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Abstract
In this article, we proposed a two-step with memory iterative scheme for solving nonlinear
equations. We improved the convergence order of the existing fifth-order without memory
iterative scheme by converting it into with memory method. The acceleration of convergence
order is attained by using different possible approximations of self-accelerating parameters.
These parameters are calculated using Hermite interpolating polynomial to improve the
convergence rate ofwithoutmemory scheme. This acceleration of convergence rate is attained
without any extra functional evaluation. In particular, the R-order convergence of proposed
two-stepwithmemory scheme is accelerated from5 to 5.8284, 6.0275 and 6.2128without any
new functions evaluation. An extra benefit of this technique is that the limitation f ′(x) �= 0,
in the neighbourhood of the requisite root imposed on Newton’s scheme is removed. The
numerical evaluation is specified in the paper, to confirm the theoretical results.
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Introduction

The main goal of the article is to calculate the simple root of nonlinear equation f (x) = 0 as
it is a very important problem in real world phenomena, which attracted so much attention
recently. In order to find a solution to these types of nonlinear equations, numerousmultipoint
iterative schemes have been proposed (one can see [1–18]). These iterative techniques play a
vital role in area of research in numerical analysis because they have numerous applications
in different branches of sciences, economics, dynamical model, engineering, and so on.
Out of them the most eminent one-point iterative scheme without memory is the classical
Newton–Raphson method, defined as follows:

zn+1 = zn − f (zn)

f ′(zn)
, (1)

used to find the solution of the nonlinear equation and it’s convergence order is 2. A drawback
of this scheme is the assumption f ′(zn) �= 0,which limits its practical applications. To resolve
this issue, Kumar et al. [12] developed a one-point iterative scheme, given as:

zn+1 = zn − f (zn)

f ′(zn) − γ f (zn)
. (2)

It is clear from the above equation that by taking the value of γ = 0 in (2), we will get
Newton’s method (1). The error equation for Kumar’s approach is:

en+1 = (γ − c2)e
2
n + O(e3n), (3)

where en = xn − α, ci = 1
i !

f (i)(α)
f ′(α)

, i = 2, 3, . . . and α is the root of f (z) = 0. The error
equation given in (3) clearly shows that by taking γ = c2, the convergence order of the
method can be increased.

Next, we discuss the classification of possible type of iteration function (I.F.). These I.F.
have been categorized on the basis of the information which they require [19, 20]:
(i) One-point iterative function without memory xk+1 = φ(xk) can be determined by only
new data at xk , where φ is called a one-point I.F. The best known example of one-point
I.F. type is Newton’s I.F. On the other hand multi-point iteration function without mem-
ory xk+1 = φ(xk, w1(xk), . . . , wn(xk)), can be determined by only new information at
xk, w1(xk), . . . , wn(xk)(n ≥ 1), where φ is called multipoint I.F. without memory.

(ii) One-point iteration function with memory xk+1 = φ(xk; xk−1, . . . , xk−n) can be
determined by new data at xk and reused data at xk−1, . . . , xk−n , where φ is known as
one-point I.F. with memory. The best known example of with memory one point iterative
method is Secant method. On the other hand multi-point iteration function with memory
xk+1 = φ(zk; zk−1, . . . , zk−n), where the I.F. φ which has arguments z j , and each such
argument represents k + 1 quantities x j , w1(x j ), . . . , wn(x j )
(n ≥ 1) is called a multipoint I.F. with memory. In the above mentioned mapping semicolon
separates the points atwhich new information are used from the point atwhich old information
are reused i.e. in each iterative stepwemust preserve information of the last n approximations
x j , and for each approximation, we must calculate n expressions w1(x j ), . . . , wn(x j ).

