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Abstract

In this work, we examine various physical phenomena modeled by nonclassical boundary
value problems with nonlocal boundary conditions. We concern our analysis on a new type
of nonlocal boundary value problems, i.e., the semi-numerical solution of the generalized
Thomas—Fermi type equations and Lane—Emden—Fowle type equations subjected to integral
type boundary conditions. We first transform the given nonlocal boundary value problems into
equivalent integral equations, followed by applying a modified decomposition method, which
facilitates computational work. Moreover, we show that the proposed scheme is convergent
in a suitable Banach space. A sufficient theorem is supplied for the uniqueness of the solution
of the problems. The proposed method approximates the solution in series with easily com-
putable components without restrictive assumptions such as linearization, discretization, and
perturbation. Several examples are included to show the accuracy, applicability, and overview
of the method.

Keywords Nonlocal boundary conditions - Integral type boundary conditions -
Thomas—Fermi type equations - Lane-Emden—Fowler equations - Convergence analysis -
Adomian decomposition method

Introduction

Many boundary value problems (BVPs) in physical science, engineering, and applied math-
ematics involve nonlinear differential equations subject to two-point (local) conditions or
nonlocal BCs. In general, it is challenging to obtain the exact solution to such nonlinear
problems. More difficulties arise when we deal with nonlinear problems with nonclassical
conditions. The nonclassical conditions are usually the most physically reasonable choices
to apply to the mathematical models to various physical sciences, and biological sciences
phenomena [1-5]. Since the nonclassical BCs connect values of the function on the bound-
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ary to values inside the domain or when direct measurement on the boundary is impossible.
These nonclassical boundary conditions are called nonlocal boundary conditions, e.g., inte-
gral type boundary conditions, or multi-point boundary conditions are one type of nonlocal
BCs. Imposing nonlocal BCs are usually the most physically reasonable choices to apply to
the mathematical models to various phenomena of physical sciences and biological sciences
[6].

This work aims to apply the Adomian decomposition method [7, 8], for the approximate
solutions of the following the generalized Thomas—Fermi type equations (GTFEs) subjected
to integral type boundary conditions (nonlocal boundary conditions)

?(p(t)y ) = f(t.y@®), te(0,1), ey

1
y0) =y, or }%P(I)y/(t) =0, y()= /0 g(s)y(s)ds + B, (@)

where y and f are real constants. Here p(0) = 0 and ¢(¢) is allowed to be discontinuous at
t = 0 such problems may be called doubly singular [9]. We assume the following conditions
on p(1), ¢(1) and g (1)

1
1) p@) € Cl[0,1]1N cl, 1], p) >0,q(t) >0, and/ g(s)ds < oo.
0

| 1 1
(i1) / i < ooand/ L(fq(s)ds)d& < 00, (when y(0) = y).
o p(s) , pé) /

1 &
(iii) / q(s)ds < oo and/ 26 (/q(s)ds)dé < 00, (when lim;_.¢ p(¢)y’(¢) = 0).
(iv) The nonlinear functlon fit, y(t)) is continues and % is bounded on {[0, 1] x R}.

Equation (1) with p(t) = 1, g(t) = t~'/2 and f = y*/? reduces into the Thomas—
Fermi equation y” = t~'/2y3/2 y(0) = 1, y(b;) = 0, which was used for determining
the electrical potential in an atom [10, 11]. Equation (1) with p(t) = ¥, g(r) = **! and
f=c ym, we get the generalized Thomas—Fermi equation [12] as

] (tky @) =cy", y0)=1, y@ =0, 0<k<l1, [>-2, m>1l.
We also consider the Lane—-Emden—Fowler type equations (LEFEs)

1 /
;ﬂﬁﬁm)=fUJU» k>0, 1e(,1), 3)

subjected to the integral type BCs (2). The LEFEs were used to model several phenomena in
mathematical physics and astrophysics [13]. The LEFEs (3) with k = 2, is a basic equation
in the theory of stellar structure. Some of the special cases of (3) are given below.

1. tiz(tzy’)/ = %, a >0, b > 0, arises in the oxygen diffusion in a spherical cell [2, 3].
2. tiz(tzy’), = —ae ™, a >0, b> 0, arises in heat conduction in human head [5].
3. %2(12 y )/ = —y™, m > 0, models many phenomenon in mathematical physics [1].

Several methods (analytical/numerical) developed to deal with GTFEs (1) and LEFEs (3),
such as collocation method [14], finite difference method [15], spline finite difference method
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[16], B-Spline and spline methods [17], the traditional Adomian decomposition method [18,
19], the modified version of decomposition methods [7, 8, 20, 21], Lie group classification
technique [22], Lagrangian formulation technique [23], the exact solutions of the generalized
Lane-Emden equations [24], variational formulation approach [25], variational iteration
method [26], optimal variational iteration method [27], homotopy analysis method [28], the
modified homotopy perturbation method [29], the optimal homotopy analysis method [30,
31], nonstandard finite difference schemes [32], Haar wavelet methods [33—35], and Laguerre
wavelet method [36].

