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Abstract
In recent decades, both the fuzzy differential and fuzzy integral equations have attracted
the researcher because the fuzzy operators produce appropriate predictions of problems in
an uncertain environment. In this paper, we use fuzzy concepts to study nth-order nonlin-
ear integro-differential equations. For the proposed problem, through the modified fuzzy
Laplace transform method, we derive the general procedure of the solution. To demonstrate
the accuracy and appropriateness of the method, we present some numerical problems. We
also provide graphical representation by the use of Matlab 2017 to compare the exact and
approximate solution. We solve different problems having second-order, fifth-order, and a
system of nonlinear fuzzy integro-differential equations through the developed scheme. We
simulate the numerical results via 2D and 3D graphs for the different values of uncertainty.
In the end, we provide the discussion and concluding remarks of the article.

Keyword Fuzzy operators · Fuzzy integro-differential equations · Modified fuzzy Laplace
transform

Introduction

An integro-differential equation (IDE) is an equation that involves both the integral and dif-
ferential operators of the unknown function, initially was introduced by Volterra in early
1900. Integro-differential equations (IDEs) attracted researchers due to their vast applica-
tions in social sciences, physical sciences, biological sciences, and engineering. Initially,
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Volterra and many other authors [1–5] discussed the integro-differential equations in various
directions like heat flow, income distribution problem, RiskManagement Analysis. However,
dealing with the exact parameters is almost impossible in many real-life situations. There-
fore, the researchers have worked on such cases to investigate the solution of fuzzy IDEs.
Zadeh provided the basic idea of the fuzzy set in 1965 [6]. The arithmetic operations for
fuzzy calculus were introduced by Prade and Dubois in 1978 [7]. Fuzzy integral equations
(FIEs), fuzzy differential equations (FDEs) and fuzzy integro-differential equations (FIDEs)
offer an appropriate framework for themathematical simulation of uncertain real-world prob-
lems [42–44]. However, it is good to adopt various numerical techniques that formulate the
numerical integration for the fuzzy integral equations that can’t be solved explicitly. Various
computational techniques have been used for solving FDEs and FIEs [8–13]. In ref [14, 15],
FIDEs have been used to model physical systems in a variety of ways. FIDEs are a natural
technique to simulate the ambiguity of dynamic systems in a fuzzy framework. As a result,
various scientific domains like physics, geography, medicine, and biology place a high value
on the solution of various FIDEs. The modified Adomian decomposition method was used
by Hamoud and Ghadle [16] to solve the fuzzy Volterra integro-differential equation (IDE).
Hooshangian [17] suggested a solution for the fuzzy Volterra IDE of the nth-degree using
a nonlinear fuzzy kernel and the extended Hakuhara derivative to turn it into a nonlinear
integral equation. As a result, researchers have recently focused their efforts on developing
an efficient and accurate algorithm for studying fuzzy integral equations. Many researchers
have demonstrated the existence, uniqueness, and other aspects of the solution of nonlinear
fuzzy Volterra and Fredholm IDEs of nth-order under strongly-generalized differentiabil-
ity [17–20]. Since physical phenomena are almost nonlinear, we’re interested in nonlinear
integro-differential equations. It’s challenging to discover an approximate solution for the
nonlinear integro-differential equation. TheAdomian decompositionmethod divides the pro-
posed problem into linear and nonlinear components in the form of a sequence, the terms of
which are specified by a recursive relationship usingAdomian polynomials, yielding the solu-
tion. Some basic work on different parts of the Adomian decomposition approach is included
by Andrianov [24], Venkatarangan [25, 26], and Wazwaz [27]. Khuri [28, 29] proposed a
modified variation of the Laplace decomposition approach. We get analytical solutions for
the integro-differential equations using the Laplace Adomian decomposition method. In this
work, we extend the idea of Khanlari et al. [30] in fuzzy concepts and solve nonlinear fuzzy
IDEs of nth-order throughmodified fuzzy Laplace transformmethod, sowe have an equation

G̃(n)(X ,�0) = g(X ,�0) + γ

∫ b(X )

a(X )

K(X , t)F (G̃(t,�0)
)
dt, (1)

with IC: G̃( j)(0,�0) = β j ; j = 0, 1, · · · , n − 1, where G̃(n)(X ,�0) is the nth-order
derivative of the fuzzy function and is already given, g(X ,�0) andK(X , t) are the fuzzy func-
tions, and F (G̃(t,�0)

)
is a nonlinear term that appear under the integral, i.e., ln

(G̃(t,�0)
)
,

exp
(G̃(t,�0)

)
, and G̃(2)(X ,�0) etc., �0 ∈ [0, 1] is a fuzzy parameter, and γ is a constant

parameter. The two-variable function K(X , t) is called kernel of nonlinear fuzzy IDE and
depends on variable X and t . a(X ) and b(X ) are known to be the limits of this fuzzy IDE. If
these limits are constant, then Eq.(1) is called nonlinear fuzzy Fredholm IDE, and if one of
these limits is variable, say b(X ) is variable, then this equation is said to be nonlinear fuzzy
Volterra IDE. The parametric case of Eq.(1) is⎧⎨

⎩
G̃(n)

(X ,�0) = g(X ,�0) + γ
∫ b(X )

a(X )
K(X , t)F (G̃(t,�0)

)
dt,

G̃
(n)

(X ,�0) = g(X ,�0) + γ
∫ b(X )

a(X )
K(X , t)F (G̃(t,�0)

)
dt,
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where F (G̃(t,�0)
) = (F (G̃(t,�0)

)
,F (G̃(t,�0)

))
and g(X ,�0) = (g(X ,�0), g(X ,

�0)), with kernel

K(X , t)F (G̃(t,�0)
) =

{
K(X , t)F (G̃(t,�0)

)
, K(X , t) ≥ 0,

K(X , t)F (G̃(t,�0)
)
, K(X , t) < 0,

K(X , t)F (G̃(t,�0)
) =

{
K(X , t)F (G̃(t,�0)

)
, K(X , t) ≥ 0,

K(X , t)F (G̃(t,�0)
)
, K(X , t) < 0.

The following is how the paper was organised: The introduction and motivation for the
manuscript are offered in Sect. 1. The paper’s preliminary knowledge is presented in Sect.
2. The main work of the paper is found in Sect. 3, which gives a full explanation of fuzzy
nonlinear IDE of nth-order. In this section, we also present numerical simulations of the
results in the form of 2D and 3D plots for various levels of uncertainty. The problem’s
convergence analysis and error estimate are presented in Sect. 4. The conclusion of the paper
and future work are presented in Sect. 4.