Multipoint iterative schemes are of great practical importance, since they overcome the
theoretical limits of any one-point iterative scheme. Concerning their convergence order and
computational efficiency.They also generate estimations of greater accuracy, highly improved
computer arithmetic and symbolic calculation has allowed efficient execution of multipoint
method. Memory-based multipoint iterative schemes use data from the current and previous
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iterations. Whereas the initial scheme for the construction of this type of scheme dates back
to 1964 and Traub’s book, contribution in this field appears very rarely in the literature. To fill
this gap this article presents the with memory two-step scheme and convergence order of this
scheme is greater than corresponding optimal without memory scheme. The improved order
of convergence has been achieved without any extra evaluation of functions using several
self-accelerating parameters, which results in higher computational efficiency.

The main objective of this article is to construct such types of methods whose compu-
tational efficiency is high. These schemes are referred as multipoint iterative schemes with
memory, and they can accelerate the convergence order without memory schemes without
any additional functional evaluation. The summary of the paper is as follows: In Sect. 2
the new with memory multipoint iterative scheme has been constructed by adding the self-
accelerating parameter in the first step of the existing fifth order without memory method
and the convergence analysis have been studied. To calculate the self-accelerating parame-
ters we have used the Hermite interpolating polynomial. Using these parameter, the R-order
convergence of the proposed scheme is accelerated from 5 to 5.8284, 6.0275 and 6.2128.
Numerical calculation for several examples are performed in Sect. 3 to establish theoretical
analysis. The concluding remarks are given in the last section.

Analysis of Convergence for with MemoryMethods

In the following section, we will use the parameter T in the scheme proposed by Noor et al.
[3] to increase its convergence by replacing the parameter T with iterative parameter Tn . For
this first we have included parameter T in the first sub-step of without memory scheme of
the fifth order, presented in the article [3]:

wn = zn − f (zn)

f ′(zn) − T f (zn)
,

zn+1 = wn − 2 f (zn) f (wn) f ′(wn)

2 f (zn) f ′(wn)
2 − f ′(zn)2 f (wn) + f ′(zn) f ′(wn) f (wn)

. (4)

The error expressions of each sub-step of (4) are:

en,w = wn − α = (c2 − T )e2n + (−2c22 − T 2 + 2c2T + 2c3)e
3
n

+(T 3 + 5T c22 − 4c32 − 4T c3 + c2(7c3 − 3T 2) − 3c4)e
4
n + O(e5n), (5)

and

en+1 = −1

2
(T − c2)

2(2T c2 + 3c3)e
5
n

−1

2
(T − c2)[2c42 + 6c2T

3 + c22(6T c2 + 13c3) + 2T (3T 2c2 + 5T c3 + 2c4)

−(10T 2c22 + 12c23 + c2(25T c3 + 4c4))]e6n + O(e7n), (6)

where en,w = wn − α, en = zn − α and ci = f (i)(α)
i ! f ′(α)

, for i = 2, 3, . . . and T ∈ R. We obtain
the following with memory iterative scheme by replacing T with Tn in (4):

wn = zn − f (zn)

f ′(zn) − Tn f (zn)
,

zn+1 = wn − 2 f (zn) f (wn) f ′(wn)

2 f (zn) f ′(wn)
2 − f ′(zn)2 f (wn) + f ′(n) f ′(wn) f (wn)

, (7)
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and the above scheme is represented by MWM5. Now from Eq. (6) it is clear that the
convergence order of algorithm (4) is five when T �= c2. Next to accelerate the order of
convergence of themethod (4) fromfive to higher, we can assume T = c2 = f ′′(α)/(2 f ′(α))

but in actual fact the exact values of f ′(α) and f ′′(α) are not attainable in practice. So we
will assume the parameter T as Tn . The parameter Tn can be calculated by using the available
data from the previous and current iterations and satisfies the condition limn→∞ Tn = c2 =
f ′′(α)/(2 f ′(α)), such that the fifth and sixth order asymptotic convergence constant should
be zero in the error expression (6). Different formulas for Tn are as follows:
Method 1:

