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Abstract
The majority of the previous studies analyzed the flow of fluid around the perfect sphere
however the slight deformations in the shape of the particle are observed in nature. The
motivation of the present work is to investigate the impact ofMHD flow on slightly deformed
sphere embedded in unbounded porous medium. The stream function for the flow field is
calculated in terms of Bessel and Gegenbauer functions. As a boundary conditions, vanishing
of normal and tangential component of velocity are applied. The resistance force is evaluated
past an impermeable spheroid. As a special case, we consider an electrically conducting fluid
motion past a rigid oblate spheroid embedded in a porous medium. Also, the expression
for non-dimensional drag and dimensionless shearing stress are computed and its variation
with Hartmann number, permeability, and deformation parameters are depicted graphically.
The flow patterns of the streamline are represented graphically along the axial direction of
the spheroidal particles. A number of specific cases are developed and compared to earlier
research, demonstrating that our approach is valid. The results show that the magnetic field
increases the resistance on the oblate spheroid. The investigation of the current study may
be beneficial in the delivery of medications to the desired location, the medical treatment of
tumors, cancer, and others.
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p Pressure
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ψ Stokes stream function of the fluid flow
U Uniform flow
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d Equatorial radius of oblate spheroid
k Permeability of the fluid
J Electric current density
H Magnetic field intensity
μ Coefficient of viscosity
α Non-negative Hartmann number
ε Deformation parameter
σ Electric conductivity of the fluid
DN Non-dimensional drag
H0 Magnetic field component
μh Magnetic permeability
FD Drag force
Gn(ζ ) Gegenbauer function
Pn(ζ ) Legendre polynomial
Trζ Tangential stress
Trr Normal stress
qr , qθ Component of fluid velocity in spherical coordinates

Introduction

For decades, researchers have been studying liquid stream in porous media. The study of uni-
form flow past an impervious bodies embedded in porous media have numerous applications
in environmental, manufacturing, and life science procedures. Some of these instances are
as follows: the filtration of solids from liquids, underground spreading of chemical waste,
oil reservoir recovery, flow of blood through arteries and lungs, drug permeation through
human skin, energy extraction from geothermal zones, flow of liquids through ion exchange
beds, chemical catalytic reactors, the study of dispersion of cholesterol and other fat sub-
stances from arteries to endothelium, and others. Aside from the aforementioned, fluid flows
through porous media has been successfully employed to forecast flow behavior in a vari-
ety of physical applications. Numerous conceptual models for explaining fluid flow through
porous media have been evolved due to the wide range of applications.

