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Abstract
The process of dispersion of soluble matter in blood flow has been investigated in the present
study. The constitutive equation of blood obeys the law of K-L fluid model. The first order
homogeneous chemical reaction is taken in the analysis which has been studied by Tay-
lor’s dispersion method in a circular tube. The influences of the reaction rate constant, the
yield stress and K-L parameters on the equivalent dispersion coefficient are discussed. A
decrease in the value of dispersion coefficient has been observed in Newtonian as well as
non-Newtonian fluids with increase in the rate of chemical reaction. The dispersion coeffi-
cient is further decreased with the enhancement of yield stress. It is pertinent to point out that
one of K-L parameters tends to decrease the equivalent dispersion coefficient while another
K-L parameter enhances the equivalent dispersion coefficient. From the present investiga-
tion, many rheological models for blood such as Newtonian, Bingham plastic and Casson
can be obtained by giving appropriate values to yield stress and parameters of K-L fluid.
The present analytical study provides useful information to the bio-chemical processing and
physiological process in the cardiovascular system.
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Introduction

The dispersion of a solute in fluids has various applications in bio science particularly in
the study of blood flow. Griffith [1] was the first to experimentally observe the motion of
a coloured index along a capillary (circular tube). After his initial experimental work,the
mathematical treatment of dispersion problem was initiated by Taylor [2, 3]. He has noticed
that the solute diffused depends upon parameters such as tube radius, mean velocity and
coefficient of molecular diffusion. Aris [4] has extended the results of Taylor and shown that
the rate of growth of the solute distribution is proportional to the sum of the coefficient of
molecular diffusion andTaylor’s coefficient of diffusion.His analysis pulled out the restriction
given by Taylor. In view of understanding the basic concepts of physiological organisms,
Wageningen [5] offered a novel generalized approach. The Taylor’s approach is used to
study the dispersion process in non-Newtonian flows due to the fact that non-Newtonian
fluids has vital applications in bio-fluids.

Fan and Hwang [6] have analysed the process of dispersion in a non-Newtonian fluid
(power law fluid). Fan and Wang [7] have investigated the solute dispersion in the flow of
Bingham plastic and Ellis fluids. By implementing Taylor’s methodology, Ghoshal [8] has
obtained the analytic expression for effective dispersion coefficient by taking into account
a Reiner-Philippoff model fluid and the development of dispersion in Eyring model fluid is
studied by Shah andCox [9]. UsingAris’ method, Prenosil et al. [10] have solved the problem
of dispersion of a soluble matter in the power law fluid flow model. Assuming the rheology
of non-Newtonian fluids (solvents) as power-law, Bingham plastic and Casson models, the
performance of shear-augmented dispersion of solutes in solvents is carried out by adopting
the dispersion theory developed by Taylor and Aris. Sharp [11] has noticed that the value
of relative axial diffusivity is markedly influenced by the presence of yield stress in the
solvent fluid. By means of the methodology developed by Sharp [11], the shear augmented
dispersion of a solute in the flow of blood by supposing the rheological behaviour of blood as
a Herschel–Bulkley fluid model has been investigated (Sankar et al. [12]). The effective axial
diffusivity of a solute is found to be lower for the flow of blood between two parallel plates
as compared to that of the flow in a tube. In the aforementioned works, flows are considered
where the solute dispersed does not chemically react with the solvent.

Several investigations [13–19] have been done on dispersion in steady and non-steady flow
of Newtonian fluids by for homogeneous and heterogeneous chemical reactions. Applying
Taylor’s theory, the influence of homogeneous chemical reaction on the process of dispersion
in non-Newtonian fluids such as power law, Bingham and Casson models has been analysed
by Shukla et al. [20]. Singh et al. [21] have established a mathematical model to see the
impact of the combined effects of the thickness of the flow region and the chemical reaction
on dispersion coefficient in three types of non-Newtonian fluids (power law, Bingham plastic
and Casson) flowing through a channel. Jaafar et al. [22] have studied the shear-augmented
nature of dispersion in solvent (Herschel–Bulkley fluid) in a channel and in circular pipe.
It is seen that the effective value of axial diffusivity and relative value of axial diffusivity
are lower in flow through channel than the pipe. Chien [23] has experimentally revealed that
blood shows noteworthy non-Newtonian properties in patients suffering from diseases like
from hypertension, cerebrovascular diseases and renal ailment.