Tn = H ′′
2 (zn)

2 f ′(zn)
, (8)

where H2(z) = f (zn) + f [zn, zn](z − zn) + f [zn, zn, wn−1](z − zn)2 and H ′′
2 (zn) =

2 f [zn, zn, wn−1].
Method 2:

Tn = H ′′
3 (zn)

2 f ′(zn)
, (9)

where H3(z) = H2(z) + f [zn, zn, wn−1, zn−1](z − zn)2(z − wn−1) and H ′′
3 (zn) =

2 f [zn, zn, wn−1] + 2 f [zn, zn, wn−1, zn−1](zn − wn−1).
Method 3:

Tn = H ′′
4 (zn)

2 f ′(zn)
, (10)

where H4(z) = H3(z) + f [zn, zn, wn−1, zn−1, zn−1](z − zn)2(z − wn−1)(z − zn−1) and
H ′′
4 (zn) = 2 f [zn, zn, wn−1] + (4 f [zn, zn, wn−1, zn−1] − 2 f [zn, wn−1zn−1, zn−1])(zn −

wn−1).
Note: The condition H ′

m(zn) = f ′(zn) is satisfied by the Hermite interpolation polynomial

Hm(z) for m = 2, 3, 4. So, Tn = H ′′
m (zn)

2 f ′(zn) can be expressed as Tn = H ′′
m (zn)

2H ′
m (zn)

(m = 2, 3, 4).

Theorem 1 Let Hm be the Hermite polynomial of degree m that interpolates a function f at
interpolation nodes zn, zn, t0 . . . tm−2 belonged in an interval I and the derivative f (m+1) is
continuous in I and the Hermite polynomial Hm(zn) = f (zn), H ′

m(zn) = f ′(zn), Hm(t j ) =
f (t j ) ( j = 0, 1, . . . ,m − 2). Denote et, j = t j − α ( j = 0, 1, . . . ,m − 2) and suppose that

(1) all nodes zn, t0, . . . , tm−2 are enough near to the root α:
(2) the condition en = O(et,0 . . . et,m−2) holds. Then

H ′′
m(zn) = 2 f ′(α)

(
c2 − (−1)m−1cm+1

m−2∏
j=0

et, j + 3c3en

)
, (11)

Tn = H ′′(zn)
2 f ′(zn)

∼
(
c2 − (−1)m−1cm+1

m−2∏
j=0

et, j + (3c3 − 2c22)en

)
, (12)

and

Tn − c2 ∼
(

− (−1)m−1cm+1

m−2∏
j=0

et, j + (3c3 − 2c22)en

)
. (13)
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Proof We can calculate the expression of the Hermite interpolation by this way

f (z) − Hm(z) = f (m+1)(ξ)

(m + 1)! (z − zn)
2
m−2∏
j=0

(z − t j ), (ξ ∈ I ). (14)

Now, we get the below mentioned equation by differentiating (14) two times at the point
z = zn ,

H ′′
m(zn) = f ′′(zn) − 2

f (m+1)(ξ)

(m + 1)!
m−2∏
j=0

(zn − t j ), (ξ ∈ I ). (15)

Next the Taylor’s series expansion of f ′ at the point zn ∈ I and ξ ∈ I about the zero α of f
provides

f ′(zn) = f ′(α)
(
1 + 2c2en + 3c3e

2
n + O(e3n)

)
, (16)

f ′′(zn) = f ′(α)
(
2c2 + 6c3en + O(e2n)

)
, (17)

and

f (m+1)(ξ) = f ′(α)
(
(m + 1)!cm+1 + (m + 2)!cm+2eξ + O(e2ξ )

)
, (18)

where eξ = ξ − α. Putting (17), (18) in (15), we obtain

H ′′
m(zn) = 2 f ′(α)

(
c2 − (−1)m−1cm+1

m−2∏
j=0

et, j + 3c3en

)
, (19)

which implies

H ′′
m(zn)