Due to the various applications of these studies, many conceptual models for describing
liquid motion through porous media have been established. Darcy [1] introduced the 1st
mathematical model for fluid motion in porous medium. On the other hand, Darcy’s law
tends to be insufficient for streaming with high porosity and high shear rates, as well as
for flows close to the surface of a surrounded porous medium. Brinkman [2] suggested an
amendment to Darcy’s law to model such flows. Further, Tam [3] and Lundgren [4] both
theoretically explained the significance of Brinkman equation. Moreover, Yu and Kaloni [5]
have considered a Cartesian tensor solution of Brinkman’s equations influenced by porous
medium and calculated drag force on the sphere. In addition, Padmavathi et al. [6] used
Brinkman’smodel in a general non-axisymmetric creepingmotion to determine the resistance
and torque for the porous sphere. Barman [7] published an empirical analysis of viscous liquid
motion through an impermeable sphere immersed in a porous media of continuous porosity
using the Brinkman model. Furthermore, using Brinkman model, Pop and Ingham [8] have
determined the flow over a sphere embedded in a porous medium, and they found this flow
configuration does not have any flow separation. Srinivasacharya and Murthy [9] studied
the motion of viscous liquid over an impervious sphere immersed in a porous media using
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Brinkman’s model and extracted a general formula for the drag and calculated the drag
for the slightly deformed sphere. The Stokes motion passing through a swarm of porous
spherical particles with solid core was investigated by Yadav et al. [10] using the stress-jump
condition at a fluid–porous interface. Deo and Gupta [11] examined viscous incompressible
liquid motion past a porous sphere enclosed in another porous medium and calculated the
drag force past an oblate spheroid. After that, in the case of spheroid the same problem
was investigated by Yadav and Deo [12]. The slow viscous flow over a porous spheroid
with solid core was analyzed by Srinivasacharya and Madasu [13] using no-slip condition.
Jaiswal and Gupta [14] have treated the Stokes flow of a Reiner-Rivlin fluid spheroid in
a spherical container. The Forchheimer–Brinkman–Darcy extended model was applied by
Juncu [15] to study the creeping motion over an impervious sphere immersed in a porous
medium. The Stokes flow of viscous liquid over a micropolar liquid spheroid was reported by
Madasu andKaur [16]. Yadav et al. [17] investigated the problem of Stokes flow past a porous
membrane consisting of solid spheroidal particles coated with a porous layer and after that,
they calculated the expression for the hydrodynamic permeability acting on the membrane.
Tiwari et al. [18] studied the Stokes flow problem past swarm of non-homogeneous porous
cylindrical particles using Darcy’s law. They studied the influences of different parameters on
hydrodynamic permeability ofmembrane.Madasu andBucha [19] studied the steady viscous
flow around a permeable spheroidal particle usingBeavers–Joseph–Saffman–Jones condition
and evaluated the hydrodynamic drag force acting on the permeable spheroidal particle.
Jaiswal [20] investigated the problem of creeping motion of a non-Newtonian Reiner-Rivlin
liquid motion past a slightly deformed fluid spheroid.

A diverse number of problems involving flow past various particles are solved, yielding
significant results. Many researchers have been focused to determine the significant and ben-
eficial areas of MHD in the last few years. The effect of applied magnetic field on the flow of
fluid through various bodies is being studied by researchers. Magneto-hydrodynamics has a
wide range of uses in everyday life, including biological science, astrophysics, geophysics,
metallurgy, planetary atmospheres, and so on. During our review of the literature, we dis-
covered that Stewartson [21] studied the steady motion of a perfect sphere in an inviscid
conducting liquid in the presence of MHD impact. Devi and Raghavachar [22] studied the
MHD stratified motion over a sphere. The book [23] provides a basic introduction of mag-
netohydrodynamic flow. The problem of magneto-hydrodynamics streaming through porous
mediumwas examined by Geindreau and Auriaultthe [24]. Jayalakshmamma et al. [25] scru-
tinized the creeping motion over a rigid core surrounded by porous medium under magnetic
field. Using cell model technique, Tiwari et al. [26] discussed the impact of magnetic field
on the hydrodynamic permeability of a membrane of solid cylindrical particles made up by a
porous layer. They have discussed the influence of the Hartmann number on the membrane’s
hydrodynamic permeability. Further, Srivastava et al. [27] have investigated the creeping
motion of an electrically conducting liquid past a porous sphere under MHD effect using
cell model technique. Moreover, Iyengar and Radhika [28] have examined the slow viscous
flow over a porous spheroid. The Magnetohydrodynamic influence on the hydrodynamic
permeability of a membrane coated by porous spherical particles was examined by Yadav
et al. [29]. Applying the cell model procedure, the problem of a swarm of spherical particles
was described, and the influences of several significant flow parameters were investigated,
and streamline patterns were also presented. Using the Brinkman equation, Ansari and Deo
[30] scrutinized the MHD effect over a porous sphere immersed in another porous medium.
Saad [31] investigated the quasisteady flow past an assemblage of porous spheres using trans-
verse magnetic field. Prasad et al. [32] adopted the Darcy’s law for the streaming over an
electrically conducting fluid inside the semipermeable sphere.
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Recently, using a cell model technique, Yadav [33] studied the impact of MHD on the
Stokes flow past a porous spheroid: hydrodynamic permeability of a membrane. Madasu and
Bucha [34] studied the magnetic influence on the creeping motion over a porous spheroidal
particle using Brinkman’s model. Namdeo and Gupta [35] investigated the problem of slow
viscous flow past a spherical particle covered by semipermeable shell in the presence of
magnetic field. Saini et al. [36] studied the effect of variable viscosity on the slow viscous flow
of Jeffrey fluid through a swarm of porous cylindrical particles using Brinkman-Forchheimer
model. Sapa and Alsudais [37] investigated the impact of magnetic field on the creeping flow
of two impermeable spheres of dissimilar shapes with slip surfaces, immersed in a porous
medium. Namdeo and Gupta [38] discussed the problem of slow viscous flow past a slightly
deformed sphere in the presence of magnetic using slip boundary condition. They evaluated
the hydrodynamic drag force exerted by the fluid on the spheroid. Further, Namdeo and
Gupta [39] have discussed the magnetohydrodynamic influence on the Stokes motion over
an approximate semipermeable sphere and calculating the resistance past an oblate spheroid.
All foregoing analysis highlights the effect of magnetohydrodynamic to be altering with
varying geometry of the particles.

