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Abstract
Dynamical systems are frequently modeled by differential equations, the change in the solu-
tion structure of such systems as parameters vary is fundamental for understanding the
phenomena. In this paper, we consider a system of differential equations with a parame-
ter γ , which is understood from mechanics of a pendulum moving in the potential energy

Vγ (x) = x2
2 − γ x3

3 − x4
4 , γ > 0. The global dynamics and the steady state of the system

are analyzed. We verify and prove the existence of the heteroclinic bifurcation between two
saddles of the system using numerical and topological methods.

Keywords Pendulum · Heteroclinic orbit · Stability analysis · Applied algebraic topology ·
Morse set · Conley index

Mathematics Subject Classification 37B30 · 37C29 · 34C23 · 70F40 · 74H15

Introduction

Dynamical systems usually represent classical mechanics using differential equations. The
control theory deals with influencing the behavior of these dynamics. Recently, many studies
have been conducted to explain exciting models, see [1, 2, 8, 12, 16, 17, 19, 20]. A pendulum
is a motivating example, which has been studied for many centuries. The first study of the
pendulum was started by Italian scientist Galileo Galilei after he watched a suspended lamp
swing back and forth in 1588, he began serious investigations in 1602. Later on, French
physicist Jean Foucault developed the Foucault pendulum. He used it in 1851 to show the
earth’s rotation, see [4]. In 1953, Hughes studied the properties of the simple pendulum, see
[15].
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Fig. 1 A pendulum in motion

The pendulum system has many interesting bifurcations, see [3, 13, 22, 26, 28, 30]. In
particular, we can find the heteroclinic bifurcation inmany studies that have been conducted to
understand the pendulum system. Dabbs and Smith in [6] used planarMelnikov techniques to
determine a parameter set that preserves the coexistence of both heteroclinic and homoclinic
orbits in a rotating pendulum. In [7], the nonlinear oscillations of the forced and damped
rotating pendulumwas explored, and theMelnikov functions due to the heteroclinic orbit was
computed to reveal the transverse heteroclinic orbit. The splitting of heteroclinic orbits was
accomplished in [18] by discretizing spatial or temporal derivatives in nonlinear equations
that supported such solutions. According to Rabinowitz [24], there are heteroclinic orbits
of autonomous Hamiltonian systems connecting two equilibria. In [29], a specific case of
autonomous Hamiltonian systems was considered, and analytic methods were utilized to
establish the existence of the heteroclinic orbits of discrete pendulum equation linking every
two adjacent points.

In this research, we explain the construction of a motion of pendulum system in potential
energy that is found in [14].We use the combination of the numerical method and topological
theorems that has been successfully applied to the existence of bifurcation in dynamical
systems. In particular, we study the stability of the desired system, and we use the Maple
software to show the phase portrait of before, after and at heteroclinic bifurcation where the
value of the parameter γ is approximated. Then, the Conley index theorems and Morse sets
are applied to prove the existence of the heteroclinic bifurcation in the system. To make a
conceptual idea of a motion of pendulum with potential energy V (x), we should understand
the similarity between the bead-on-wire and the pendulum. Take a pendulum whose motion
is restricted to a plane (moves in one direction), with a bob (mass m) on a string of length l,
as illustrated in Fig. 1. The arc length of the pendulum is lθ (theta in radians), the velocity of
the bob is lθ ′, and the tangential component of its acceleration is lθ ′′. The forces acting on
the bob of a pendulum are its weight w = mg (g is gravity) and the tension T of the string.
Newton’s second law is one of the most important in all of physics, the vector sum of the
forces F acting on an object is equal to the object’s mass m multiplied by its acceleration a
as in the Eq. (1).