Preliminaries

This section is devoted to the basic concepts of fuzzy set theory. For more detail about fuzzy
sets and fuzzy differential equations, the reader may access to [31–35, 42].

Definition 2.1 Let g̃ : R → [0, 1] be a membership function, then g̃ is called a fuzzy number
if it fulfills the following conditions

(i) g̃ is fuzzy convex (g̃(ky + (1 − k)v) ≥ min(g̃(y), g̃(v)) ∀ k ∈ [0, 1], y, v ∈ R).
(ii) g̃ is upper semicontinous on R.
(iii) g̃ is normal (for any y0 ∈ R; g̃(y0) = 1).
(iv) The closure of {d ∈ R, g̃(d) > 0} is a compact.

Definition 2.2 Let RF be the set of all fuzzy numbers with bounded �0-level intervals. If
a ∈ RF, then the �0-level set

[a]�0 = {X ∈ R : a(X ) ≥ �0, 0 < �0 ≤ 1},
is a closed bounded interval. The above equation can be written as

[a]�0 = [a1�0 , a2
�0 ] = [a(�0), a(�0)],

and ∃ t0 ∈ R such that a(t0) = 1.

Definition 2.3 Let U be a fuzzy number represented in parametric form as [U(ϑ), U(ϑ)]
such that 0 ≤ ϑ ≤ 1, and fulfills properties given below

(i) U(ϑ) is increasing function, left continuous, bounded over (0, 1] and right continuous
at 0.

(ii) U(ϑ) is decreasing, left continuous, bounded over (0, 1] and right continuous at 0.
(iii) U(ϑ) ≤ U(ϑ).

Also, if U(ϑ) = U(ϑ) = ϑ . Then ϑ is called crisp number.

Definition 2.4 Consider that U = (U, U)
, V = (V, V)

be two fuzzy numbers and for
ϑ ∈ [0, 1] , also K is a scalar, then the addition, subtraction and scalar multiplication,
respectively, are stated as:
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(i) U + V = (U(ϑ) + V(ϑ), U(ϑ) + V(ϑ)
) ;

(ii) U − V = (U(ϑ) − V(ϑ), U(ϑ) − V(ϑ)
) ;

(iii) K · U =
{(KU(ϑ), KU(ϑ)

)
i f K ≥ 0(KU(ϑ), KU(ϑ)

)
i f K < 0

.

Consider the mapping D : RF × RF −→ R is defined as:

D
(
g̃, h̃

)
= sup

0≤�0≤1

{∣∣∣g̃ (�0) − h̃ (�0)

∣∣∣ ,
∣∣∣g̃ (�0) − h̃ (�0)

∣∣∣
}

,

where g̃ =
[
g̃ (�0) , g̃ (�0)

]
and h̃ =

[
h̃ (�0) , h̃ (�0)

]
. Then, D is a metric on RF

satisfying the properties:

(i) D
(
g̃ + m̃, h̃ + m̃

)
= D

(
g̃, h̃

)
for all g̃, h̃, m̃ ∈ RF;

(ii) D
(
Kg̃,Kh̃

)
= |K|D

(
g̃, h̃

)
for all g̃, h̃ ∈ RF;

(iii) D
(
g̃ + m̃, h̃ +Qn

)
≤ D (g̃, m̃) + D

(
h̃,Qn

)
for all g̃, h̃, m̃, ñ ∈ RF;

(D,RF) is a complete metric space.

Definition 2.5 Let U : R −→ RF be a fuzzy-valued function, then U is continuous if for
χ0 ∈ F and for each ε > 0, there exists δ > 0 such that:

D (U(χ),U(χ0)) < ε whenever |χ − χ0| < δ.

-

Definition 2.6 LetU : R −→ RF be a fuzzy-valued function andχ0 ∈ R thenU is differential
at χ0. If ∃ U ′ (χ0) ∈ RF such that:

(i) lim
h−→0+

U(χ0+h)−U(χ0)
h = lim

h−→0+
U(χ0)−U(χ0−h)

h = U ′ (χ0) ,

(ii) lim
h−→0−

U(χ0+h)−U(χ0)
h = lim

h−→0−
U(χ0)−U(χ0−h)

h = U ′ (χ0) .

Theorem 2.7 Consider U : R −→ RF as a fuzzy-valued function defined as U(χ) =[U (χ,�0) ,U (χ,�0)
]
for each �0 ∈ [0, 1] and U is differentiable, then U (χ,�0) and

U (χ,�0) are differential and U ′(χ) =
[
U ′ (χ,�0) ,U ′

(χ,�0)
]
.

Theorem 2.8 Consider U : R −→ RF as a fuzzy-valued function defined as U(χ) =[U (χ,�0) ,U (χ,�0)
]
for each �0 ∈ [0, 1]. If U and U ′ are differential, then U ′ (χ,�0)

and U ′
(χ,�0) are differential and U ′′(χ) =

[
U ′′ (χ,�0) ,U ′′

(χ,�0)
]
.

Theorem 2.9 Consider a fuzzy-valued function U(χ) defined on [0, 1] such that U (χ,�0)

and U (χ,�0) are Riemann-integrable on [0, 1], for each b ≥ a and ∃ positive constant
M (�0) and M (�0) such that

∫ b

a

∣∣U (χ,�0)
∣∣ dχ ≤ M (�0) and

∫ b

a

∣∣U (χ,�0)
∣∣ dχ ≤ M (�0) ,

for every b ≥ a. Then U(χ) is an improper fuzzy Riemann integrable on [0,∞], and U(χ)

is a fuzzy number. Also, we have:∫ ∞

a
U(χ)dχ =

(∫ ∞

a
U (χ,�0) dχ,

∫ ∞

a
U (χ,�0) dχ

)
.
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Theorem 2.10 The sum of two fuzzy Riemann integrable functions is also a fuzzy Riemann
integrable. Moreover, we have

∫ ∞

a
(U(χ) + V(χ)) dχ =

∫ ∞

a
U(χ)dχ +

∫ ∞

a
V(χ)dχ.