Fromthe literature, it is understood that many investigators have extended the mathe-
matical scheme developed by Taylor [2] and Aris [4] to different types of non-Newtonian
fluids including Casson fluid. The three parameter constitutive equation of K-L fluid has
been determined by Luo and Kuang [24] based on the data obtained from the experimental
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studies on human blood (Cokelet et al. [25], Cokelet [26], Bate [27] and Easthope and Brooks
[28]). Ponakala and Sebastian [29] have investigated the unsteady dispersion of a solute in
a tube by assuming the fluid as a Casson fluid. The axial dispersion of solute in a pulsatile
fluid flow of Herschel–Bulkley fluid through a straight circular tube is investigated in [30]
considering reaction at the tube wall. The K-L fluid model has been recommended in [24]
which is an improvement of the Casson model. When the value of yield stress is treated as
zero, the Casson model reduces to Newtonian fluid, but the K-L fluid model still narrates
the shear thinning property. Hence, it is significant to note that K-L model fluid is of gen-
eral type, and is a non-Newtonian fluid characterized by three parameters, the yield stress,
and the parameters of K-L fluid. The rheological equation of K-L fluid has an additional
parameter compared to Casson model; it is therefore anticipated that more relevant detailed
information about the rheology of blood can be obtained from the K-L model. Under these
circumstances, Casson and Herschel–Bulkley fluids characterizing blood may no longer be
appropriate.

Zhang andKuang [32] have found that the K-Lmodel is in good agreement with hemorhe-
ological characteristics of human. The Lattice Boltzmann simulation has been applied to the
K-L model by Asharafizaadeh and Bakhshaei [33]. Sriyab [34] has investigated the flow of
blood in narrow arteries with bell-shapedmild stenosis treating blood as non-Newtonian fluid
by using the K-L model. Bali and Gupta [35] have investigated a constitutive equation for
blood carrying nanoparticles in a stenosed microvessel assuming blood as K-L fluid.

Keeping this in view, amodest effort has beenmade to explore the process of solute disper-
sion in the flow of blood along a tube with homogeneous biochemical reaction, considering
blood as K-L model which has, to the best of authors knowledge, not carried out in the earlier
studies. The significance of K-L fluid model with the first-order biochemical reaction on the
equivalent dispersion coefficient is brought out in the present work.

Thesolute dispersion phenomenon has a lot of applications in the chemical industries and
the medical field. The solute dispersion process in blood flow ultimately leads to measuring
the transport of medicine, oxygen, and nutrients into the tissues. We want to emphasize
that the current research could help with the design and development of artificial bio-
processors and gain some insight into the drug transportation mechanism of the circulatory
system.

Formulation of the Problem

The dispersion of soluble pieces (solute) in the blood flow has been considered in the present
model. Blood flow has been treated as one-dimensional steady, axi-symmetric, laminar and
fully developed with a uniform pressure gradient through a circular tube of radius R∗

0 (Fig. 1).
The rheology of blood is taken as non-Newtonian fluid. We take the circular cylindrical polar
coordinate system (r∗, θ∗, z∗) , where r∗ represents the radial coordinate, θ∗ symbolizes the
circumferential coordinate and z∗ designates the axial coordinate. Bugliarello and Sevilla
[31] have reported that the radial velocity is insignificantly small and can be ignored for a
lowReynolds number flow through amicrovessel (narrow artery). This type of flow condition
is valid when we deal with the problem of investigating the dispersion of a drug into blood
stream in small-diameter blood vessels (arterioles) and capillaries. It is assumed that the
diluted solute having a small concentration diffuses and concurrently undertakes a first order
irreversible chemical reaction in a non-Newtonian fluid under isothermal condition.
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Fig. 1 Geometry of an artery

Governing Equation and Boundary Conditions

Based on the arguments made by Taylor [2, 3], the axial diffusion term in comparison with
the radial diffusion term can be neglected. In view of this, the governing equation involving
the concentration of the dispersing solute is given by [18, 20].

∂C∗

∂t∗
+ u∗ ∂C∗

∂z∗
= D∗

m

r∗
∂

∂r∗

(
r∗ ∂C∗

∂r∗

)
− α∗C∗ (1)

where C∗ denotes the concentration of a solute, t∗ is the time, u∗ indicates the axial velocity
in the unidirectional flow, D∗

m symbolizes the constant coefficient of molecular diffusion and
α∗ denotes the constant rate of first order homogeneous chemical reaction.