F = ma. (1)

Using Fig. 1 and the fact a = lθ ′′, the Eq. (1) can be written in terms of θ to depict the action
of the pendulum as moving opposite to

− mg sin(θ) = mlθ ′′. (2)
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Fig. 2 Bead on a wire of semi
circular shape

which is equivalent to

θ ′′ = −K sin(θ),
(g
l

)
= K . (3)

The Eq. (3) is second order differential equation that shows the motion of the pendulum with
one variable θ . In order to solve the Eq. (3), we rewrite it in first order by putting y = θ ′ then
y′ = θ ′′, so we get the following system of first order of differential equations

θ ′ = y,

y′ = −K sin(θ).
(4)

On the other hand, a physical particle moving without friction in a style involving only
one variable x , the potential energy V (x) is introduced by a general theory in physics, which
is defined by the force equation

mx ′′ = −dV (x)

dx
. (5)

The one parameter mechanical system (5) is second order differential equation that can be
converted to system of first order differential equations by putting y = mx ′ then y′ = mx ′′
to get the following system

x ′ = m−1y,

y′ = −dV (x)

dx
.

(6)

where y represents the velocity of the particle up to a constant multiple. The solution of
Eq. (5) acts almost like the x-coordinate of a bead of mass m sliding without friction on a
wire whose graph is V (x) in a constant gravitational field with g = 1. The equation F = ma
describes the motion of the bead with acceleration in terms of the arc length. To go over the
details, let s be the arc length along the wire of a semi circular shape as shown in Fig. 2 (If
s(t) describes the motion of the bead, s′′(t) is the acceleration), then V (x) = −√

l2 − x2.
As x = l sin(θ), we have

dV

dx
= x√

l2 − x2
= l sin θ

l cos θ
= tan θ (7)

Because the arc length along the wire is measured by s(x).

s(x) =
∫ x

0

√
1 + (dV /dx)2 (8)

Then
dV

ds
= dV /dx

ds/dx
= dV /dx√

1 + (dV /dx)2
(9)
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Using the fact s′′(t) = − dV
ds , the force can be written as in the following

F = ms′′(t) = −m
dV

ds
= −m

dV /dx√
1 + (dV /dx)2

= −m
tan θ√

1 + tan2 θ
= −m sin θ (10)

This implies the Eq. (11) that describes the motion of a bead on a circular wire.

s′′ = − sin θ (11)

As s = lθ , the Eq. (11) can be written as

θ ′′ = −(1/l) sin θ (12)

which describes the motion of pendulum in Eq. (3). Thus, the analogy between the pendulum
and the bead-on-wire is completed.

Back to the pendulum system, Eqs. (3) and (4) are of the proper mathematical form (5) and
(6) for a mechanical system with one degree of freedom, so there exists a potential function
V (θ). Combining Eqs. (3) and (5) implies that

dV (θ)

dθ
= K sin(θ) (13)

Adding a perturbation term to the systemof the pendulum (4) to represent friction, a physically
more realistic situation. The motion of the pendulum bob obey the following equation

θ ′ = y,

y′ = −K sin(θ) − εy.
(14)

where ε is a friction coefficient and we have assumed that the friction is proportional to the
velocity. Substitute the Eq. (13) in the Eq. (14) to get the system

θ ′ = y,

y′ = −dV (θ)

dθ
− εy.

(15)

In particular, using the potential energy Vγ (x) = x2
2 − γ x3

3 − x4
4 , γ > 0 for the motion of

the pendulum, ε = 0.1, and replacing θ by x , we get the desired system

x ′ = y,

y′ = −x + γ x2 + x3 − 0.1y.
(16)

Figure 3 represents the potential Vα(x). It is clear that, the parameter α controls the difference
in height of the two peaks and the x-coordinate of the two corresponding saddles. The blue
curve is for α = 0.2, black for α = 0.14. and red for α = 0.1. A heteroclinic bifurcation
between the two saddles of the system (16) is detected in Sects. 3 and 4 at a value of α closed
to 0.14.