Motivated from the foregoing analysis and gaps, we have discussed the magnetic effect on
the creepingmotion around a solid spheroid implanted in a porousmediumwith theBrinkman
model.As a particular case,weused the oblate spheroid andobtained the drag on the surface of
the spheroid and its graphical results are obtained and discussed for different fluid parameters.
Also,we derive somedistinctive andwell-knownoutcomes and comparedwith someprevious
work whenever possible. Our major goal is to show the impact of the involved physical
parameters like, permeability, deformation parameter and Hartmann number on the drag
coefficient and shearing stress.

Problem Formulation and Solution

Figure 1 demonstrates the steady, axisymmetric, Stokes motion of an electrically conducting
liquid with uniform velocityU∞ through a rigid spheroid immersed in a porous media in the
presence of magnetic impact in transverse direction. For outside the impervious spheroid,
we assume well-known Brinkman equation [2]. In addition, we supposed that the magnetic
Reynolds number Rem � Uaμhσ is exceedingly small, where μh and σ are the magnetic
permeability and electric conductivity respectively. Also, we assumed that any applied outer
electric field is neglected, hence the induced current is extremely minute and therefore, it can
be ignored.

The force F applied by amagnetic field on a streaming electrical current is called a Lorentz
force is defined as F � J×H or F � μ2

hσ(q × H) ×H. Where J andH denotes the electric
current density and magnetic field intensity respectively. So, equation for motion outside
the impermeable spheroid under magnetohydrodynamic impact is expressed by modified
Brinkman equation with continuity condition:

∇.q � 0, (1)

∇ p +
μ

k
q + μ∇ × ∇ × q − μ2

hσ (q × H) × H � 0, (2)

where q denotes the velocity vector of the fluid; p, μ and k are the pressure, viscosity and
permeability of the fluid respectively.
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Fig. 1 Geometrical sketch of the problem

To express the governing equation in non-dimensional form, the following dimensionless
variables are used

r � ar̃ ,q � U
∼
q,∇ �

∼∇
a

, p � μU

a

∼
p, H � H0

∼
H, ψ � Ua2

∼
ψ . (3)

Putting the above values in Eqs. (1) and (2), and eliminating the tildes above the non—di-
mensional variables, we get the following equations

∇.q � 0, (4)

∇ p + ξ21q + ∇ × ∇ × q − ξ22 (q × H) × H � 0, (5)

where ξ21 � a2
k is the permeability parameter, and ξ2 �

√
μ2
h H

2
0 σa2

μ
is the Hartmann number.