Some recent theocratical work on nonsingular integral types BCs are given below. The
existence of positive solutions of the following integral types BVPs

(p@®Y @) +q@O) f@,y(1) =0, 1teg,
1

ay(0) — sz%L p(0)y' () = / g)y(s)ds, ay(l) + b,Er{l p®Y'(®)

0
1

= / g(s)y(s)ds,

0

was discussed in [37]. At least one positive solution of the following problems with integral
types BCs

(P)Y @) + ft, (1) =0, 1€,
1

p0)y'(0) = p()y' (), y(1) = [g(s)y(s)ds,
0

was studied in [38]. In [39], the sufficient conditions for the existence of at least one solution
(1) with ¢ (t) = p(t) = 1 was studied subject to integral types BCs

1 1

V(0) = / hs)y ()ds, ¥(1) = / ¢()y (5)ds.
0 0

In [7], authors pointed out that solving BVPs using the traditional Adomian decomposition
method requires the computation of undetermined coefficients in a sequence of nonlinear
algebraic or more complicated transcendental equations, which increases the computational
work. In [7, 8] authors proposed a modified decomposition method to overcome the difficulties
that occurred in the decomposition method for solving local BVPs.

To the best of our knowledge, there are no research works on numerical methods for solv-
ing the generalized Thomas—Fermi type equations (1) and the Lane-Emden—Fowler type
equations (3) subjected to integral type BCs. This work will deal with a new type of nonlocal
BVPs, i.e., the semi-numerical solution of the generalized Thomas—Fermi type equations
and LEFESs subjected to integral type BCs. We first transform the given nonlocal BVPs into
the equivalent integral equations. Then we apply a modified decomposition method, which
allows convenient resolution of such problems. Moreover, we show that this decomposition
scheme is convergent in a suitable Banach space. A sufficient theorem is supplied for the
uniqueness of the solution of the problems. Unlike other methods, the proposed scheme
solves the considered nonlinear nonlocal BVPs without restrictive assumptions such as lin-
earization, discretization, and perturbation. It approximates the solution in the form of series
with easily computable solution components. Several examples are included to show the
accuracy, applicability, and overview of the method.
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The GTFEs with Integral type BCs

To tackle the shortcomings as mentioned earlier of the traditional ADM, we propose a decom-
position method based on Singh et al. [7] to obtain the numerical solution of GTFEs and
LEFEs subjected to integral type BCs. The nonlinear nonlocal BVPs are transformed into
integral equations before designing the iterative schemes to establish the new iterative meth-
ods.

1
Iterative Scheme for BCs y(0) =V, y(1) = f g(s)y(s)ds + B
0
We integrate (1) from ¢ to 1, and dividing by p(¢), we obtain

A 1 1
"= — - — , ds, 4
y'(t) o0 p(t)/t q(s) f(s, y(s))ds 4)

where A = p(1)y’(1) is unknown constant be determined. Again integrating equation (4)
from O to ¢, and using BCs y(0) = y we obtain

roq 1 ta
Y(f)=y+Ah(t)—/ 7/ q(s)f(s, y(s))dsd§, where h(f)Z/ i (5)
o P& Je o p&)

1
On using the other BCs y(1) = f g(@®)y(t)dt 4+ B, we find the value A as
0
1 1 1
y() =y + Ah(1) —/ 7/ q(s) f(s, y(s))dsds,
o p&) Je

1 1 1 1 1
A= m(—yﬂ‘“r/o g(r)y(r)dr+/0 @/E q(s)f(s,y(s))dsd‘?), ©)

where h(1) = fol % By substituting the value of A form (6) into equation (5), we get

1) = +@(— +/3+/1 ® (t)dt—i—/ll/l ()£ (s (s))dsds)
YO TR\ Y o & o p® J; T
t 1 1
- f — / 905 f (s, y(s)dsdE. ™)
o p&) Je

Rewriting the above equation, we get

_y(d) —h@) k@) ! LS B
y(t)_T+m(ﬁ+/o g(t)y(t)dtJr/O %fé Q(S)f(s,y(S))dsdé)

| 1
—f 7/ q(s) f(s, y(s))dsds. 3
o p&) Je

To apply ADM to (8), we decompose the unknown solution y(¢) and the nonlinear function
f(t, y(¢)) by infinite series as

YO =D yms fEy0) =) An, ©)

m=0 m=0
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where A,, are Adomian polynomials [40] are given by