Definition 2.11 Let U be a continuous fuzzy valued-function. Assume that U(χ) · e−sχ is
improper fuzzy Reimann-integrable on [0,∞). Then its fuzzy Laplace transform is repre-
sented by

L[U(χ)] =
∫ ∞

0
U(χ) · e−sχdχ.

For 0 ≤ ϑ ≤ 1 the parametric form of U(χ) is represented by

∫ ∞

0
U(χ, ϑ) · e−sχdχ =

[∫ ∞

0
U(χ, ϑ) · e−sχdχ,

∫ ∞

0
U(χ, ϑ) · e−sχdχ

]
.

Hence,

L [U(χ, ϑ)] = [L [U(χ, ϑ)
]
,L [U(χ, ϑ)

]]
.

Definition 2.12 A fuzzy Laplace transform in term of fuzzy convolution is defined by

L [(U ∗ V)(χ)] = L [U(χ)] · L [V(χ)] ,

where U ∗V , define the fuzzy convolution between the two fuzzy-valued functions U(χ) and
V(χ) i.e.

(U ∗ V) (χ) =
∫ χ

0
U(ϑ) ∗ V(χ − ϑ)dϑ

Definition 2.13 Let U(χ) and V(χ) be continuous fuzzy-valued functions and C1, C2 two
real constants, then

L [C1U(χ) + C2V(χ)] = C1L [U(χ)] + C2L [V(χ)] .

MainWork

Modified Laplace Adomian DecompositionMethod

To solve the nonlinear fuzzy IDE of nth order in a fuzzy sense, the parametric form of Eq.
(1) can be written as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎧⎨
⎩
G̃(n)

(X ,�0) = g(X ,�0) + γ
∫ b(X )

a(X )
K(X , t)F (G̃(t,�0)

)
dt,

G̃( j)
(0,�0) = β

j
; j = 0, 1, · · · , n − 1,⎧⎨

⎩
G̃

(n)
(X ,�0) = g(X ,�0) + γ

∫ b(X )

a(X )
K(X , t)F (G̃(t,�0)

)
dt,

G̃
( j)

(0,�0) = β j ; j = 0, 1, · · · , n − 1,

(2)
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applying Laplace transform on Eq. (2)⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

snL [G̃(X ,�0)
] − ∑n

i=1 s
n−i G̃(i−1)

(0,�0)

= L
[
g(X ,�0) + γ

∫ b(X )

a(X )
K(X , t)F (G̃(t,�0)

)
dt

]
,

snL
[
G̃(X ,�0)

]
− ∑n

i=1 s
n−i G̃

(i−1)
(0,�0)

= L
[
g(X ,�0) + γ

∫ b(X )

a(X )
K(X , t)F (G̃(t,�0)

)
dt

]
,

applying the initial conditions, the above equations can be written as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L [G̃(X ,�0)
] =

∑n
i=1 s

n−iβ
i−1

sn + L[g(X ,�0)]
sn

+ 1
sn L

[
γ

∫ b(X )

a(X )
K(X , t)F (G̃(t,�0)

)
dt

]
,

L
[
G̃(X ,�0)

]
=

∑n
i=1 s

n−iβi−1
sn + L[g(X ,�0)]

sn

+ 1
sn L

[
γ

∫ b(X )

a(X )
K(X , t)F (G̃(t,�0)

)
dt

]
.

(3)

Consider that the lower and upper fuzzy limit solutions of Eq. (3) can be extended by the
Laplace decomposition algorithm into an infinite series as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

G̃(X ,�0) =
∞∑
n=0

G̃n(X ,�0),

G̃(X ,�0) =
∞∑
n=0

G̃n(X ,�0),

(4)

and nonlinear lower and upper limit terms
(F (G̃(t,�0)

)
,F (G̃(t,�0)

))
can be written as

{
F (G̃(t,�0)

) = ∑∞
n=0 An(t,�0),

F (G̃(t,�0)
) = ∑∞

n=0 An(t,�0),
(5)

where
(
An(t,�0),An(t,�0)

)
are the Adomian polynomials [36]. Using Eq. (4) and Eq. (5)

in Eq. (3), we get⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L [∑∞
n=0 G̃n(X ,�0)

] =
∑n

i=1 s
n−iβ

i−1
sn + L[g(X ,�0)]

sn

+ 1
sn L

[
γ

∫ b(X )

a(X )
K(X , t)

∑∞
n=0 An(t,�0)dt

]
,

L
[∑∞

n=0 G̃n(X ,�0)
]

=
∑n

i=1 s
n−iβi−1
sn + L[g(X ,�0)]

sn

+ 1
sn L

[
γ

∫ b(X )

a(X )
K(X , t)

∑∞
n=0 An(t,�0)dt

]
,

(6)

we get the following results by comparing both sides of Eq. (6)⎧⎨
⎩
L [G̃0(X ,�0)

] = sn−1β
0

sn ,

L
[
G̃0(X ,�0)

]
= sn−1β0

sn ,
(7)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L [G̃1(X ,�0)
] =

∑n
i=2 s

n−iβ
i−1

sn + L[g(X ,�0)]
sn

+ 1
sn L

[
γ

∫ b(X )

a(X )
K(X , t)A0(t,�0)dt

]
,

L
[
G̃1(X ,�0)

]
=

∑n
i=2 s

n−iβi−1
sn + L[g(X ,�0)]

sn

+ 1
sn L

[
γ

∫ b(X )

a(X )
K(X , t)A0(t,�0)dt

]
,

(8)

123



Int. J. Appl. Comput. Math (2022) 8 :92 Page 7 of 24 92

⎧⎪⎨
⎪⎩
L [G̃2(X ,�0)

] = 1
sn L

[
γ

∫ b(X )

a(X )
K(X , t)A1(t,�0)dt

]
,

L
[
G̃2(X ,�0)

]
= 1

sn L
[
γ

∫ b(X )

a(X )
K(X , t)A1(t,�0)dt

]
,

(9)

going on this way, we get⎧⎪⎨
⎪⎩
L

[
G̃n+1(X ,�0)

]
= 1

sn L
[
γ

∫ b(X )

a(X )
K(X , t)An(t,�0)dt

]
; n ≥ 1,

L
[
G̃n+1(X ,�0)

]
= 1

sn L
[
γ

∫ b(X )

a(X )
K(X , t)An(t,�0)dt

]
; n ≥ 1.