Here,(r , θ , φ) indicate spherical polar coordinate system. All quantities are independent
of φ because the flow is generated in the meridian plane and is axis-symmetric. Thus, the
azimuthal component of velocity qφ � 0 for axisymmetric Stokes flow and component of
velocity can be written as

q � qr (r , θ)er + qθ (r , θ)eθ . (6)

Let r � a[1 + χ(θ)] be the equation of surface of the approximate sphere that differs
from perfect sphere r � a. The orthogonality of Gegenbauer polynomials Gm(ζ ),ζ � cosθ
ordinarily permits us to write χ(θ) as the under mentioned way χ(θ) � ∑∞

m�2 αmGm(ζ ),
and relation between Gegenbauer polynomial Gn(ζ ) and Legendre polynomial Pn(ζ ) as

Gn(ζ ) �
[
Pn−2(ζ ) − Pn(ζ )

]
(2n − 1)

, n ≥ 2. (7)

Thus, the surface of the slightly deformed sphere can be selected as r � 1 + αmGm(ζ).
We assume the coefficient αm is extremely minute therefore O(ε2) and its higher powers can
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be overlooked i.e., r y ≈ 1 + yαmGm(ζ ) where, y may be positive or negative integer. The
following are the velocity components associated with stream function ψ :

qr � − 1

r2sinθ

∂ψ

∂θ
, qθ � 1

rsinθ

∂ψ

∂r
. (8)

Further, eliminating the pressure term in Eq. (5) and substituted velocity components from
Eq. (8), we get

E2(E2 − β2)ψ � 0, (9)

here, E2 � ∂2

∂r2
+ (1−ζ 2)

r2
∂2

∂ζ 2
is the Stokes stream function operator and β2 � ξ21 + ξ22 .

Furthermore, the expression for tangential stress Trζ and normal stress Trr are given by

Trζ � μ

rsinθ

[
∂2ψ

∂r2
− 2

r

∂ψ

∂r
−

(
1 − ζ 2

)
r2

∂2ψ

∂ζ 2

]
, (10)

Trr � −p − 2μ

r2

[
2

r

∂ψ

∂ζ
− ∂2ψ

∂r∂ζ

]
. (11)

As we know, the Eq. (9) is completely separable; therefore, the regular solution outside
the solid spheroid in spherical polar coordinate system is easily obtained using the regularity
condition at infinity (i.e. ψ → 1

2Ur2sin2θ as r → ∞) and can be written as

ψ �
[
r2 + a2r

−1 + b2
√
r K 3

2
(βr)

]
G2(ζ ) +

∞∑
n�3

[
Anr

−n+1 + Bn
√
r Kn− 1

2
(βr)

]
Gn(ζ ),

(12)

and the pressure term is

p � β2

[(
r − a2

2r2

)
P1(ζ ) −

∞∑
n�3

Anrn

n
Pn−1(ζ )

]
, (13)

where Kn− 1
2
(βr) is the modified Bessel function and a2,b2,An and Bn are the unknowable

constants to be calculated by applying different boundary conditions.
The boundary conditions are used at the surface r � a[1 + αmGm(ζ)] of impervious

spheroid.

ψ(r , θ ) � ψr (r , θ ) � 0, (14)

Initially, the solutions corresponding to the boundary r � 1 + αmGm(ζ) are developed. If
the body is sphere, then the stream function ψ can be expressed as

ψ �
[
r2 + a2r

−1 + b2
√
r K 3

2
(βr)

]
G2(ζ ). (15)

Comparing (12) with the above equation, we find that the terms involving An and Bn for
n > 2 are additional terms which don’t occur for the case of perfect sphere. In the current
problem, we assume that the body is slightly deformed and the flow not too far deviates from
the sphere’s shape. The entire coefficient An and Bn for n > 2 will be of order αm . As a
result, motion over an impervious spheroidal particles embedded in porous region will differ
a bit from streaming past a impermeable sphere surrounded in a porous media. We have
considered r � 1 +

∑∞
m�2 αmGm(ζ ) when solving a problem of this kind.
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Now, applying the boundary conditions from Eq. (14) in Eq. (12), we get

(16)

[
1 + a2 + b2K 3

2
(β)

]
G2 (ζ )

+
[
2 − a2 − b2

(
K 3

2
(β) + βK 1

2
(β)