By taking z∗1(= z∗ − ū∗t∗), Eq. (1) relative to a plane moving with the mean speed of the
flow (ū∗) can be written as
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Assuming the validity of Taylor’s [2] limiting condition, Eq. (2) becomes

(u∗ − ū∗) ∂C
∗

∂z∗1
= D∗

m

r∗
∂

∂r∗

(
r∗ ∂C∗

∂r∗

)
− α∗C∗ (3)

where ∂C∗
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where u∗
0 indicates the average velocity of Newtonian fluid, μ∗ denotes the viscosity of

Newtonian fluid and Pe is the Peclet number, p∗ represents the pressure, τ ∗ is the shear
stress, τ ∗

0 signifies the yield stress, μ∗
l and μ∗

k are the K-L fluid parameters.(* denotes the
corresponding dimensional quantity). With the help of Eq. (4), the governing equation (3)
becomes

∂2C∗

∂r2
+ 1

r

∂C∗

∂r
− Peα2C∗ = Peū

∂C∗

∂z1
f (r) (5)
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where α2 = α∗R∗
0

u∗
0

and f (r) = u
ū − 1.

The boundary conditions are

∂C∗

∂r
= 0 at r = 0, (6)

∂C∗

∂r
= 0 at r = 1. (7)

The Rheological Equation of KL Fluid

The dimensional form of constitutive equation for a K-L fluid is written as [24]

τ ∗ = τ ∗
0 + μ∗

k

(
−∂u∗

∂r∗

) 1
2 + μ∗

l

(
−∂u∗

∂r∗

)
, if τ ≥ τ0, (8)

∂u∗

∂r∗ = 0, ifτ ≤ τ0. (9)

where τ ∗ is the shear stress, τ ∗
0 is the yield stress, μ∗

k and μ∗
l are the K-L fluid parameters

and ∂u∗
∂r∗ is the shear rate. Equations (8) and (9) may be, in dimensionless form, expressed as

−∂u

∂r
= μ2

k

4μ2
l

+ μ2
k − 4μl(τ0 − τ)

4μ2
l

−μk(μ
2
k − 4μl(τ0 − τ))

1
2

2μ2
l

, ifτ ≥ τ0, (10)

∂u

∂r
= 0, ifτ ≤ τ0, (11)

Equation (11) relates to disappearing of velocity gradient in the domain where the shear
stress τ is less than the yield stress τ0, which infers that a region of plug flow exists whenever
τ ≤ τ0. For the present flow conditions stated above, the momentum equation for the fluid
flow may be written as

− ∂ p

∂z
− 1

r

∂(rτ)

∂r
= 0 (12)

where p is the pressure.
The dimensionless boundary conditions are

(i) τ is finite at r = 0 and (i i) u = 0 at r = 1. (13)

Solution

Velocity Distribution for the Flow of K-L Fluid

Integrating Eq. (12) with respect to r and applying the boundary condition (i) of Eq. (13), we
get

τ = rp0
2

(14)
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where p0 = − dp
dz . Using Eqs. (10), (11), (13) and (14), the velocity profile in the flow zone

is expressed as

u = μ2
k(1 − r)

2μ2
l
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2

}
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l

,
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(15)

Substituting r = Rp into equation (15) ,the velocity profile in the plug core region can be
obtained as
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(16)

where Rp denotes the radius of plug core region and it is given by Rp = 2τ0
p . The average

velocity of the fluid can be obtained from
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∫ 1
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(18)

Dispersion in K-L Fluid

By incorporating the boundary conditions (6) and (7), the analytic expression for the con-
centration profile may be obtained as

C∗(r) = Peūc1(r)

(
∂C∗

∂z1

)
(19)

where
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Table 1 Range of controlling
parameter in the present study

Parameter Range References

Chemical reaction parameter (α) 0.1–0.25 [20]

Yield stress (τ0) 0.0–0.1 [36]

K-L parameter (μk ) 0.0–1.2 [36]

K-L parameter (μl ) 0.6–1.0 [36]

c1(r) = A1 I0(λr)

+
∫ r

0
y (I0(λr)K0(λy) − I0(λy)K0(λr)) f (y)dy (20)

A1 = − 1

I1(λ)

∫ 1

0
y (I1(λ)K0(λy)

+I0(λy)K1(λ)) f (y)dy (21)

where λ = α
(√

Pe
)
, I0, K0 and I1, K1 are the first and second kind modified Bessel

functions of zeroth and first order respectively. Here y denotes the variation of parameter
technique variable.

The average solute flux Q̄ , over the tube on the move with the average speed of the flow
can be written as

Q̄ = Peū2
(

∂C∗

∂z1

) ∫ 1

0
2rc1(r) f (r)dr (22)

Relating Eq. (22) with the Fick’s law of diffusion, i.e. J ∗ = −D
(

∂C∗
∂z

)
, we achieve that the

soluble matter is dispersed relative to a plane in motion with the average speed of the flow
via an effective dispersion coefficient, D given by

D = −2Peū2M (23)

where

M =
∫ 1

0
c1(r) f (r)rdr (24)

and M indicates the equivalent dispersion coefficient.