(10)

Applying inverse Laplace transform to Eqs. (7)–(10), we get

⎧⎪⎨
⎪⎩
G̃0(X ,�0) = L−1

[
sn−1β

0
sn

]
,

G̃0(X ,�0) = L−1
[
sn−1β0

sn

]
,⎧⎪⎪⎨

⎪⎪⎩
G̃1(X ,�0) = L−1

[∑n
i=2 s

n−iβ
i−1

sn + L[g(X ,�0)]
sn + 1

sn L
[
γ

∫ b(X )

a(X )
K(X , t)A0(t, �0)dt

]]
,

G̃1(X ,�0) = L−1
[∑n

i=2 s
n−iβi−1
sn + L[g(X ,�0)]

sn + 1
sn L

[
γ

∫ b(X )

a(X )
K(X , t)A0(t,�0)dt

]]
,

⎧⎪⎨
⎪⎩
G̃2(X ,�0) = L−1

[
1
sn L

[
γ

∫ b(X )

a(X )
K(X , t)A1(t, �0)dt

]]
,

G̃2(X ,�0) = L−1
[

1
sn L

[
γ

∫ b(X )

a(X )
K(X , t)A1(t, �0)dt

]]
,

In general,⎧⎪⎨
⎪⎩
G̃n+1(X ,�0) = L−1

[
1
sn L

[
γ

∫ b(X )

a(X )
K(X , t)An(t,�0)dt

]]
; n ≥ 1,

G̃n+1(X ,�0) = L−1
[

1
sn L

[
γ

∫ b(X )

a(X )
K(X , t)An(t,�0)dt

]]
; n ≥ 1.

(11)

The parametric solution of Eq. (2) is

G̃(X ,�0) =
[
G̃(X ,�0), G̃(X ,�0)

]
,

where G̃(X ,�0) and G̃(X ,�0) contains all solutions for lower and upper case, respectively.
The results of the convergence and error estimate of the proposed method are given in [38].

Test Problems

In this section, we will solve the nonlinear fuzzy integro-differential equations for different
higher orders through the developed procedure. Also, we will solve system of nonlinear
fuzzy integro-differential equation of second order and solve population growth model in
fuzzy sense through the proposed scheme.

Example 3.1 Consider the following non-linear fuzzy Fredholm integro-differential equation
as

w̃′′(x,�0) = sinh(x) + x −
∫ 1

0
x(cosh2(t) − w̃2(t,�0))dt, (12)

under the initial conditions w̃(0) = [�0−1, 1−�0], w̃′(0) = [�0−2, 1−2�0], �0 ∈ [0, 1].
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Solution. The equivalent form of Eq. (12) is
{

w̃′′(x,�0) = sinh(x) + x − ∫ 1
0 x(cosh2(t) − w̃2(t,�0))dt,

w̃
′′
(x,�0) = sinh(x) + x − ∫ 1

0 x(cosh2(t) − w̃
2
(t,�0))dt,

under the initial conditions{
w̃(0,�0) = [�0 − 1], w̃′(0,�0) = [�0 − 2],
w̃(0,�0) = [1 − �0], w̃

′
(0,�0) = [1 − 2�0].

Implementing fuzzy Laplace transform to the lower case of the above equation and using the
initial conditions, we have

L[w̃(x,�0)] = (�0 − 1)

s
+ (�0 − 2)

s2
+ 1

s2(s2 − 1)
+ 1

s4

− 1

s2
L

[∫ 1

0
x(cosh2(t) − w̃2(t,�0))dt

]
.

Now applying Laplace inverse, we have

w̃(x,�0) =(�0 − 1) + (�0 − 3)x + sinh(x)

+ x3

6
− L−1

[
1

s2
L

[∫ 1

0
x(cosh2(t) − w̃2(t,�0))dt

]]
, (13)

the series solution of the considered problem is given by

w̃(x,�0) =
∞∑
n=0

w̃n(x,�0).

Also, decomposing the nonlinear term w̃2(t,�0) into Adomian polynomial as w̃2(t,�0) =
Ãn(t,�0), Eq. (13) gets the form

∞∑
n=0

w̃n(x,�0) = (�0 − 1) + (�0 − 3)x + sinh(x)

+ x3

6
− L−1

[
1

s2
L

[∫ 1

0
x(cosh2(t) − Ãn(t,�0))dt

]]
,

where Ãn =
∑n

j=0
w̃n(t,�0)w̃n− j (t,�0), comparing above equation term wise, we get

w̃0(x,�0) = sinh(x),

w̃1(x,�0) = (�0 − 1) + (�0 − 3)x,

and so on. So the desired solution for the lower case is

w̃(x,�0) =w̃0(x,�0) + w̃1(x,�0) + w̃2(x,�0) + ...

w̃(x,�0) = sinh(x) + (�0 − 1) + (�0 − 3)x + ...

Implementing the fuzzy Laplace transform to the upper case of the considered problem, we
get
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L[w̃(x,�0)] = (1 − �0)

s
+ (1 − 2�0)

s2
+ 1

s2(s2 − 1)
+ 1

s4

− 1

s2
L

[∫ 1

0
x(cosh2(t) − w̃

2
(t,�0))dt

]
.

Applying Laplace inverse, we have

w̃(x,�0) =(1 − �0) + (1 − 2�0)x + sinh(x) + x3

6

− L−1
[
1

s2
L

[∫ 1

0
x(cosh2(t) − w̃

2
(t,�0))dt

]]
, (14)

so, the series solution of the considered problem is given by

w̃(x,�0) =
∞∑
n=0

w̃n(x,�0).

Also, decomposing the nonlinear term w̃
2
(t,�0) into Adomian polynomial as w̃

2
(t,�0) =

Ãn(t,�0), Eq. (14) gets the form

∞∑
n=0

w̃n(x,�0) =(1 − �0) + (1 − 2�0)x + sinh(x) + x3

6

− L−1
[
1

s2
L

[∫ 1

0
x(cosh2(t) − Ãn(t,�0))dt

]]
,

where Ãn(t,�0) =
∑n

j=0
w̃n(t,�0)w̃n− j (t,�0), comparing the above equation term

wise, we get

w̃0(x,�0) = sinh(x),

w̃1(x,�0) = (1 − �0) + (1 − 2�0)x,

and so on. So the desired solution for the lower case is

w̃(x,�0) =w̃0(x,�0) + w̃1(x,�0) + w̃2(x,�0) + ...

w̃(x,�0) = sinh(x) + (1 − �0) + (1 − 2�0)x + ...