2 f ′(zn)
∼

(
c2 − (−1)m−1cm+1

m−2∏
j=0

et, j + (3c3 − 2c22)en

)
. (20)

And hence

Tn ∼
(
c2 − (−1)m−1cm+1

m−2∏
j=0

et, j + (3c3 − 2c22)en

)
, (21)

or

Tn − c2 ∼
(

− (−1)m−1cm+1

m−2∏
j=0

et, j + (3c3 − 2c22)en

)
. (22)

The definition of R-order of convergence [21] and the following statement [14,page 287] can
be used to estimate the order of convergence of iterative scheme (7). 	

Theorem 2 If the errors e j = z j −α evaluated by an iterative root finding method IM fulfill

ek+1 ∼
m−2∏
i=0

(ek−i )
mi , k ≥ k({ek}),

then the R-order of convergence of IM, denoted with OR(I M, α), satisfies the inequal-
ity OR(I M, α) ≥ s∗, where s∗ is the unique positive solution of the equation sn+1 −∑n

i=0 misn−i = 0.
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Presently, for the new iterative scheme with memory (7) we can state subsequent conver-
gence theorem:

Theorem 3 In the iterative method (7), let Tn be the varying parameter and it is calculated
by (8)–(10). If an initial guess z0 is enough near to a simple zero α of f (x), then the R-order
of convergence of iterative methods (8)–(7), (9)–(7) and (10)–(7) with memory is at least
(6 + √

32)/2 ≈ 5.8284, 6.0275 and 6.2128, respectively.

Proof Let the iterative method (IM) generating the sequence of {zn} which is converges to
the root α of f (z), by means of R-order OR(I M, α) ≥ r , we express

en+1 ∼ Dn,r e
r
n . (23)

Next Dn,r will tends to the asymptotic error constant Dr of IM by taking n → ∞, then.
Therefore

en+1 ∼ Dn,r (Dn−1,r e
r
n−1)

r = Dn,r D
r
n−1,r e

r2
n−1. (24)

The resulting error expression of the with memory scheme (7) can be obtained using (5), (6),
and the varying parameter Tn

en,w = wn − α ∼ (c2 − Tn)e
2
n, (25)

and

en+1 = zn+1 − α ∼ Bn,5(Tn − c2)
2e5n + Bn,6(Tn − c2)e

6
n, (26)

where Bn,5 and Bn,6 originates from (6) represents the changing quantity which occurs due
to the self-accelerating parameter Tn . Also the higher order terms in (25)–(26) are excluded.

Method 1. Tn is evaluated by (8): The calculation of Tn is analogous to the derivation of
(23). The R-order convergence of iterative sequence {wn} is take up as p, so

en,w ∼ Dn,pe
p
n ∼ Dn,p(Dn−1,r e

r
n−1)

p = Dn,pD
p
n−1,r e

rp
n−1. (27)

Using Theorem 2.1 for m = 2 and t0 = wn−1, we attain

Tn − c2 ∼ c3et,0 = c3en−1,w. (28)

Now from (25), (26) and (28), we get

en,w ∼ −c3en−1,w(Dn−1,r e
r
n−1)

2 ∼ −c3Dn−1,pD
2
n−1,r e

2r+p
n−1 , (29)

and

en+1 ∼ Bn,5c
2
3e

2
n−1,we

5
n + Bn,6c3en−1,we

6
n

∼ Bn,5c
2
3(Dn−1,pe

p
n−1)

2(Dn−1,r e
r
n−1)

5 + Bn,6c3(Dn−1,pe
p
n−1)(Dn−1,r e

r
n−1)

6,

∼ Bn,5c
2
3D

2
n−1,pD

5
n−1,r e

5r+2p
n−1 + Bn,6c3Dn−1,pD

6
n−1,r e

6r+p
n−1 ,

∼ (Bn,5c
2
3D

2
n−1,pD

5
n−1,r + Bn,6c3Dn−1,pD

6
n−1,r e

r−p
n−1 )e

5r+2p
n−1 , (30)

since r > p. By equating the exponents of en−1 present in the set of relation (27)–(29) and
(24)–(30), we attain the resulting system of equations:

2r + p = rp,

5r + 2p = r2. (31)
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The solution of system of equation (31) is specified by r = (6 + √
32)/2 and p = 2.4142.