)]
G2 (ζ )Gm (ζ )αm

+
∞∑

n �3

[
An + BnKn− 1

2
(β)

]
Gn(ζ ) � 0,

(17)

[
2 − a2 − b2

(
K 3

2
(β) + βK 1

2
(β)

)]
G2 (ζ )

+
[
2 + 2a2 + b2(β

2 + 2)K 3
2
(β)

]
G2 (ζ )Gm (ζ )αm

+
∞∑

n �3

[
(1 − n) An − Bn

(
(n − 1)Kn− 1

2
(β) + βKn− 3

2
(β)

)]
Gn(ζ ) � 0.

The aforementioned equations’ leading terms are equal to 0, and we get

a2 � −1 −
3K 3

2
(β)

βK 1
2
(β)

, b2 � 3

βK 1
2
(β)

. (18)

Substituting the values of a2 and b2 from Eq. (18) to Eqs. (16) and (17), and we use the
following identity

(19)

Gm (ζ )G2 (ζ ) � − (m − 2) (m − 3)

2 (2m − 1) (2m − 3)
Gm−2 (ζ ) +

m(m − 1)

(2m + 1) (2m − 3)
Gm (ζ )

− (m + 1) (m + 2)

2 (2m − 1) (2m + 1)
Gm+2 (ζ ) .

We get on simplification the following equation

∞∑
n�3

[
An + BnKn− 1

2
(β)

]
Gn(ζ ) � 0, (20)

(21)

[
−
3βK 3

2
(β)

K 1
2
(β)

]
G2 (ζ )Gm (ζ )αm

+
∞∑

n �3

[
(1 − n) An − Bn

(
(n − 1)Kn− 1

2
(β) + βKn− 3

2
(β)

)]
Gn(ζ ) � 0.

By solving Eq. (20) and (21) we get, An � Bn � 0 for n 
� m − 2, m, m + 2 and another
system of equations in AnandBn , when n � m − 2, m, m + 2, we get

An + BnKn− 1
2
(β) � 0, (22)

(1 − n)An − Bn

(
(n − 1)Kn− 1

2
(β) + βKn− 3

2
(β)

)
� −bω1, (23)

where b � n(n−1)αm
(2n+1)(2n−3) , ω1 �

3βK 3
2
(β)

K 1
2
(β)

.
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Solving Eq. (22) and (23) we get the expressions An and Bn for n � m − 2, m, m + 2 So,
we have established the apparent manifestation for the stream function ψ for the flow region
of the impermeable spheroidal surface as

ψ �
[
r2 + a2r

−1 + b2
√
r K 3

2
(βr )

]
G2 (ζ ) +

[
Am−2r

−m+3 + Bm−2
√
r Km− 5

2
(βr )

]
Gm−2 (ζ )

+
[
Amr

−m+1 + Bm
√
r Km− 1

2
(βr )

]
Gm (ζ )

+
[
Am+2r

−m−1 + Bm+2
√
r Km+ 3

2
(βr )

]
Gm+2 (ζ ) ,

(24)

where the entire constants have been determined. Under the boundary conditions described
above, the Eq. (24) is a new result of the Brinkman equation.

Application to Spheroid

We investigate the flow past a prolate and oblate spheroid as one of the examples of the
described flow. In the Cartesian coordinate system (x ; y; z), the equation characterizing the
spheroid’s surface is

x2 + y2

d2
+

z2

d2(1 − ε)2
� 1, (25)

where the equatorial radius is d . Furthermore, the deformation parameter ε is considered to
be extremely minute hence its quadratic and higher powers are overlooked. Polar form of
Eq. (25) can be written as

r � a[1 + 2εG2(ζ )], (26)

where a � d(1− ε). Comparing Eq. (26) of spheroid with r � 1 +αmGm(ζ) of approximate
sphere, we find that α2 � 2ε and αm � 0 when m 
� 2. Using Eq. (26) in Eq. (24) we get
the stream function around the oblate spheroid as

ψ �
(
r2 + (a2 + A2)r

−1 + (b2 + B2)
√
r K 3

2
(αr)

)
G2(ζ ) +

(
A4r

−3 + B4
√
r K 7

2
(αr)

)
G4(ζ ).