So the solution is given
{

w̃(x,�0) = sinh(x) + (�0 − 1) + (�0 − 3)x + ...

w̃(x,�0) = sinh(x) + (1 − �0) + (1 − 2�0)x + ...

Example 3.2 Consider the following nonlinear fuzzy Fredholm integro-differential equation

w̃′′(x,�0) = −e−x +
∫ 1

0
w̃2(x,�0)dx, (15)

under the initial conditions w̃(0,�0) = [�0 − 1, 1− �0], w̃′(0,�0) = [�0 − 2, 1− 2�0],
where 0 ≤ x ≤ 1, and �0 ∈ [0, 1].
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Fig. 1 Simulation of Example 1 in 2D

Fig. 2 Simulation of Example 1 in 3D

Solution. The equivalent form of Eq. (15) is
{

w̃′′(x,�0) = −e−x + ∫ 1
0 w̃2(x,�0)dx,

w̃
′′
(x,�0) = −e−x + ∫ 1

0 w̃
2
(x,�0)dx,

(16)

under the initial conditions{
w̃(0,�0) = [�0 − 1], w̃′(0,�0) = [�0 − 2],
w̃(0,�0) = [1 − �0], w̃

′
(0,�0) = [1 − 2�0].

Let solve for lower cut, applying Laplace transform and using the initial conditions

L[w̃(x,�0)] = �0 − 1

s
+ �0 − 2

s2
− 1

s2(s + 1)
+ 1

s2
L

[∫ 1

0
w̃2(x,�0))dx

]
.
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Fig. 3 Simulation of Example 1 at various uncertainty values

Now applying Laplace inverse, we have

w̃(x,�0) = �0 + (�0 − 3)x − e−x + L−1
[
1

s2
L

[∫ 1

0
w̃2(x,�0))dx

]]
, (17)

the series solution of the considered problem is given by

w̃(x,�0) =
∞∑
n=0

w̃n(x,�0).

Also, decomposing the nonlinear term w̃2(x,�0) into Adomian polynomial as w̃2(x,�0) =
Ãn(x,�0), Eq. (17) gets the form

∞∑
n=0

w̃n(x,�0) = �0 + (�0 − 3)x − e−x + L−1
[
1

s2
L

[∫ 1

0

∞∑
n=0

Ãn(x,�0)dx

]]
,

where Ãn =
∑n

j=0
w̃ j (x,�0)w̃n− j (x,�0), comparing termwise above equation, we have

w̃0(x,�0) = �0 + (�0 − 3)x,

w̃1(x,�0) = −e−x +
(
7� 2

0

6
− 5�0

2
+ 3

2

)
x2,

and so on. So the desired solution for the lower case is

w̃(x,�0) = w̃0(x,�0) + w̃1(x,�0) + w̃2(x,�0) + ...

w̃(x,�0) = �0 + (�0 − 3)x − e−x +
(
7� 2

0

6
− 5�0

2
+ 3

2

)
x2 + ...

Implementing the fuzzy Laplace transform to the upper case of the considered problem, we
get

L[w̃(x,�0)] = 1 − �0

s
+ 1 − 2�0

s2
− 1

s2(s + 1)
+ 1

s2
L

[∫ 1

0
w̃

2
(x,�0)dx

]
,

123
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now applying Laplace inverse, we have

w̃(x,�0) = −�0 + 2(1 − �0x) − e−x + L−1
[
1

s2
L

[∫ 1

0
w̃

2
(x,�0)dx

]]
, (18)

the series solution of the considered problem is given by

w̃(x,�0) =
∞∑
n=0

w̃n(x,�0).

Also, decomposing the nonlinear term w̃
2
(x,�0) into Adomian polynomial as w̃

2
(x,�0) =

Ãn(x,�0), Eq. (18) gets the form

∞∑
n=0

w̃n(x,�0) = −�0 + 2(1 − �0x) − e−x + L−1
[
1

s2
L

[∫ 1

0

∞∑
n=0

Ãn(x,�0)dx

]]
,

where Ãn =
∑n

j=0
w̃ j (x,�0)w̃n− j (x,�0), comparing term wise the above equation, we

have

w̃0(x,�0) = −�0 + 2(1 − �0x),

w̃1(x,�0) = −e−x +
(
13� 2

0

6
− 4�0 + 2

)
x2,

and so on. So the desired solution for the upper case is

w̃(x,�0) = w̃0(x,�0) + w̃1(x,�0) + w̃2(x,�0) + ...

w̃(x,�0) = −�0 + 2(1 − �0x) − e−x +
(
13� 2

0

6
− 4�0 + 2

)
x2 + ...

So the solution is given⎧⎪⎪⎨
⎪⎪⎩

w̃(x,�0) = �0 + (�0 − 3)x − e−x +
(

7� 2
0

6 − 5�0
2 + 3

2

)
x2 + ...

w̃(x,�0) = −�0 + 2(1 − �0x) − e−x +
(

13� 2
0

6 − 4�0 + 2

)
x2 + ...

(19)

Example 3.3 Consider the 5th order nonlinear fuzzy Volterra integro-differential equation as

w̃(5)(x,�0) = 1 +
∫ x

0
(x − t)w̃2(t,�0)dt, (20)

under the initial conditions w̃(0,�0) = [�0 − 1, 1 − �0], w̃′(0,�0) = [�0 − 2, 1 −
2�0], w̃(2)(0,�0) = w̃(3)(0,�0) = w̃(4)(0,�0) = 0, where �0 ∈ [0, 1].
Solution. The equivalent form of Eq. (20) is{

w̃(5)(x,�0) = 1 + ∫ x
0 (x − t)w̃2(t,�0)dt,

w̃
(5)

(x,�0) = 1 + ∫ x
0 (x − t)w̃

2
(t,�0)dt,

(21)

under the initial condition{
w̃(0,�0) = [�0 − 1], w̃′(0,�0) = [�0 − 2],
w̃(0,�0) = [1 − �0], w̃

′
(0,�0) = [1 − 2�0].
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Fig. 4 Simulation of Example 2 in 2D

Fig. 5 Simulation of Example 2 in 3D

Solve Eq. (21) for lower cut, applying Laplace transform and using the initial conditions

L[w̃(x,�0)] = �0 − 1

s
+ �0 − 2

s2
+ 1

s6
+ 1

s5
L

[∫ x

0
(x − t)w̃2(t,�0))dt

]
.