1 dm

00
Am=%d)\mf<t,zyn)\n> , m=0,1,2

.. (10)
n=0 A=0

Substituting the series (9) into (7), we obtain

. .y h(t) ! =
n;)ym(z)—h(l)<h(1)—h<r>)+h(l)<ﬁ+/o g(s)(Zym)ds

m=0

1 1 1 o roq 1 o
—_— Ay )ds d& ) — —_— Ay |ds dE.
+ p(&)/g M(,;) ) ! S) / 17(5)./5 q(s)<m2=0 ) v

an

The above equation further simplified as

S _ h(t)  h(t) 1 00
mXZE))’m(t) —)’-I—(ﬁ—)/)m-i-m{/o g(S)<mZ=0ym>ds

1 1 1 [’} P . -

- A, )dsdE} — o A, \dsde.
+/0 p(@/E ‘“”(;ZO ) sdé /0 p(g)/é q(s)<z ) sdg

m=0
12)
On comparing both sides of (12), we find the following iteration method for the approxi-
mate solution of (1) with BCs y(0) = y, y(1) = fol g(s)y(s)ds + B as follows
) =y,

B h(t)y k(o) ( (! Lot
(@) =B - V)m + m(/o g(S)yo(S)der/O @/g q(S)Aodsd$>

t 1 1
—/0 %/E q(s)Aodsdé,

h
yj(t) = Lol

1 1 | 1
/’l(l)(/(‘) g(s)yj—l(s)ds-l-/o @L q(s)Aj_]dsdg>

t 1 1
- —_ Ai_dsdE, j=2,3,...
/op(é)/gq(s)’lss J

(13)

The above proposed scheme gives the complete determination of solution components y ;.
The nth order approximate solution is obtained by truncating the series past the nth term as

Y1) =)y (0. (14)
j=0
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] tl*k
Remark 1 Tt should be noted that if we take p(t) = ¢(t) = *, h@) = / —kds = ,
[

1 -k

h(l) = ﬁ, % = 117¥, the GTFEs reduce into the LEFEs. It is given below.

1 1 1 1
YO =y + (B -y +r1‘k< /0 g()y(s)ds + /0 = fg s"f(w(s))dsds)

t 1 1
—/ 7/ sE £ (s, y(s))dsdé. (15)
o &% Je

Therefor, the iterative scheme (13) is also valid for solving LEFEs (3) subjected to BCs
Y0) =y, y(1) = [y gs)y(s)ds + B.

1
Iterative Scheme for BCs Iin:)p(t)y’(t) =0, y1) = f g(s)y(s)ds + B
t— 0

Integrating equation (1) from O to ¢ and using the BCs ling) p()Y' (1) =0, we get
—

] t
Y1) = 7/ q(s$) f(s, y(s))ds. (16)
p@) Jo

Again integrating equation (16) from ¢ to 1, we obtain

1 1 &
y(t)=B —/ 7/ q(s) f(s, y(s))dsd§, a7
¢ P& Jo

1
where B = y(1) is constant to be determined. Using the other BCs y (1) = / g(s)y(s)ds+p
0

on equation (17), we find the value B as

1
B= /0 2($)y(s)ds + B. (18)
Using the value of B into equation (17), we get
1 L &
y(t) =ﬂ+/ 8(s)y(s)ds —/ 7/ q(s) f (s, y(s))dsds. 19)
0 ¢ &) Jo
Substituting the series (9) into (19), we obtain
oo 1 00 1 1 £ o]
Y= /Og(s)(n;)y)s [ ) (3 an Jasae. o

Comparing both sides of (20), we find the following iteration method for the approximate
solution of (1) with BCs lim;_.¢ p(t)y'(t) =0, y(1) = fol g(s)y(s)ds + B as follows

yo(®) = B,
1 I §
yl(t):/() g(S)YO(S)dS—/I @/0 Q(S)AOdefv (21)

1 L §
50 = [ s@yaeds— [ [Cawa s, =23
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Hence the n-term approximate series solution is obtained as

Yn(t) =) i (). (22)
j=0

Remark 2 Tt should be noted that if we take p(t) = ¢g(t) = t*, the GTFEs reduce into the
LEFEs

1 1 &
y(@) =8 +f0 g(s)y(s)ds —/ 57/0 sKf (s, y(s))dsdg. (23)
'

Convergence Analysis

In this section, we first provide sufficient theorems for the existence of a unique solution and

the convergence analysis of the proposed method for the GTFEs and the LEFEs subject to

integral type BCs. Let X = C[0, 1] be a Banach space with the norm || y|| = rrE(e)v%] ly@®)l, y €
1€l0,

X.
Let us write the integral equations (8) and (19) into the following operator theoretic form

y =Ny, (24)

where the nonlinear integral operator N : X — X are given by

Ny=y+(— >h(’)+h(”{/1 ) (s)ds+/]1/1 )/ (s (s))dsds}
A T RTO] I o p® Jg T
t 1 1
- / . / 4(5)f (5. y(s))dsdE. 25)
o P&) Je
and
1 I &
Ny=p+ / g()y(s)ds — / L / 4(5) (5. y(s))dsdE. 26)
0 ¢ P& Jo

Before establishing convergence of the recursive schemes, we first provide a sufficient con-
dition that guarantees a unique solution of (8) and (19).