(27)

Drag on a Spheroid

The flow resistance to the stream direction is generated by the magnetohydrodynamic creep-
ing motion over a rigid spheroid surrounded by a porous material, which is recognized as a
drag force. Using the formula proposed by Saad [26], the resistance force can be calculated.

FD � πμUa
∫ π

0

[
r4sin3θ

∂

∂r

(
E2ψ

r2sin2θ

)
− α2r2sinθ

∂ψ

∂r

]
r�[1+α2G2(ζ )]

dθ. (28)

Inserting the value of ψ from Eq. (27) in Eq. (28) and integrating with respect to θ , we
obtain

FD � 2

3
πμUaβ2

[
−2 + a2 + A2 − 2(b2 + B2)K 3

2
(β) +

4

5
βα2b2K 1

2
(β) − 12

5
α2

]
. (29)
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Substituting the values of a2, b2, A2, B2 and further substituting a � d(1 − ε), ξ1 �
χ1(1 − ε), ξ2 � χ2(1 − ε), leading to β � β1(1 − ε) with β2

1 � χ2
1 + χ2

2 in Eq. (29), we
obtain

FD � −2πμUd

[
3 + 3β1 + 3β2

1 − 1

5
ε
(
3 + 6β1 + 3β2

1

)]
, (30)

where χ2
1 � d2

k , χ2 �
√

μ2
h H

2
0 σd2

μ
.

At any point of the oblate spheroid, the non-dimensional shearing stress can be described
as

Trθ(
μU
a

)
sinθ

at r � a[1 + α2G2(ζ )]

(31)

�
[
3 (a2 + A2) +

{
1

2

(
β2 + 6

)
K 3

2
(β) + βK 1

2
(β)

}
(b2 + B2)

]

− 2ε

[
6a2 +

{(
β2 + 6

)
K 3

2
(β) +

(
2β +

1

4
β3

)
K 1

2
(β)

}
b2

] (
1 − cos2θ

)
.

Special Cases

With Magnetic Effect

Case I: If k → ∞ then χ1 → 0 i.e., the porous medium change the clear fluid in Eq. (30),
then the drag force will become

FD � −2πμUd
[
χ2
2 + 3χ2 + 3 − ε

5

(
χ2
2 + 6χ2 + 3

)]
, (32)

the above equation coincides with the work derived previously by Prasad and Bucha [34].
Case II:When ε → 0 and k → ∞, that is the rigid oblate spheroid embedded in porous

region transforms into perfect rigid sphere in a clear fluid and the expression for resistance
force from Eq. (30) becomes

FD � −2πμUd
[
χ2
2 + 3χ2 + 3

]
, (33)

this drag expression is comparable to Prasad and Bucha’s result [32].
Case III: If ε � 0 in Eq. (30), then the oblate spheroid becomes a rigid sphere and drag

force will becomes

FD � −2πμUd
[
3 + 3β1 + 3β2

1

]
. (34)

Without Magnetic Effect

Case IV: If χ2 → 0, in Eq. (30), then the drag force become

FD � −2πμUd

[
3 +

1

k
+ 3

√
1

k
− ε

5

(
3 +

1

k
+ 6

√
1

k

)]
. (35)
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Case V: If χ2 → 0 and k → ∞, that is, the porous medium transforms into a clear fluid
and the expression for drag force reduced to

FD � −6πμUd
[
1 − ε

5

]
, (36)

this result agrees with the famous Stokes formula [40].