As a result, the R-order of convergence of the with memory iterative schemes (8)–(7) is at
least (6 + √

32)/2 ≈ 5.8284.
Method 2. Tn is evaluated by (9): By means of the Theorem 2.1 for m = 3, t0 = wn−1

and t1 = zn−1, we get hold of

Tn − c2 ∼ −c4et,0et,1 = −c4en−1,wen−1. (32)

In accordance with (25), (26) and (32), we find

en,w ∼ (c2 − Tn)e
2
n ∼ c4en−1en−1,w(Dn−1,r e

r
n−1)

2

∼ c4Dn−1,pD
2
n−1,r e

2r+p+1
n−1 , (33)

and

en+1 ∼ Bn,5c
2
4e

2
n−1e

2
n−1,we

5
n − Bn,6c4en−1en−1,we

6
n

∼ Bn,5c
2
4e

2
n−1(Dn−1,pe

p
n−1)

2(Dn−1,r e
r
n−1)

5 − Bn,6c4en−1

(Dn−1,pe
p
n−1)(Dn−1,r e

r
n−1)

6

∼ Bn,5c
2
4D

2
n−1,pD

5
n−1,r e

5r+2p+2
n−1 + Bn,6(−c4)Dn−1,pD

6
n−1,r e

6r+p+1
n−1

∼ e5r+2p+1
n−1 (Bn,5c

2
4D

2
n−1,pD

5
n−1,r e

1
n−1 + Bn,6(−c4)Dn−1,pD

6
n−1,r e

r−p
n−1 ). (34)

By equating the exponents of en−1 present in the set of relation (27)–(33) and (24)–(34), we
attain the resulting system of equations:

2r + p + 1 = rp,

5r + 2p + 1 = r2. (35)

The solution of system of equations (35) is specified by r = 6.0275 and p = 2.5967. As a
result, the R-order of convergence of the with memory iterative schemes (9)–(7) is at least
6.0275.

Method 3. Tn is evaluated by (10): By means of the Theorem 2.1 for m = 4, t0 = wn−1

and t1 = t2 = zn−1, we get hold of

Tn − c2 ∼ c5et,0et,1et,2 = c5en−1,we
2
n−1. (36)

In accordance with (25), (26) and (36), we find

en,w ∼ (c2 − Tn)e
2
n ∼ −c5e

2
n−1en−1,w(Dn−1,r e

r
n−1)

2

∼ −c5Dn−1,pD
2
n−1,r e

2r+p+2
n−1 , (37)

and

en+1 ∼ Bn,5c
2
5e

4
n−1e

2
n−1,we

5
n + Bn,6c5e

2
n−1en−1,we

6
n

∼ Bn,5c
2
5e

4
n−1(Dn−1,pe

p
n−1)

2(Dn−1,r e
r
n−1)

5 + Bn,6c5e
2
n−1

(Dn−1,pe
p
n−1)(Dn−1,r e

r
n−1)

6

∼ Bn,5c
2
5D

2
n−1,pD

5
n−1,r e

5r+2p+4
n−1 + Bn,6c5Dn−1,pD

6
n−1,r e

6r+p+2
n−1

∼ e5r+2p+2
n−1 (Bn,5c

2
5D

2
n−1,pD

5
n−1,r e

2
n−1 + Bn,6c5Dn−1,pD

6
n−1,r e

r−p
n−1 ).