Theorem 1 Assume that the nonlinear function f(t, y(t)) is continues and g—’: is bounded
on {[0, 1] x R}. Then integral equation (8) has a unique solution in X, whenever § =

M| +2M,L < 1, where
| 1
—_— q(s)dsdé‘.
fo pé) /g
Proof For any y, y* € X, we have

h(t) 1 i (I 1
m(/o g(S)(y(S)—y (S)>ds+/0 E/s q(s)(f(s,y(s))

| 1
- roen)asae) = [ [Ca (s v ~ sy Jdsde,

<L, M>:= max
1€l0,1]

1
9
M, :=/ ¢(s)ds, ‘—f
0 dy

Ny — Ny*|| = max
Ny Y max
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Applying the mean value theorem on f, we find

Ny = Ny*|l < My max_|y(s) — y*(s)| +2M2L max [y(s) — €2
s€[0,1] s€[0,1]
where
! h(t 9 A B
M, :=/ g(s)ds, max Q of <L, M := max / —/ q(s)dsd“;“.
o re[0.11 h(1) dy tel0,11] Jo p(§) Je

The above inequality (27) reduces to
[Ny = Ny*|| < (M1 +2MaL)|ly — y*|| = 8lly — y*Il. where & =M +2M>L.

This shows the integral equation (8) has a unique solution in X whenever § < 1. O

Theorem 2 Assume that the nonlinear function f(t, y(t)) is continues and 5= is bounded

vy

on {[0, 1] x R}. Then integral equation (19) has a unique solution in X, whenever s =
M| + MsL < 1, where
1 £
/t @/0 q(s)dsd&‘.
Proof For any y, y* € X, we have
INy = Ny*|l = max /O 6 (5 — 3 ©))ds

1 §
_f E/O Q(S)(f(S,y(S))—f(s,y*(s)))dsds‘,
13

1
M, ::/ g(s)ds, Mj .=
0

max
t€[0,1]

Applying the mean value theorem on f, we find

Ny = Ny*|l < My max |y(s) — y*(s)| + M3L max |y(s) —
s€l0, 1] 5€l0, 1]

g ) dsd
/,p@)/oq(””"

INy = Ny*Il <= (M + M3L)|ly — y* = 8lly — y*Il, where 6= M;+ M3L.

where

1
M, ::f g(s)ds, M3 := max
0 tel0,1]

Thus we have

This shows the mapping is contraction, and the integral equation (19) has a unique solution
in X whenever § < 1. O

Theorem 3 Assume that all the conditions of Theorem 1 hold. Let yq, y1, y2, . . . be the com-
ponents of series defined by (13) and let W, be the n-terms series solution defined by (14).
Then the sequence {yr,} converges, whenever § == M| +2M>L < 1 and || y1] < oo.

Proof Using (13) and (14), we have

1 1 1
Y = +m(h(l)—h(t))+2(h(l)</ g)’j—]ds-i—/o @fg q(s)A(,‘_ldsds)

t 1 1
- _ S)A;_1dsd& ).
/o P(f)/g 4()Ajrds 5)
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On simplification we get

Yn = +m(h(1)—h(t))+m</ (s)Zy,ds+fo p(s)/ (s)ZAdsd§>

n—1

- Add 28
/Op(é)/ q(s)Z sde. 28)

For all n, m € N, with n > m, consider

n—1 m—1

0)
1 = mll = max hm(/ g(s><§yj—j§)y,~>ds

m—1

n—1
/op@)/ W@AJ ;Af>ds‘15)

_/o p(S)/ 90)

From ( [41]), using the relation Zl}zo Aj < f(x, V¥y), the above equation reduces to
1Vn — ¥mll <

()(/ ¢() (Yot — ¥ )dS+/11/1q(s)(f(sw )
o | 7 et T Vmel o P& Je PPl

t 1 1
—f(s,wmfl))dsds>— / . / ) (fGs. wnn—f(s,wm]))dsds‘.
o p&) Je

n—

Z(ﬂlA, mf )dsdg-" (29)

1
m=0 " j=0 j=0

By following the steps of Theorem 1, we obtain
1V — Ymll < 8I¥n-1 — Ym—1ll, where &= M;+2M>L.
Setting n = m + 1, the above relation takes form
1¥mt1 = Yl < 81%m — Y1l < 8 Wm—1 = Y2l < ... < 8" Y1 — Yoll.  (30)

The inequality (30) for all n, m € N with n > m becomes

o 1 —gn—m
1Wn — Ymll < 8™(L+8+8%+ -+ 8" Hllyy — Yol = 6™ <ﬁ) Iyl

It follows that

m

V0 — Ymll = 1 6”y1”’ since § <1, (BD
l1¥n — ¥ml — 0asm — oo and || y;] < oo. O
Theorem 4 Assume that all the conditions of Theorem 2 hold. Let yg, y1, y2, . . . be the com-
ponents of series defined by (21) and let \r, be the n-terms series solution defined by (22).
Then the sequence {yr,} converges, whenever § == M1 +2M>L < 1 and ||y1] < oo.