This paper is organized as follows : In the next section, we study the stability of the equi-
libria of system (16). In Sect. 3, we study the bifurcations like heteroclinic saddle connections
using numerical method throughMaple software. The topological method is used in Sect. 4 to
detect the heteroclinic bifurcation through the Conley index technique. In conclusion section,
the results of the motion of pendulum are summarized, and future work is suggested.
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Fig. 3 Potential Vα(x) for the system (16)

Steady States and Their Stability

To study the stability of the equilibria of system (16), note that its Jacobian matrix takes the
form

J =
[

0 1
3x2 + 2γ x − 1 −0.1

]
. (17)

The equilibria of system (16) are solutions of the equations

0 = y,

0 = −x + γ x2 + x3 − 0.1y.
(18)

and are given by E0 = (0, 0), E1 = (A, 0) and E2 = (B, 0) where the values of A and B
are determined in the Eqs. (19) and (20).

A = −γ + √
γ 2 + 4

2
, γ > 0 (19)

and

B = −γ − √
γ 2 + 4

2
, γ > 0 (20)

Since γ > 0, it follows that A > 0. We notice that when γ increases, the equilibrium point
(A, 0)moves from the point (1, 0) toward the origin. In the same way, as we consider γ > 0,
it follows that B < 0, and the equilibrium point (B, 0) is moving away from the point (−1, 0)
to the left on the x-axis, see the graph of A and the graph of B in Fig. 4.

The Jacobian matrix evaluated at the equilibrium point E0 = (0, 0) is

J (E0) =
[
0 1

−1 −0.1

]
. (21)

We summarize the stability of E0 in the following theorem.

Theorem 2.1 The equilibrium point E0 = (0, 0) is stable.
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Fig. 4 Graph of A and graph of B

Proof From the Jacobian matrix (21), the eigenvalues of J (E0) are

λ1,2
∣∣
(0,0) = −0.1 ± i

√
3.99

2
. (22)

We notice that Re(λ1,2) < 0 so E0 is stable. ��
We summarize the stability of E1 = (A, 0) and E1 = (B, 0) in the following theorem.

Theorem 2.2 The equilibrium points E1 = (A, 0) and E1 = (B, 0) are saddles.

Proof The Jacobian matrix evaluated at E1 = (A, 0) is

J (E1) =
[

0 1
3A2 + 2γ A − 1 −0.1

]
, (23)

and so the eigenvalues of J (E1) are

λ1,2
∣∣
(A,0) = −0.1 ± √−3.99 + 12A2 + 8γ A

2
. (24)

We notice from the Fig. 5 that λ1|(A,0) = −0.1+
√

−3.99+12A2+8γ A
2 > 0 and λ2|(A,0) =

−0.1−
√

−3.99+12A2+8γ A
2 < 0, which means that E1 is saddle. In the same way, we find that

the eigenvalues of J (E2) are

λ1|(B,0) = −0.1 ± √−3.99 + 12B2 + 8γ B

2
. (25)

and hence, one eigenvalue is positive and the another one is negative, see Fig. 6 which means
that E2 is saddle. ��

Numerical Approach

The heteroclinic bifurcation is a connection from α-limit set to ω-limit set, see [23]. Let �

be a Hausdorff topological space with flow ϕ, then ω-limit set of a subset Y ⊂ � is given by

ω(Y ) := Inv
(
ϕ(Y , [0,∞))

) =
⋂
t>0

ϕ(Y , [t,∞)). (26)
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Fig. 5 Graph of eigenvalues at (A,0)

Fig. 6 Graph of eigenvalues at (B,0)

and the α-limit set (ω∗-limit set) of a subset Y ⊂ � is given by

α(Y ) := Inv
(
ϕ(Y , (−∞, 0])) =

⋂
t<0

ϕ(Y , (−∞, t]). (27)

In this section, we study the numerical solution of the system (16), in particular we focus
on three stages

1. Before the heteroclinic bifurcation, this case is explained in Table 1 and Fig. 7a in which
we choose γ << γ ∗.

2. After the heteroclinic bifurcation, this case is explained in Table 2 and Fig. 7b in which
we choose γ >> γ ∗.

3. We approximate γ ∗, which is the value of the parameter γ , where the heteroclinic bifur-
cation is happened. This case is explained in Table 3 and Fig. 7c.

