = xρ .

In Table 5, presents the numerical solution of problem 4, with α = 2.8 and different fractional
orders of μ by using the integration Galerkin method.

In Table 6, presents a comparison between the fractional and integral orders of this problem
by using MIGM with μ = 0.9, β = 0.5 and γ = 0.5.

In Table 7 presents a comparison between the fractional and integral orders of this problem
by using LIGM with μ = 0.9, β = 0.5 and γ = 0.5.
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Table 6 Numerical solution of
problem 4, with
μ = 0.9, β = 0.5 and γ = 0.5
by using MIGM in Eq. (15)

ρ α ‖ error ‖
2.5 2.5 4.22906e−06

2.0 5.78209e−04

3.6 3.6 1.26401e−05

3.0 1.40256e−04

Table 7 Numerical solution of
problem 4, with
μ = 0.9, β = 0.5 and γ = 0.5
by using LIGM in Eq. (24)

ρ α ‖ error ‖
1.5 2.5 1.93605e−04

2.0 3.00640e−04

2.0 2.5 2.37594e−08

3.0 5.77145e−07

Conclusion

In this paper, four numerical methods based on Mittag–Leffler and Laguerre with differen-
tial and integeral Galerkin methods (MDGM, LDGM, MIGM, and LIGM) are developed.
The proposed methods are applied to solving linear and nonlinear differential equations of
fractional order. We compared the new approximation methods for functions based on the
generalized fractional Mittag–Leffler function and the generalized fractional Laguerre func-
tion, and applied them with the differential Galerkin method and integral Galerkin method
to solve linear and nonlinear fractional differential equations.

– We find that the methods give a good result (see Figs. 2, 4, Tables 1, 4, and 5).
– We find a numerical solution to the problems when we use the fractional order that is

better than the numerical solutions when we use the integer order (see Figs. 3, 5, and
Table 6).

– When we apply the generalized fractional Laguerre Galerkin method, we find the dif-
ference of the results by using fractional order and integer order is small this is due to
the power of generalized fractional Laguerre function does not depend on α (see Tables
2, 3, 7 and Fig. 5c, d) on the contrary the difference of the results by using generalized
fractional Mittag–Leffler Galerkin method is large because it depends on α (see Figs. 3
and 5a, b).
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