Proof The proof is similar to Theorem 3, so it is omitted. ]
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Numerical Simulations

In this section, the proposed iterative schemes (13) and (21) are used to solve several examples
of the GTFEs and LEFEs subject to integral BCs. To the best of our knowledge, there are
no research papers on numerical methods for solving such problems subjected to integral
type BCs. So, to check the efficiency of the proposed processes, we define the absolute error
E, (t) and the maximum absolute error M,, as

Ep(@) = ¥ (@) — y(@)I, (32)
M, =Omax1|1p,,(t)—y(z)|, n=12,... (33)
<t<

where y(t) is the exact solution and v, (¢) is n-term approximate series solution.

Lane-Emden-Folwer Type Equations

Example 1 Consider the LEFEs (3) subject to nonlocal integral type BCs

tik(t"y/(z))’ =12:%°1) — 2B + K12y (1), te(0,1),

1 cosech™1(2)

_ 1 (' (34)

This problem is a special case of the GTFEs (1) with p(t) = ¢(t) = * k€ (0,1),
. —1
1253(1) = 23 + k)12 (1) Here y = 3, g(s) = §. and B = — — «2<—2. The exact

1
414"

solution is y(t) =

According to (13), the solution components y; are computed recursively as

(35)
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Table 1 Maximum absolute error

Myon=123.... 80f My k=0.25 k=0.5 k=0.75
Example 1 1 5.99E—03 6.59E—03 7.36E—03
2 1.74E—03 2.25E—03 3.02E—03
3 5.06E—04 7.56E—04 1.18E—03
4 1.43E—-04 2.46E—04 445E—-04
5 3.90E—05 7.77TE—05 1.64E—04
6 1.01E—05 2.36E—05 5.86E—05
7 2.49E—-06 6.81E—06 2.01E—-05
8 5.66E—07 1.84E—06 6.58E—06
Table 2 Results of approximate solutions and the absolute errors for k = 0.5 of Example 1
4 V4 Ve 4 E4(r) Eg(1) Eg (1)
0.0 0.500000000 0.500000000 0.500000000 0.000000 0.000000 0.000000
0.1 0.500106018 0.500004369 0.499994552 1.12E—-04 1.06E—05 8.02E—07
0.2 0.500058590 0.499915027 0.499901163 1.58E—04 1.49E—05 1.13E-06
0.3 0.499687601 0.499512785 0.499495899 1.93E—-04 1.82E—05 1.38E—06
04 0.498627195 0.498428432 0.498409215 2.19E-04 2.07E—-05 1.57E—06
0.5 0.496376679 0.496161515 0.496140658 2.37E-04 2.25E—05 1.71E-06
0.6 0.492337664 0.492115160 0.492093472 2.46E—04 2.34E—05 1.81E—06
0.7 0.485879811 0.485660625 0.485639044 2.42E—-04 2.34E—05 1.83E—06
0.8 0.476438908 0.476234345 0.476213876 2.26E—-04 2.22E-05 1.80E—06
0.9 0.463634598 0.463455108 0.463436717 1.99E—-04 2.01E—-05 1.69E—06
1.0 0.447376734 0.447230608 0.447215117 1.63E—04 1.70E—05 1.52E—06

Using (35), the n-term approximate solution ¥, (t) = Z?:O y;(t) for any k € (0, 1) can
be computed. For numerical purpose, the approximate solutions (for k = 0.5) is listed as

4

1 t
va() =5 + 0.003199+/7 — - 0.002380:°/% 4+ 0.011718¢% + 0.0004507'7/2

1
Y3(r) = 3+ 0.001090+/7 —

—0.00193¢'2 + 0.0000947'6,

4

t
T 0.000933¢%/2 — 0.0000317° 4 0.011718¢8

(36)

+0.000517¢'7/2 + 0.000013¢° — 0.002441¢'2 — 0.000184:%/% + 0.000487¢'°
+0.000012¢23/2 — 0.000050¢%° + 1.66 x 10~%#%*.

(37

Applying (32) and (33), we have computed the absolute error E,(¢) and the maximum
absolute error M,,. The maximum absolute error M, is given in the Table 1 fork = 0.25, k =
0.5, k = 0.75. The numerical results of the approximate solution and the absolute errors are
listed in Table 2 for k = 0.5.
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Example 2 Consider the LEFEs (3) subject to nonlocal integral type BCs

tik(r" Y1) = 161520 — (43 + b)) @, 1€ (0, 1),
1
y(0) =1In <%), y(l) = / %y(s)ds + ( —2+tan”! (2)). (38)
0

This problem is a special case of the GTFEs (1) with p(r) = ¢g(¢) = t*, k € (0, 1),
[ =16:%20 — (43 4+ k)r?) e’. Here,y = In(3), g(s) =1, B=-2+tan"'(2).

Its exact solution is y(r) = In ( 3 +t4)

According to (13), the solution components y; are computed recursively as

o) =1n (%)
1 1 1—k 1—k L 1y rl .
no= (=2t () )t ([ s [ [t avdsae)
/gk/ sk Aodsde,
1
yj(f)—[l k(/(; Ey] 1ds+/ ék/ s A 1dsd§‘>
t 1 .
_/0 57/5 s*Aj_ydsdg, j=2,3,...