The parameter γ controls the change of the solution structure in the dynamical system (16),
and consequently the direction of the flow in its phase portrait is changing as the parameter
γ is varying. We use the Maple software for screening the flow in the phase portrait as γ is
growing. When γ = 0.1, the red trajectory that comes from the saddle (B, 0) is underneath
the blue trajectory that comes in the saddle (A, 0)which is shown in Fig. 7a. In this situation,
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Table 1 Before heteroclinic bifurcation

Initial point Time Color

(−1.05066846703369, 0.000814079843825949) t = 0 . . . 30 Red

(−1.05182997296631,−0.000814079843825949) t = 0 . . . 5 Teal

(−1.05180346832364, 0.000832351365552794) t = −5 . . . 0 Green

(−1.05069497167636,−0.000832351365552794) t = −8 . . . 0 Brown

(0.951849870183757, 0.000799511949099649) t = 0 . . . 5 Orange

(0.950648569816243,−0.000799511949099649) t = 0 . . . 30 Magenta

(0.950676432222895, 0.000819703704029008) t = −9 . . . 0 Blue

(0.951822007777105,−0.000819703704029008) t = −5 . . . 0 Yellow

Table 2 After heteroclinic bifurcation

Initial point Time Color

(−1.10441747062513, 0.000821581295001963) t = 0 . . . 10 Red

(−1.10555765337487,−0.000821581295001963) t = 0 . . . 5 Teal

(−1.10553188406442, 0.000838876325919179) t = −5 . . . 0 Green

(−1.10444323993558,−0.000838876325919179) t = −8 . . . 0 Brown

(0.905597381649791, 0.000792540216473987) t = 0 . . . 5 Orange

(0.904377742350209,−0.000792540216473987) t = 0 . . . 30 Magenta

(0.904406222213875, 0.000813660895624604) t = −12 . . . 0 Blue

(0.905568901786125,−0.000813660895624604) t = −5 . . . 0 Yellow

Table 3 At heteroclinic bifurcation

Initial point Time Color

(−1.07261973731311, 0.000817172852276827) t = −2 . . . 30 Red

(−1.07377252268689,−0.000817172852276827) t = 0 . . . 5 Teal

(−1.07374631822994, 0.000835040664658527) t = −5 . . . 0 Green

(−1.07264594177006,−0.000835040664658527) t = −8 . . . 0 Brown

(0.932400641744550, 0.000796596228148902) t = 0 . . . 5 Orange

(0.931191618255450,−0.000796596228148902) t = 0 . . . 30 Magenta

(0.931219741418219, 0.000817175747799663) t = −11 . . . 0 Blue

(0.932372518581781,−0.000817175747799663) t = −5 . . . 0 Yellow

it is clear that the saddle (B, 0) is α-limit set which plays as a repeller and the saddle (A, 0) is
ω-limit set which plays as a attractor. We can find the initial points of the colored trajectories
of the solution in the Table 1. This case is known as “before heteroclinic bifurcation” which
is mentioned in stage 1. In the second stage, we notice that when γ = 0.2 the red trajectory
changes its position to become above the blue trajectory. This case is shown in Fig. 7b, and
its initial points of the colored trajectories of the solution are illustrated in the Table 2, and it
is known as “after heteroclinic bifurcation” which is pointed to in stage 2. The heteroclinic
bifurcation is detected at γ = γ ∗ ≈ 0.1414 where the red and blue trajectories are merged.
This case is happened when γ increases, the red trajectory moves upward and the blue
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Fig. 7 a Before, b after and c at heteroclinic bifurcation

trajectory moves downward and they are consolidated at the value γ ∗. This bifurcation is
shown in Fig. 7c, and the initial points of the colored trajectories of the solution for this stage
are explained in the Table 3. This kind of bifurcation is called “heteroclinic bifurcation”
which is mentioned in stage 3.