Now applying Laplace inverse, we have

w̃(x,�0) = (�0 − 1) + x(�0 − 2) + x5

120
+ L−1

[
1

s5
L

[∫ x

0
(x − t)w̃2(t,�0))dt

]]
,

(22)
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Fig. 6 Simulation of Example 2 at uncertainty values

now the series solution of the considered problem is given by

w̃(x,�0) =
∞∑
n=0

w̃n(x,�0).

Also, decomposing the nonlinear term w̃2(t,�0) into Adomian polynomial as w̃2(t,�0) =
Ãn(t,�0), Eq. (22) gets the form

∞∑
n=0

w̃n(x,�0) = (�0 − 1) + x(�0 − 2) + x5

120
+ L−1

[
1

s5
L

[∫ x

0
(x − t)

∞∑
n=0

Ãn(t,�0)dt

]]
,

where Ãn =
∑n

j=0
w̃ j (x,�0)w̃n− j (x,�0) comparing term wise the above equation, we

get

w̃0(x,�0) = (�0 − 1) + x(�0 − 2),

w̃1(x,�0) = x5

120
+ (�0 − 1)2x7

5040
+ (2 − 3�0 + � 2

0 )x8

20160
+ (�0 − 2)2x9

181440
,

and so on. So the desired solution for the lower case is

w̃(x,�0) = w̃0(x,�0) + w̃1(x,�0) + w̃2(x,�0) + ...

w̃(x,�0) = (�0 − 1) + x(�0 − 2) + x5

120
+ (�0 − 1)2x7

5040

+ (2 − 3�0 + � 2
0 )x8

20160
+ (�0 − 2)2x9

181440
+ ...

Now implementing the fuzzy Laplace transform to the upper case of the considered problem,
we get

L[w̃(x,�0)] = (1 − �0)

s
+ (1 − 2�0)

s2
+ 1

s6
+ 1

s5
L

[∫ x

0
(x − t)w̃

2
(t,�0)dt

]
,

123
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now applying Laplace inverse, we have

w̃(x,�0) = (1 − �0) + x(1 − 2�0) + x5

120
+ L−1

[
1

s5
L

[∫ x

0
(x − t)w̃

2
(t,�0)dt

]]
,

(23)

now the series solution of the considered problem is given by

w̃(x,�0) =
∞∑
n=0

w̃n(x,�0).

Also, decomposing the nonlinear term w̃
2
(t,�0) into Adomian polynomial as w̃

2
(t,�0) =

Ãn(t,�0), Eq. (23) gets the form

∞∑
n=0

w̃n(x,�0) = (1 − �0) + x(1 − 2�0) + x5

120
+ L−1

[
1

s5
L

[∫ x

0
(x − t)

∞∑
n=0

Ãn(t,�0)dt

]]
,

where Ãn =
∑n

j=0
w̃ j (x,�0)w̃n− j (x,�0), comparing term wise the above equation, we

get

w̃0(x,�0) = (1 − �0) + x(1 − 2�0),

w̃1(x,�0) = x5

120
+ (1 − �0)

2x7

5040
+ (1 − 3�0 + 2� 2

0 )x8

20160
+ (1 − 2�0)

2x9

181440
,

and so on. So the desired solution for the upper case is

w̃(x,�0) = w̃0(x,�0) + w̃1(x,�0) + w̃2(x,�0) + ...

w̃(x,�0) = (1 − �0) + x(1 − 2�0) + x5

120
+ (1 − �0)

2x7

5040

+ (1 − 3�0 + 2� 2
0 )x8

20160
+ (1 − 2�0)

2x9

181440
+ ...

So the solution is given
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w̃(x,�0) = (�0 − 1) + x(�0 − 2) + x5
120 + (�0−1)2x7

5040

+ (2−3�0+� 2
0 )x8

20160 + (�0−2)2x9

181440 + ...

w̃(x,�0) = (1 − �0) + x(1 − 2�0) + x5
120 + (1−�0)

2x7

5040

+ (1−3�0+2� 2
0 )x8

20160 + (1−2�0)
2x9

181440 + ...

(24)

Example 3.4 Consider the system of nonlinear fuzzy Volterra integro-differential equation{
w̃′′(x,�0) = − sin(x) + ∫ x

0 [w̃2(t,�0) + ṽ2(t,�0)]dt,
ṽ′′(x,�0) = − cos(x) + ∫ x

0 [w̃2(t,�0) − ṽ2(t,�0)]dt, (25)

under the initial conditions{
w̃(0,�0) = [�0 − 1, 1 − �0], w̃(0,�0) = [�0 − 2, 1 − 2�0],
ṽ(0,�0) = [�0 − 1, 1 − �0], ṽ′(0,�0) = [�0 − 2, 1 − 2�0],

where �0 ∈ [0, 1].
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Fig. 7 Simulation of Example 3 in 2D
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Fig. 8 Simulation of Example 3 in 3D

Solution. The equivalent form of Eq. (25) is

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w̃′′(x,�0) = − sin(x) + ∫ x
0 [w̃2(t,�0) + ṽ2(t,�0)]dt,

ṽ′′(x,�0) = − cos(x) + ∫ x
0 [w̃2(t,�0) − ṽ2(t,�0)]dt,

w̃
′′
(x,�0) = − sin(x) + ∫ x

0 [w̃2
(t,�0) + ṽ

2
(t,�0)]dt,

ṽ
′′
(x,�0) = − cos(x) + ∫ x

0 [w̃2
(t,�0) − ṽ

2
(t,�0)]dt,

(26)

under the initial conditions
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w̃(0,�0) = [�0 − 1], w̃′(0,�0) = [�0 − 2],
ṽ(0,�0) = [�0 − 1], ṽ′(0,�0) = [�0 − 2],
w̃(0,�0) = [1 − �0], w̃

′
(0,�0) = [1 − 2�0],

ṽ(0,�0) = [1 − �0], ṽ
′
(0,�0) = [1 − 2�0].
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Fig. 9 Simulation of Example 3 at various uncertainty values

Now implementing the fuzzy Laplace transform to the lower case of the considered problem,
we get
⎧⎪⎪⎨
⎪⎪⎩
L[w̃(x,�0)] = (�0−1)

s + (�0−2)
s2

− 1
s2(s2+1)

+ 1
s2
L

[∫ x
0 [w̃2(t,�0) + ṽ2(t,�0)]dt

]
,

L[ṽ(x,�0)] = (�0−1)
s + (�0−2)

s2
− 1

s(s2+1)
+ 1

s2
L

[∫ x
0 [w̃2(t,�0) − ṽ2(t,�0)]dt

]
.