(38)
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By equating the exponents of en−1 present in the set of relation (27)–(37) and (24)–(38), we
attain the resulting system of equations:

2r + p + 2 = rp,

5r + 2p + 2 = r2. (39)

The solution of system of equations (39) is specified by r = 6.2128 and p = 2.7673. As a
result, the R-order of convergence of the with memory iterative schemes (10)- (7) is at least
6.2128. 	


Numerical Assessment

Within the ensuing segment, after the review of two-step iterative schemes, the comparison
has been done between the existing techniques and proposed scheme (7) denoted byMWM5.
Our proposed method is compared with existing well known without memory fifth-order
schemes HM, ISHM, LLGS, NR, SHM, YCHAM and similar type of two-step with memory
methods XW1, XW2 presented in the fres. [2–7, 22] respectively. We now state the above
mentioned fifth-order iterative schemes.

In the article [3] Noor and Noor suggested two-step modified Halley method of fifth-order
convergence:

wn = zn − f (zn)

f ′(zn)
,

zn+1 = wn − 2 f (zn) f (wn) f ′(wn)

2 f (zn) f ′(wn)
2 − f ′(zn)2 f (wn) + f ′(zn) f ′(wn) f (wn)

, (40)

which is denoted by HM and this is the method which we have modified and converted into
with memory method in this paper.

In 2007 Noor and Noor [6] proposed two-step Halley method of fifth-order convergence:

wn = zn − 2 f (zn) f ′(zn)
2 f ′(zn) − f (zn) f ′′(zn)

,

zn+1 = zn − 2[ f (zn) + f (wn)] f ′(zn)
2 f ′(zn)2 − [ f (zn) + f (wn)] f ′′(zn)

, (41)

which is denoted by NR.
In his paper [4, 5], Kou et al. have suggested following iterative method:

wn = zn − f (zn)

f ′(zn)
− f ′′(zn) f (zn)2

2 f ′(zn)3 − 2 f (zn) f ′(zn) f ′′(zn)
,

zn+1 = wn − f (wn)

f ′(zn)
− f ′′(zn) f (wn)

2 f ′(zn)3
, (42)

which is denoted by ISHM and

wn = zn − f (zn)

f ′(zn)
− f ′′(zn) f (zn)2

2 f ′(zn)3 − 2 f (zn) f ′(zn) f ′′(zn)
,

zn+1 = wn − f (wn)

f ′(zn) + f ′′(zn)(wn − zn)
, (43)

which is denoted by SHM.
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In 2008 Fang et al. [2] have proposed following fifth-order iterative methods:

wn = zn − f (zn)

f ′(zn)
,

zn+1 = wn − 5 f ′(zn)2 + 3 f ′(wn)
2

f ′(zn)2 + 7 f ′(wn)
2

f (wn)

f ′(zn)
, (44)

which is denoted by LLGS.
In 2007 Ham and Chun [7] have proposed following fifth-order iterative methods:

wn = zn − f (zn)

f ′(zn)
,

zn+1 = wn − f ′(wn) + 3 f ′(zn)
5 f ′(wn) − f ′(zn)

f (wn)

f ′(zn)
, (45)

which is denoted by YCHAM.
In 2014, Wang and Zang [22] proposed two with memory methods. Both are two-step

methods in the subsequent form:

wn = zn − f (zn)

Tn f (zn) + f ′(zn)
,

zn+1 = wn −
(
1 − f (wn)

2Tn f (zn) + f ′(zn)

)
(
1 + 2 f (wn)

f (zn)
+ a

(
2 f (wn)

f (zn)

)2
)

, (46)

where a ∈ R, which is denoted by XW41, and

wn = zn − f (zn)

Tn f (zn) + f ′(zn)
,

zn+1 = wn −
(
1 − f (wn)

2Tn f (zn) + f ′(zn)

) (
f (zn) + (2 + b) f (wn)

f (zn) + b f (wn)