Topological Method

To investigate the existence and behavior of a system’s families of solutions, topological
techniques can be combined with rigorous numerical computation. At any parameter value,
the dynamical system can be represented by a Conley–Morse graph which is a directed graph
with certain algebraic information (Homology groups). Changes of dynamics (at different
parameter values) can be registered by changes in the Conley–Morse graphs.
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Table 4 Conley index of some
basic isolated invariant sets If p is a sink (stable) CHq (p) = Z2 if q = 0

If p is a saddle in the plane CHq (p) = Z2 if q = 1

In this section we state necessary definitions and theorems to detect the heteroclinic saddle
connection, formore information see [5, 9–11, 21, 25, 27].We use homologywith coefficients
in the finite fieldZ2, Swill always denote an isolated invariant set and the homological Conley
index of S, CHq(S), is the relative homology Hq(N , L), where q is a homology index.

Definition 4.1 A pair of compact sets (N , L) is called an index pair of S where L ⊂ N ⊂ R
n

if

1. S = Inv(N \ L), and N \ L is an isolating neighborhood of S in X ,
2. L is positively invariant in N that is given x ∈ L and ϕ(x, [0, t]) ⊂ N , then ϕ(x, [0, t]) ⊂

L ,
3. L is an exit set for N that is given x ∈ N and t1 > 0 such that ϕ(x, t1) /∈ N , then there

exists t0 ∈ [0, t1] such that ϕ(x, [0, t0]) ⊂ N and ϕ(x, t0) ∈ L .

The homotopical Conley index of S, h(S), is defined as the pointed homotopy type of the
quotient space N/L . We summarize the Conley index of some basic isolated invariant sets
in Table 4.

A partial order on a set P is a relation < on P that satisfies: if (1) π < π never holds for
π ∈ P , and (2) if π < π

′
and π

′
< π

′′
then π < π

′′
.

Definition 4.2 Let (P,<) be a partially ordered set. A subset I ⊂ P is called an interval if
p < r < q with p, q ∈ I implies r ∈ I . The set of intervals in < is denoted I (<). Points p,
q ∈ P are called adjacent if {p, q} ∈ I (<), i.e., {p, q} or {q, p} is an interval in P .

If p, q ∈ P and neither p < q nor q < p, then we say that p and q are noncomparable.

Definition 4.3 Let S be a compact invariant set (not necessarily isolated). A (<-ordered)
Morse decomposition of S is a collection M(S) = {M(p) | p ∈ P} of mutually disjoint
compact invariant subsets of S such that if x ∈ S\ ⋃

p∈P
M(p), then there exist q < p (p, q ∈

P)withω(x) ⊂ M(q) and α(x) ⊂ M(p), i.e., x ∈ C
(
M(p), M(q)

)
(connection fromM(p)

to M(q) ).

In general, any ordering on P satisfying the above property is called admissible (for the
flow). The invariant set M(p) is called Morse set. Moreover, if S is isolated, then each M(p)
is also isolated. The flow on S defines an ordering on Morse sets and, hence a partial order
<F on P . <F is defined by setting π

′
<F π if and only if there exists a sequence of distinct

elements of P, π
′ = π0, . . . , πn = π , such that C(π j , π j−1) �= ∅ for each j = 1, . . . , n.

A subset A ⊂ S is an attractor in S if there exists an open neighborhood U of A in S
such that A = ω(U ). If A is an attractor in S, the dual repeller of A in S is defined by
A∗ := {x ∈ S | ω(x) ∩ A = ∅}. In the flow ordering on invariant subsets of S, we write
A <F A∗ to indicate that a flow comes from the repeller A∗ and lands at the attractor A.