Applying (39), the n-term approximate solution v, () = Z?:o y;(t) (forany k € (0, 1))
can be found. The approximate solution (for k = 0.5) is listed as

(39

1
Yo(t) =In <Z> +0.018957¢1/4 — 70 007536¢7/* +0.03125:% + 0.001035¢33/4
—0.003975¢'% + 0.000128t16 (40)
1
¥3(t) = In (Z) +0.010095¢'/4 — n —0.004181¢'7/* — 0.000114¢%/% + 0.03125¢8

+0.001488:33/* +0.000033¢'7/2 — 0.005208¢'2 — 0.000375:*%/* + 0.000863¢'°
+ 0.000016:%/% — 0.000063:%° 4 1.36 x 107024, 1)

The maximum absolute error M,, are given in the Table 3 fork = 0.25, k = 0.5,k = 0.75.
The numerical results of approximate solutions and the absolute errors are listed in Table 4
fork =0.5.

Example 3 Consider the LEFEs (3) subject to nonlocal integral type BCs
1
[—k(tky/(t))/ = 412D 21+ k)e*®, 1€ (0,1),

1 ~1 1\ 3 (42)
lim %y’ (1) =0 y(l):/ —y()ds+ | — +tan"' (=) = >1In5).
=0 ’ o 4 2 2) 4
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Table 3 Maximum absolute error

e M, k=025 k=05 k=0.75

Example 2 1 2.61E—02 2.79E—02 3.04E—02
2 9.35E—03 1.18E—02 1.58E—02
3 3.48E—03 5.22E—03 8.42E—03
4 1.29E—03 2.29E—03 4.46E—03
5 4.75E—04 9.96E—04 2.35B-03
6 1.72E—04 4.29E—04 1.23E-03
7 6.20E—05 1.83E—04 6.41E—04
8 2.20E—05 7.79E—05 3.32E—04

Table 4 Results of approximate solutions and the absolute errors for k = 0.5 of Example 2

t V4 4 Vg E4(1) Eg(1) Eg(1)

0.0 —1.386294361 —1.386294361 —1.386294361 0.000000 0.000000 0.000000
0.1 —1.385364980 —1.386141592 —1.386287409 9.54E—04 1.77E—04 3.19E—-05
0.2 —1.385345481 —1.386443042 —1.386649122 1.34E—-03 2.51E-04 4.51E-05
0.3 —1.386670127 —1.388010466 —1.388262153 1.64E—-03 3.06E—04 5.51E-05
0.4 —1.390786569 —1.392322260 —1.392610721 1.88E—-03 3.51E-04 6.32E—05
0.5 —1.399722017 —1.401411293 —1.401728847 2.07E-03 3.87E—-04 6.97E—05
0.6 —1.415970002 —1.417767660 —1.418106107 2.21E-03 4.12E—04 7.44E—05
0.7 — 1.442305508 — 1.444159608 — 1.444509596 2.28E—-03 4.27E—-04 7.72E—05
0.8 — 1.481502062 —1.483354921 —1.483706054 2.28E—-03 4.29E—04 7.79E—05
0.9 —1.535967844 —1.537760327 —1.538101838 2.21E-03 4.17E-04 7.63E—05
1.0 —1.607366851 —1.609043626 —1.609365320 2.07E—-03 3.94E-04 7.25E—-05

This problem is a special case of the GTFEs (1) with p(t) = ¢(t) = *, k>0, f =
4122 — 2(1 4 k)e¥®. Here, g(s) = % and 8 = %l + tan™! (%) — %lnS. The exact
solution is y(t) = In (ﬁ)

According to (21), we start with yg = 8, and obtain the functions y; recursively:

(1) 1+t 1! 315
= —— +tan — ] —-In5,
7 2 2) 4

| | (43)
1 1[5, .
yj(t):/ fyjfl(s)ds—/ —k/ stAj_ydsdE, j=2,3,...
0o 4 + §Jo
In view of (43), we find the approximate solutions (for k = 2) is listed as

Yo (1) = —1.34533 — 0.277117¢% + 0.0402845:* — 0.00525404° + 0.00015371978,
“44)

Y3(t) = —1.37199 — 0.2592261% + 0.036295:* — 0.00737899:° + 0.001370417%
— 0.00009440877'° 4 1.84 x 107012, (45)

The maximum absolute error M,, are given in the Table 5 for k = 1,k = 2,k = 5. The
numerical results of approximate solutions and the absolute errors are listed in Table 6 for
k=2.
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Table 5 Maximum absolute error

My,n=1,2.3,...,80f Mn k=1 k=2 k=3

Example 3 1 9.96E—02 1.04E—01 1.10E—01
2 4.01E—02 4.09E—02 4.20E—02
3 1.44E—02 1.43E—02 1.40E—02
4 4.70E—03 4.51E—03 4.20E—03
5 1.34E—03 1.23E—03 1.0SE—03
6 3.18E—04 2.90E—04 2.59E—04
7 7.83E—05 6.97E—05 5.93E—05
8 1.77E—05 1.86E—05 1.77E—05