Now applying Laplace inverse, we have
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

w̃(x,�0) = (�0 − 1) + x(�0 − 2) − x + sin(x)

+L−1
[

1
s2
L

[∫ x
0 [w̃2(t,�0) + ṽ2(t,�0)]dt

]]
,

ṽ(x,�0) = (�0 − 1) + x(�0 − 2) − 1 + cos(x)

+L−1
[

1
s2
L

[∫ x
0 [w̃2(t,�0) − ṽ2(t,�0)]dt

]]
,

(27)

now the series solution of the considered problem is given by
{

w̃(x,�0) = ∑∞
n=0 w̃n(x,�0),

ṽ(x,�0) = ∑∞
n=0 ṽn(x,�0).

Also, decomposing the nonlinear terms w̃2(t,�0) and ṽ2(t,�0) into Adomian polynomials
as w̃2(t,�0) = Ãn(t,�0) and ṽ2(t,�0) = B̃n(t,�0), Equation (27) gets the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
n=0

w̃n(x,�0) = (�0 − 1) + x(�0 − 2) − x + sin(x)

+L−1
[

1
s2
L

[∫ x
0

∑∞
n=0

[
Ãn(t,�0) + B̃n(t,�0)

]
dt

]]
,

∑∞
n=0 ṽn(x,�0) = (�0 − 1) + x(�0 − 2) − 1 + cos(x)

+L−1
[

1
s2
L

[∫ x
0

∑∞
n=0

[
Ãn(t,�0) − B̃n(t,�0)

]
dt

]]
,
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where Ãn =
∑n

j=0
w̃n(t,�0)w̃n− j (t,�0) and B̃n =

∑n

j=0
ṽn(t,�0)ṽn− j (t,�0), com-

paring above equation term wise, we get

{
w̃0(x,�0) = (�0 − 1) − x,

ṽ0(x,�0) = (�0 − 1) − 1,⎧⎪⎪⎨
⎪⎪⎩

w̃1(x,�0) = x(�0 − 2) + sin(x) + x3
60

(
50 + 5x + x2 − 5�0(x + 12) + 20� 2

0

)
,

ṽ1(x,�0) = x(�0 − 2) + cos(x) + x3
60

(
−30 + 5x + x2 − 5�0(x − 4)

)
,

and so on. So the desired solution for the lower case is

{
w̃(x,�0) = w̃0(x,�0) + w̃1(x,�0) + w̃2(x,�0) + ...

ṽ(x,�0) = ṽ0(x,�0) + ṽ1(x,�0) + ṽ2(x,�0) + ...

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

w̃(x,�0) = (�0 − 1) − x + x(�0 − 2) + sin(x)

+ x3
60

(
50 + 5x + x2 − 5�0(x + 12) + 20� 2

0

)
+ ...

ṽ(x,�0) = (�0 − 1) − 1 + x(�0 − 2) + cos(x)

+ x3
60

(
−30 + 5x + x2 − 5�0(x − 4)

)
+ ...

Now implementing the fuzzy Laplace transform to the upper case of the considered problem,
we get

⎧⎪⎪⎨
⎪⎪⎩
L[w̃(x,�0)] = (1−�0)

s + (1−2�0)

s2
− 1

s2(s2+1)
+ 1

s2
L

[∫ x
0

[
[w̃2

(t,�0) + ṽ
2
(t,�0)]dt

]]
,

L[ṽ(t,�0)] = (1−�0)
s + (1−2�0)

s2
− 1

s(s2+1)
+ 1

s2
L

[∫ x
0 [w̃2

(t,�0) − ṽ
2
(t,�0)]dt

]
,

Now applying Laplace inverse, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

w̃(x,�0) = (1 − �0) + x(1 − 2�0) − x + sin(x)

+L−1
[

1
s2
L

[∫ x
0 [w̃2

(t,�0) + ṽ
2
(t,�0)]dt

]]
,

ṽ(t,�0) = (1 − �0) + x(1 − 2�0) − 1 + cos(x)

+L−1
[

1
s2
L

[∫ x
0 [w̃2

(t,�0) − ṽ
2
(t,�0)]dt

]]
,

(28)

the series solution of the considered problem is given by

{
w̃(x,�0) = ∑∞

n=0 w̃n(x,�0),

ṽ(t,�0) = ∑∞
n=0 ṽn(x,�0).
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Also, decomposing the nonlinear terms w̃
2
(t,�0) and ṽ

2
(t,�0) into Adomian polyno-

mials as w̃
2
(t,�0) = Ãn(t,�0) and ṽ

2
(t,�0) = B̃n(t,�0), Eq. (28) gets the form

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑∞
n=0 w̃n(x,�0) = (1 − �0) + x(1 − 2�0) − x + sin(x)

+L−1
[

1
s2
L

[∫ x
0 [Ãn(t,�0) + B̃n(t,�0)]dt

]]
,

∑∞
n=0 ṽn(x,�0) = (1 − �0) + x(1 − 2�0) − 1 + cos(x)

+L−1
[

1
s2
L

[∫ x
0 [Ãn(t,�0) − B̃n(t,�0)]dt

]]
,

where Ãn(t,�0) =
∑n

j=0
w̃n(t,�0)w̃n− j (t,�0)and B̃n(t,�0) =

∑n

j=0
ṽn(t,�0)ṽn− j

(t,�0), comparing term wise above equation, we get
{

w̃0(x,�0) = (1 − �0) − x,

ṽ0(x,�0) = (1 − �0) − 1,⎧⎪⎪⎨
⎪⎪⎩

w̃1(x,�0) = x(1 − 2�0) + sin(x) + x3
60

(
10 − 5x + x2 + 5�0(x − 4) + 20� 2

0

)
,

ṽ1(x,�0) = x(1 − 2�0) + cos(x) + x3
60

(
10 − 5x + x2 + 5�0(x − 4)

)
,

and so on. So the desired solution for the upper case is
{

w̃(x,�0) = w̃0(x,�0) + w̃1(x,�0) + w̃2(x,�0) + ...

ṽ(x,�0) = ṽ0(x,�0) + ṽ1(x,�0) + ṽ2(x,�0) + ...

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

w̃(x,�0) = (1 − �0) − x + x(1 − 2�0) + sin(x)

+ x3
60

(
10 − 5x + x2 + 5�0(x − 4) + 20� 2

0

)
+ ...