Definition 4.4 Let S be an isolated invariant set (in a local flow X ), and let the collection of
invariant sets {M(p) | p ∈ (P,<)} be a Morse decomposition of S with admissible ordering
<, then an associated connection matrix is a linear map

� :
⊕
p∈P

CH∗(M(p)) →
⊕
p∈P

CH∗(M(p)),
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Fig. 8 Conley–Morse graph of
the flow before and after the
bifurcation

where �(p, q) : CH∗(M(q)) → CH∗(M(p)) is the corresponding (p, q)-component of �

such that the following conditions are satisfied:

1. � is strictly upper triangular, so that if �(p, q) �= 0 implies p < q .
2. � is a boundary map if each �(p, q) is of degree −1 and �2 = 0.
3. For every interval I , CH∗(M(I )) ∼= Ker�(I )

Im�(I ) .

The collection of all connection matrices of a system with a parameter γ is denoted by
CM (Mγ ), where γ is defined on some open interval.

Let (X , d) be a compact metric space, and � be an interval in R. Then a parametrized
family of local flows is

φ : (X × �) × R → X

such that φλ | Xλ = φ | X × {λ} is a local flow for each λ ∈ �.
There is a space of isolated invariant sets for the product parameterization with underlying

set
S = S (φ) = {(Sλ, Xλ)|Sλis an isolated invariant set in Xλ}.

Theorem 4.5 [5] If Sλ and Sμ are related by continuation and c is a path in S from Sλ to
Sμ then (associated to the path-homotopy class of c) there is a homotopy equivalence θ[c]:
h(Sλ) → h(Sμ).

The homotopy equivalence θ[c] induces a homology isomorphism CH∗(Sλ) → CH∗(Sμ).

Corollary 4.6 [10,Corollary 5.2] If c is as in Theorem 4.5, then there is an isomorphism
(θ[c])∗: CH∗(Sλ) → CH∗(Sμ) associated to the path homotopy class of c.

The most important property of the connection matrices is stated in the following theorem

Theorem 4.7 [11] If� ∈ CM (M), p andq are adjacent in the flowordering, and�(p, q) �=
0, then C

(
M(q), M(p)

) �= ∅.
Back to the system (16), the flow of the Fig. 7 can be depicted as in Fig. 8 where the Conley–
Morse graph is used to study the changes of dynamics when the parameter γ << γ ∗ and
γ >> γ ∗.

TheMorse sets: M(1) represents the stable equilibrium (0, 0), M(2) represents the saddle
equilibrium point (A, 0) and M(3) represents the saddle equilibrium point (B, 0).

We use the connection matrix continuation theory to prove that there exists a parameter
value γ ∗ such that C

(
Mγ ∗(3), Mγ ∗(2)

) �= ∅. We start studying the system (16) when the
parameter varies in the interval γ ∈ (0, γ ∗), and we observe over this interval that there are
two orbits from the saddles to the sink. Therefore, if 0 < γ << γ ∗, then CM (Mγ ) contains
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a single matrix, and it is in the form �1 with admissible ordering <1. To find the connection
matrix �1, let S1 be the compact invariant set of the graph “Before heteroclinic bifurcation”
in Fig. 8, then S1 consists of the Morse sets {M(1), M(2), M(3)} and the connections
{C

(
M(2), M(1)

)
, C

(
M(3), M(1)

)
}. Then a (<1-ordered) Morse decomposition of S1 is a

collection M(S1) = {M(p) | p ∈ P1 = {1, 2, 3}} with flow ordering M(1) <1 M(2) and
M(1) <1 M(3). Then

�1 =
H0(1) H1(2) H1(3)

H0(1)
H1(2)
H1(3)

⎛
⎝
0 ∼= ∼=
0 0 0
0 0 0

⎞
⎠ .