Results and Discussion

In this section, an endeavor is made to find the influence of a variety of physical parameters
such as permeability, Hartmann number, and deformation parameter on the non-dimensional
drag and shearing stress. The ratio of FD to Fst be defined as non-dimensional drag DN :

DN � FD

−6πμUd
(37)

We show in Fig. 2 the dependences of DN for diverse values of Hartmann number χ2

with permeability parameter k, when (a) ε � 0.03, (b) ε � −0.03. Figure 2 demonstrates
that the non-dimensional drag rises when increasing the values of χ2. This is because of the
Lorentz force’s presence in the magnetic field. However, the drag coefficient decreases when
the value of permeability parameter k increases. As can be seen in Fig. 2, the resistance force
of an oblate spheroid is less than that of a prolate spheroid.

Further, Dependences of DN against parameter k for diverse values of ε is illustrated in
Fig. 3. This graph shows that the drag of the perfect sphere (ε � 0) is higher than that of
the oblate spheroid (ε > 0) and that the resistance is fewer than that of the prolate spheroid
(ε < 0). When we analyze both graphs, we can see that the resistance force on the oblate
spheroid under magnetic effect is greater than the curve without the magnetic impact.

On the other hand, the profile of dimensionless shearing stress Trθ verses permeability
parameter k for enhancing deformation parameter ε is demonstrated in Fig. 4. This finding
reveals that the shearing stress is higher in the perfect sphere than in the prolate spheroid

(a) (b)

Fig. 2 Dependences of DN against k for diverse values of χ2 for a ε � 0.03, b ε � −0.03
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(b)(a)

Fig. 3 Dependences of DN against k for various values of ε for a χ2 � 5, b χ2 � 0

(b)(a)

Fig. 4 Dependences of dimensionless shearing stress Trθ against parameter k for various values of ε when
θ � π

4 and a χ2 � 5, b χ2 � 0

but lower in the oblate spheroid. Here we noted that the shearing stress increases in the case
of prolate spheroid when the value of permeability k ≈ 0.02 and after that it is decreases.
For both of the plots in Fig. 4, we observed that the curves for the shearing stress are higher
under the MHD effect than the absence of the magnetic field.

Moreover, the depiction of the dimensionless shearing stress Trθ with respect to k for
numerous values of Hartmann number χ2 at (a) ε � 0.3, (b) ε � 0, and θ � π

4 is presented
in Fig. 5. This graph shows how the shearing stress decreases rapidly as the permeability
parameter k increases. Also, this diagram demonstrates that as the Hartman number rises,
dimensionless shearing stress increases. This observation indicates that the shearing stress is
diminishing rapidly when 0 ≤ k ≤ 0.1 and it decreases gradually for k ≥ 0.1.
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(b)(a)

Fig. 5 Dependences of Trθ against k for numerous values of χ2 when θ � π
4 , and a ε � 0.3, b ε � 0

(b)(a)

Fig. 6 Stream-line patterns for fixed parameter k � 0.25 and various value of Hartmann number χ2. a χ2 �
0.75, b χ2 � 7

Stream-line patterns of the flowaround a spheroid for different values ofHartmann number
χ2(χ2 � 0.75 and χ2 � 7), permeability parameter k � 0.25 are sketched in Fig. 6. From
this figure, we noticed that the Hartmann numbers strength is increased, the streamlines are
moving closer to the impermeable surface of a spheroid.

Conclusions

The motion of a viscous fluid past an approximate spheroidal particle embedded in a porous
region has been investigated under transverse magnetic field. The Brinkman equation is used
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for studying the flow in porous medium. The mathematical expression for the flow field is
calculated in terms of stream function. Also, we have calculated the drag coefficient and its
variations have been plotted for different fluid parameters. The present analysis is summarized
as follows:

• Some special cases of drag forces are obtained and compared to previous literature, which
validates our present work.

• It is found that the drag coefficient and shearing stress Trθ decreases with permeability k
increases and increases with increasing the values of Hartman number χ2.

• We discovered that drag is greater in the presence of magnetohydrodynamic impact than
in the absence of a magnetohydrodynamic impact.

• The drag of a prolate spheroid is discovered to be higher than that of an oblate spheroid.
• The magnetic field is seen to have a vital role in the flow of fluids past porous media and
has a major impact on the non-dimensional drag.
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