)
,

(47)

where b ∈ R, which is denoted by XW42. We are captivating the values of the self-
accelerating parameter Tn for both methods in the following form:
Method 4:

Tn = − H ′′
2 (zn)

2 f ′(zn)
, (48)

where H2(z) = f (zn) + f [zn, zn](z − zn) + f [zn, zn, wn−1](z − zn)2 and H ′′
2 (z) =

2 f [zn, zn, wn−1].
Method 5:

Tn = − H ′′
3 (zn)

2 f ′(zn)
, (49)

where H3(z) = H2(z) + f [zn, zn, wn−1, zn−1](z − zn)2(z − wn−1) and H ′′
3 (z) =

2 f [zn, zn, wn−1] + 2 f [zn, zn, wn−1, zn−1](zn − wn−1).
Method 6:

Tn = − H ′′
4 (zn)

2 f ′(zn)
, (50)
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Table 1 Test functions Nonlinear function Root

f1 = xex
2 − (sinx)2 + 3cosx + 5 −1.2076…

f2 = x3 − x2 − 1 1.4655…

f3 = x2 − ex − 3x + 2 0.2575…

f4 = x3 − 10 2.1544…

f5 = cosx − x 0.7390…

f6 = sinx − x
2 1.8954…

where H4(z) = H3(z) + f [zn, zn, wn−1, zn−1, zn−1](z − zn)2(z − wn−1)(z − zn−1)) and
H ′′
4 (z) = 2 f [zn, zn, wn−1] + (4 f [zn, zn, wn−1, zn−1] − 2 f [zn, wn−1zn−1, zn−1])(zn −

wn−1).
In Table 1, we have considered six different nonlinear functions with their zeroes (α).

Also in the same table we have mentioned the roots each function only up to four decimal
places instead of the infinite number of digits after the decimal (these examples have been
taken from the references [3, 15, 23]). Tables 2 and 3 contains the absolute errors |zk − α|
in the first five iteration and the computational order of convergence for the new scheme and
existing schemes. The formula of computational order of convergence (COC) given by [16]

COC ≈ ln| f (zn+1)/ f (zn)|
ln| f (zn)/ f (zn−1)| ,

is considered to approximate the computational efficiency which verified all the theoretical
rate of convergence. In Tables 2 and 3, we have written the numerical results proposed two-
step with memory iterative methods which are in accordance with the theoretical part of the
paper. To compute the exact root upto 10000 significant digits we have used “Set Accuracy”
command in Mathematica 8. The nonlinear functions have been solved by the proposed
iterative method MWM5 (7) and the computed results are compared with other existing
two-step similar type with memory and fifth order without memory iterative schemes.

From Tables 2 and 3 it is clear that the R − order convergence of the proposed with
memory scheme MWM5 (7) is accelerated from 5 to 6.2128, in accordance with the used
self-accelerating parameter methods given by (8)–(10). The acceleration of convergence
order of the proposed scheme is achieved without any extra function evaluation, that can be
easily seen from the existing without memory fifth order scheme presented in [3] and new
method (7) along with the applied accelerating method (8)–(10). In the table “NC” stands
for non-convergence of the methods. The results attained in Tables 2 and 3 by means of the
proposed scheme verify the theoretical analysis and also we can notice that our scheme is
quite superior to the other iterative schemes.

Conclusion

In this article for calculating the root of nonlinear equations, we have developed the novel
two-step iterative schemewithmemory. Since themain objective of the paper is to develop the
scheme of higher order convergence without any extra calculation. That is done using three
different estimations of self-accelerating parameters, without any extra function calculation
in the fifth-order scheme to attain higher-order convergence. These parameters are calculated
using Hermite interpolation. The acceleration in the R-order of convergence of novel with
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memory iterative schemes are 5 to 5.8284, 6.0275 and 6.2128. The numerical assessment
of the new scheme by means of the different test examples verifies that it supports the main
theorem.
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