(28)

In the matrix �1, we use the letter H to represent the homological Conley index such that
H0(1) represents the Morse set M(1) with its Conley index q = 0, H1(2) represents the
Morse set M(2) with its Conley index q = 1, and H1(3) represents the Morse set M(3) with
its Conley index q = 1. For example the entry �1(1, 3) represents (H0(1), H1(3)). We put
�1(1, 2) =∼= to indicate that there is a connection orbit from H1(2) to H0(1), the same way
for�1(1, 3) =∼=. Also from the definition 4.4, the matrix�1 is strictly upper triangular, and
each entry in �1 has degree −1, we must have �1(2, 3) = 0 ( H1(2) and H1(3) are saddles
so their indices are equal, see Table 4, so the degree from H1(3) to H1(2) is not −1, and
hence �1(2, 3) = 0, see condition two in Definition 4.4).

If γ >> γ ∗, we notice that H1(3) and H0(1) are noncomparable under the flow ordering,
then CM (Mγ ) contains a single matrix, and it is in the form �2 in which �2(1, 3) = 0.
In the same technique, let S2 be the compact invariant set of the graph “After heteroclinic
bifurcation” in Fig. 8, then a (<2-ordered)Morse decomposition of S2 is a collectionM(S2) =
{M(p) | p ∈ P2 = {1, 2, 3}} with flow ordering M(1) <2 M(2). Then

�2 =
H0(1) H1(2) H1(3)

H0(1)
H1(2)
H1(3)

⎛
⎝
0 ∼= 0
0 0 0
0 0 0

⎞
⎠ .

From the Conley–Morse graphs and admissible partial orderings of the Morse sets of the
“Before heteroclinic bifurcation” and “After heteroclinic bifurcation” Morse decomposition,
one can compute in each case a unique connection matrix. Let CM1 and CM2 be the first
and the second collections of connection matrices respectively represented above. Define
γi ∈ {γ ∈ (0,∞)|CM (Mγ ) = CMi } for i = 1, 2. We notice that γ1 and γ2 are disjoint
and both nonempty. The local connection matrix continuation theorem in [10] and the con-
nection matrix existence theorem in [11] imply that each γi is open. The connection matrix
continuation theory says that there exists a parameter γ ∗ ∈ (0,∞) \ {γ1 ∪ γ2} where the set
of connection matrices CM (Mγ ∗) contains both matrices

(0 ∼= ∼=
0 0 0
0 0 0

)
and

(0 ∼= 0
0 0 0
0 0 0

)
. (29)

�(1, 3) is nontrivial in the first matrix, therefore 1 <F 3 in the flow ordering of Mγ ∗ . We
claim that Mγ ∗(1) and Mγ ∗(3) are not adjacent under the flow ordering. Suppose they are
adjacent, then according to the computations of γ1 and γ2, the�(1, 3) connectionmatrix entry
is uniquely determined and is either an isomorphism or trivial (I.e., 0 or∼=). However,�(1, 3)
is not uniquely determined, and this proves the claim. This implies that 1 <F 2 <F 3, then
C(Mγ ∗(3), Mγ ∗(2)) �= ∅. Therefore, there is a connecting orbit at γ ∗ between the saddles
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Table 5 Comparison of some investigation methods for the heteroclinic bifurcation in the pendulum

Author Method

Dabbs and Smith Planar Melnikov techniques

Elnaggar and Elkobrsy Melnikov functions

Kevrekidis and others Discretization of spatial or temporal derivatives

Huafeng and Jianshe The variational method and delicate analysis technique

Mγ ∗(2) and Mγ ∗(3) which is the heteroclinic bifurcation in the motion of pendulum that is
described in the system (16).

The heteroclinic bifurcation was investigated in many methods for many formulas of
pendulum equations, we can summarize some of these methods in the Table 5.

Conclusion

A motion of the pendulum is represented by a system of first ODE, and it has an interesting
heteroclinic bifurcation, this bifurcation is detected by numerical-topological method. Com-
bining the rigorous numerical computation to the topological method confirm the existence
of the heteroclinic bifurcation in the system (16). In future work, we suggest improving the
system (16) of the pendulum bymodifying the friction term to detect a homoclinic bifurcation
using numerical-topological method.
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