Results and Discussion

The present study throws some light on analysing the process of solute dispersion in the steady
flow of K-L fluid in a circular tube under the impact of homogeneous chemical reaction. The
nature of dispersion process is studied by considering Taylor’s approach. Integral involved
in the solution of dispersion coefficient D has been evaluated numerically by Simpson’s
1/3 rule. The variation of equivalent dispersion coefficient (M) with respect to first order
chemical reaction rate constant (α), yield stress (τ0) and the parameters of K-L fluid (μl and
μk) has been computed and shown graphically (Figs. 2, 3, 4).

A comparative study on the equivalent dispersion coefficient (M) for different rheological
behaviour of solvents is made and depicted in Fig. 2. Figure 2 reveals that for a given rheology
of solvent (fluid), the value of M decreases with an increase in α. The reason is that as α

increases, the rate of chemical reaction takes a predominant role, while the value ofα reduces,
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molecular diffusion of the fluid becomes dominant. As α increases, the percentage decrease
in the value of M becomes higher in Newtonian fluid (τ0 = 0.0, μk = 0.0, μl = 1.0) as
compared to that of Bingham plastic fluid (τ0 = 0.02, μk = 0.0, μl = 1.0), K-L fluid
(μk = 0.1, μl = 1.0), Casson fluid (τ0 = 0.02, μk = 0.2828, μl = 1.0) and K-L fluid
(τ0 = 0.02, μk = 0.4, μl = 1.0) respectively. It is noteworthy that for a given α, Newtonian
fluid (τ0 = 0.0, μk = 0.0, μl = 1.0) has a higher value of equivalent dispersion coefficient
(M) when compared with respective other types of solvents taken in the present analysis.
This is attributed to the fact that Newtonian fluid (τ0 = 0.0, μk = 0.0, μl = 1.0) may have
the physical property of higher order molecular diffusion which, in turn, shows considerably
a larger dispersion of the soluble matter.

Figure 3 is prepared to show how the equivalent dispersion coefficient (M) is influenced
with respect to the yield stress (τ0) for various values of K-L parametersμk andμl . It is found
for given values of μk and μl that the value of M decreases as the parameter τ0 increases.
This is because the increase in τ0 (or an increase in the non-Newtonian parameter) tends to
decrease the distribution of fluid velocity. Themagnitude ofM is reduced with the increase in
μk (K-L fluid parameter) while it is enhanced with the other K-L fluid parameter (μl ) when
the value of τ0 is held fixed. As the magnitude of yield stress τ0 increases, the rate of decrease
of M is higher for a lower value of μl while it becomes lower for a higher value of μl . By
increasing or decreasing the value of μk , the percentage decrease of M with respect to the
yield value is observed to be unaltered. The combined impacts of rheological behaviour of
K-L fluid model and the first order homogeneous chemical reaction rate constant (α) on the
dispersion coefficient (M) is revealed in Fig. 4. It is observed that K-L fluid parameter (μl )
tends to increase the dispersion coefficient (M) when other rheological parameters of K-L
fluid and α are considered to be fixed. This is due to the fact that an increase in μl enhances
the value of the function f (r) defined in Eq. (5). Chemical reaction rate constant (α) has a
tendency to diminish the value of equivalent dispersion coefficient (M). The magnitude of M
is boosted as the K-L fluid parameter (μk)decreases and the percentage decrease of M with
α is higher for lower value of μk . For a lower value of α, the decreasing trend of M with the
increase in μk or the increasing trend of M with the increase in μl is predominant and these
trends become somewhat less significant for a higher value of α. Figures 2 and 4 shows that
increasing the first-order chemical reaction parameter slows down the dispersion process in
the tube because a high number of molecules undergo the chemical reaction process.

Conclusion

Dispersion of solute in K-L fluid flow in a circular tube has been investigated by Taylor’s
dispersion model. Assuming blood as K-L fluid, the present study brings out some impor-
tant result of dispersion process and hemorheological characteristics of human blood. We
observed a decrease in equivalent dispersion coefficient as the chemical reaction rate con-
stant is increased. For the first time, it is observed that the one of the K-L fluid parameters
(μl ) helps to increase the equivalent dispersion coefficient (M) which, in turn, implies that
a huge amount of mass of the substance diffuses into a stream of blood flow. The K-L fluid
model has provided the detailed information about the rheology of blood. Further, the study
of dispersion enables to understand the distribution of nutrients in blood stream and several
artificial devices. Thus, it is hoped that the present analytical study provides useful informa-
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tion to the hemodialysis and dispersion processes of drugs in the arterial blood flow of the
circulatory system.
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