Table 6 Results of approximate solutions and the absolute errors for k = 2 of Example 3

1 V4 Y6 143 Eq(1) Eg(1) Eg(1)

0.0 —1.381784376 —1.386031653 —1.386313007 4.50E—-03 2.62E—-04 1.86E—05
0.1 —1.384303553 —1.388527506 —1.388809377 4.48E—03 2.63E—-04 1.81E—-05
0.2 —1.391822431 —1.395978034 —1.396261339 4.42E—-03 2.66E—04 1.66E—05
0.3 —1.404227179 —1.408273950 —1.408559272 4.31E-03 2. 71E—-04 1.43E—-05
0.4 —1.421334880 —1.425238917 —1.425526350 4.18E—03 2.76E—04 1.12E-05
0.5 —1.442902833 —1.446637667 —1.446926758 4.01E-03 2.81E—-04 7.77E—06
0.6 —1.468639930 —1.472186284 —1.472476061 3.83E—-03 2.85E—04 4.01E—06
0.7 —1.498218935 —1.501563759 —1.501852851 3.63E-03 2.88E—04 1.49E—-07
0.8 —1.531288647 —1.534423942 —1.534710734 3.42E-03 2.90E—-04 3.63E—06
0.9 —1.567485428 —1.570407080 —1.570689864 3.21E-03 2.90E—04 7.22E—06
1 —1.606444220 —1.609150278 —1.609427384 2.99E-03 2.87E—04 1.05E—05

Example 4 Consider the LEFEs (3) subject to nonlocal integral type BCs
1
(Y 0) ==y, 1eO,

, 1 1 1 [ 1 1 (46)
y(0) =0, y(l)Z/0 my(s)ds—ﬁ 3(—50+s1nh (E))

This problem is a special case of GTFEs (1) when p(1) = q(1) = 1%, f = —y>(¢). Here,
2(s) = s and B = — 1k 3(—50+sinh*1 (%) ) The exact solution is y(1) = ,/ 52-.

According to (21), we start with yg = 8, and obtain the functions y; recursively:

__ v Al -
yo(t) = 100\@( 50 + sinh (ﬁ))

- P (47)
— . 24 .
v () —/(; my,q(s)ds —/; ?/o sTAjdsdé j=1,2,3,...
Using the scheme (47), we find the approximate solutions as
Yo (1) = 0.970462 — 0.1151241% + 0.0103368:*, (48)
¥3(t) = 0.983355 — 0.1355697% 4 0.0196118:* — 0.001545317°. (49)
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Table 7 Maximum absolute error estimate M,,n =1, 2,3, ..., 8 for Example 4

k My M, M3 My Ms Mg M7 Mg

2 0.058096  0.029538  0.016645  0.009956  0.006195  0.003964  0.002591  0.001721

Table 8 Results of approximate solutions and the absolute errors for k = 2 of Example 4

t (2 Y6 Vs Eq(1) E¢ (1) Eg(1)

0.0 0.990043198 0.996035564 0.998278383 0.009956 0.003964 0.001721
0.1 0.988573633 0.994454116 0.996652223 0.009763 0.003883 0.001685
0.2 0.984196420 0.989750632 0.991818982 0.009202 0.003648 0.001580

0.3 0.977004743 0.982045246 0.983911212 0.008324 0.003284 0.001418
0.4 0.967149738 0.971530238 0.973139648 0.007204 0.002824 0.001215
0.5 0.954834415 0.958458854 0.959779178 0.005934 0.002310 0.000989

0.6 0.940305485 0.943131080 0.944151492 0.004605 0.001780 0.000759
0.7 0.923843443 0.925877581 0.926606279 0.003302 0.001267 0.000539
0.8 0.905751337 0.907043204 0.907502819 0.002089 0.000798 0.000338
0.9 0.886342780 0.886971362 0.887193580 0.001013 0.000385 0.000162

1.0 0.865929812 0.865990499 0.866010953 9.55E—-05 3.49E—-05 1.44E—-05

The maximum absolute error M,, are given in the Table 7 for k = 2. The numerical results
of approximate solutions and the absolute errors are listed in Table 8§ for k = 2.