ṽ(x,�0) = (1 − �0) − 1 + x(1 − 2�0) + cos(x)

+ x3
60

(
10 − 5x + x2 + 5�0(x − 4)

)
+ ...

So the solution is given
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

w̃(x,�0) = (�0 − 1) − x + x(�0 − 2) + sin(x)

+ x3
60

(
50 + 5x + x2 − 5�0(x + 12) + 20� 2

0

)
+ ...

ṽ(x,�0) = (�0 − 1) − 1 + x(�0 − 2) + cos(x)

+ x3
60

(
−30 + 5x + x2 − 5�0(x − 4)

)
+ ...

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

w̃(x,�0) = (1 − �0) − x + x(1 − 2�0) + sin(x)

+ x3
60

(
10 − 5x + x2 + 5�0(x − 4) + 20� 2

0

)
+ ...

ṽ(x,�0) = (1 − �0) − 1 + x(1 − 2�0) + cos(x)

+ x3
60

(
10 − 5x + x2 + 5�0(x − 4)

)
+ ...

(29)
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Fig. 10 Simulation of Example 4 in 2D
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Fig. 11 Simulation of Example 4 in 3D

Example 3.5 The fuzzy sense of the population growth model [37] is given by

w̃′(t,�0) = 10w̃(t,�0) − 10w̃2(t,�0) − 10w̃(t,�0)

∫ t

0
w̃(x,�0)dx, (30)

under the initial condition w̃(0,�0) = [�0 − 1, 1 − �0], where �0 ∈ [0, 1].
Solution. The equivalent form of Eq. (30) is{

w̃′(t,�0) = 10w̃(t,�0) − 10w̃2(t,�0) − 10w̃(t,�0)
∫ t
0 w̃(x,�0)dx,

w̃
′
(t,�0) = 10w̃(t,�0) − 10w̃

2
(t,�0) − 10w̃(t,�0)

∫ t
0 w̃(x,�0)dx,

under the initial conditions {
w̃(0,�0) = [�0 − 1] ,

w̃(0,�0) = [1 − �0] .
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Fig. 12 Simulation of Example 4 at various uncertainty values

Implementing fuzzy Laplace transform to the lower case of the above equation and using
the initial condition, we have

L [
w̃(t,�0)

] = (�0 − 1)

s − 10
− 10

s − 10
L

[
w̃2(t,�0)

]
− 10

s − 10
L

[
w̃(t,�0)

∫ t

0
w̃(x,�0)dx

]
,

applying Laplace inverse, we have

w̃(t,�0) = (�0 − 1) e10t − L−1
[

10

s − 10
L

[
w̃2(t,�0)

]]

− L−1
[

10

s − 10
L

[
w̃(t,�0)

∫ t

0
w̃(x,�0)dx

]]
, (31)

the series solution of the considered problem is given by

w̃(t,�0) =
∞∑
n=0

w̃n(t,�0).

Also, decomposing the nonlinear term w̃2(t,�0) into Adomian polynomial as w̃2(t,�0) =∑∞
n=0 An(t,�0), Eq. (31) gets the form

∞∑
n=0

w̃n(t,�0) = (�0 − 1) e10t − L−1

[
10

s − 10
L

[ ∞∑
n=0

An(t,�0)

]]

− L−1

[
10

s − 10
L

[ ∞∑
n=0

w̃n(t,�0)

∫ t

0

∞∑
n=0

w̃n(x,�0)dx

]]
,

where An =
∑∞

j=0
w̃ j (t,�0)w̃n− j (t,�0), comparing the term wise above equation, we

have

w̃0(t,�0) = (�0 − 1) e10t ,

w̃1(t,�0) = 11

10
(�0 − 1)2

(
e10t − e20t

) + (�0 − 1)2 (t sinh (10t) + t cosh (10t)) ,
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and so on. So the desired solution for the lower case is

w̃(t,�0) = w̃0(t,�0) + w̃1(t,�0) + . . .

w̃(t,�0) = (
(�0 − 1) e10t

) +
(
11

10
(�0 − 1)2

(
e10t − e20t

)

+ (�0 − 1)2 (t sinh (10t) + t cosh (10t))
) + . . .

Similarly, for upper case we will get

w̃0(t,�0) = (1 − �0) e
10t ,

w̃1(t,�0) = 11

10
(1 − �0)

2 (
e10t − e20t

) + (1 − �0)
2 (t sinh (10t) + t cosh (10t)) ,

and so on. So the desired solution for the upper case is

w̃(t,�0) = w̃0(t,�0) + w̃1(t,�0) + . . .

w̃(t,�0) = (
(1 − �0) e

10t) +
(
11

10
(1 − �0)

2 (
e10t − e20t

)

+ (1 − �0)
2 (t sinh (10t) + t cosh (10t))

) + . . .

So, the solution is given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w̃(t,�0) = (
(�0 − 1) e10t

) + ( 11
10 (�0 − 1)2

(
e10t − e20t

)
+ (�0 − 1)2 (t sinh (10t) + t cosh (10t))

) + . . .

w̃(t,�0) = (
(1 − �0) e10t

) + ( 11
10 (1 − �0)

2 (
e10t − e20t

)
+ (1 − �0)

2 (t sinh (10t) + t cosh (10t))
) + . . .

Conclusion and FutureWork

In this paper, we have studied a nonlinear integro-differential equation of the nth order
in a fuzzy context. To obtain an approximate solution to the proposed model via a fuzzy
modified Laplace transformation, we have developed a proper procedure. Some examples of
various orders are given to ensure the accuracy of the proposed method. We have computed
a solution to a nonlinear system of fuzzy integro-differential equations of second order.
We have simulated the numerical results of the problems in terms of 2D and 3D graphs in
Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12. The graphs indicate that the solution represents
a fuzzy number because the lower bound is an increasing function while the upper bound is
a decreasing function. For various values of uncertainty, we also presented the dynamics of
the derived solutions of the examples in Figs. 3, 6, 9, and 12. We have studied an application
of the nonlinear fuzzy IDE in the population model. The analysis was carried out through
the proposed method. Nowadays, fractional order operators have got tremendous attention
of the researchers due to its heredity and memory features [39–41]. Also, fuzzy fractional
operators have been used for the modeling of different phenomena [42–44]. In the future,
one may solve the proposed equation using various analytical methods in a fuzzy concept
under the different fractional operators.
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