Example 5 Consider the LEFEs (3) subject to subject to nonlocal integral type BCs
1
o) == 0<i<1,

, I 1
y(0) =0, Y(I)Z/O Ey(s)ds+%(_8+”+ﬁ”)

(50)

This problem is a special case of GTFEs (1) when p(t) = q(t) = t, f = —e¥®. Here,
_ 1 —1(_ o — 4-212
g(s) = 5 and B = 55 ( 8+ + ﬁn) The exact solution is y(t) = 21n <(3—2ﬁ)t2+1>'

According to (21), we start with yg = 8, and obtain the functions y; recursively:

Yo(r) = 2—10 (—8+n +x/§n),

v () =/ —yj-1(s)ds —f f/ sAj dsd§ j=1,2,3,...
o 10 + §Jo
Using the scheme (51), we find the approximate solutions as
Yo (1) = 0.28258 — 0.304307¢% + 0.014989:*, (52)
Y3 (1) = 0.30295 — 0.3263561% + 0.02226721* — 0.00122345. (53)

The maximum absolute error M), are given in the Table 9 for k = 1. The numerical results
of approximate solutions and the absolute errors are listed in Table 10 for k = 1.
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Table 9 Maximum absolute error estimate M,,n =1, 2,3, ..., 8 for Example 5

k My M, M3 My Ms Mg M7 Mg

1 0.094688  0.034114  0.013744  0.005945  0.002698  0.001267  0.000610  0.000300

Table 10 Results of approximate solutions and the absolute errors for k = 1 of Example 5

! V4 143 143 Eq(1) E¢ (1) Eg(1)
0.0 0.310748492 0.315426594 0.316394134 0.005945 0.001267 0.000300
0.1 0.307395792 0.312015197 0.312969809 0.005870 0.001250 0.000296
0.2 0.297368583 0.301815050 0.302731673 0.005646 0.001200 0.000283
0.3 0.280758792 0.284927225 0.285783091 0.005288 0.001120 0.000264
0.4 0.257717132 0.261516715 0.262292575 0.004813 0.001014 0.000238
0.5 0.228449437 0.231807443 0.232488401 0.004247 0.000889 0.000208
0.6 0.193211694 0.196075664 0.196651555 0.003615 0.000751 0.000175
0.7 0.152303921 0.154642125 0.155107439 0.002944 0.000605 0.000140
0.8 0.106063102 0.107863390 0.108216815 0.002259 0.000459 0.000105
0.9 0.054855424 0.056122755 0.056366465 0.001583 0.000315 7.21E-05

1.0 0.000931886 0.000178789 3.99905E—05 0.000931 0.000178 3.99E—-05

Thomas-Fermi Type Equations

Example 6 Consider the GTFEs (1) with p(r) = t*, g(r) = t*H 2 subject to nonlocal
integral type BCs

1 /
m(t"y’(t)) =1k +1— 1D —2le™20 €0, 1)
1
(s)
YO =1 (5), y(1)= / Y045
0
+% (HurwitzLerchPhi [—%, 1,1+ %] +151n(6)) .

Note that the HurwitzLerchPhi[z, s, a] gives the Hurwitz-Lerch transcendent ®(z, s, a). The
Hurwitz-Lerch transcendent is defined as an analytic continuation of

oo Zn
D(z,5,a) = —_—.
(z,5,a) Z(n+a)s
n=0
Here,y = In (5), = JT, B = 21—0 {HurwitzLerchPhi [—%, 1,1+ H + 151n(6)} . For
parameters k € (0, 1) and [ = 1, the problem with p(¢) = tFand g(t) = *t1"2isa doubly

singular. The exact solution is y(t) = In (5 + t[).
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Table 11 Maximum absolute

ot Mmoo M, k=025 k=05 k=0.75
Example 6 when ! = 1 1 2.34E—02 2.34E—02 2.38E—02
2 341E-03 4.23E-03 5.56E—03
3 5.04E—04 7.80E—04 1.33E—03
4 74TE—05 1.42E—04 3.14E—04
5 1.10E—05 2.57E—05 7.33B—05
6 1.61E—06 4.58E—06 1.68E—05
7 235607 8.03E—07 3.77E—06
8 3.40E—08 1.38E—07 8.22E—07

According to (13), we start with yp = In (5) and obtain the functions y; recursively:
Yo(t) =In (5),

1 1 1
yi(r) = (% {HurwitzLerchPhi [—g, 1,1+ 7} + 151n(6)} —In (5))t1*’<

11 1 1 1 r 1 1
+t17k(/‘0 Zyods—i—/o 57/; skH*ondst) —/0 57./5 skH*ondsdé,
. _ A=k ! l . ! L ! k+1-2 4 .
yit) =t yj—1ds + T s Aj_dsd§
0o 4 0o &% Je

t 1 1 3 )
—/0 57/; SKH2A idsds, j=2,3,...

(54)
Using the scheme (54) (for/ = 1, kK = 0.5), we find the approximate solutions as
Yo (1) = In (5) — 0.005554/7 + g +0.0018551°/% — 0.021% — 0.000445¢°/2
+0.0023117> — 0.0000761*, (55)
¥3(1) = In (5) — 0.00101/7 + g +0.0003707*/% — 0.019987¢% — 0.000237¢/2
+ 0.002658¢> 4 0.000106¢7/ — 0.0003781* — 5.276 x 107°/°/2
+0.0000277° — 6.156 x 1077¢°, (56)

The maximum absolute error M,, are given in the Table 11 fork = 0.25,k = 0.5,k = 0.75
and / = 1. The numerical results of approximate solutions and the absolute errors are listed
in Table 12 for/ = 1 and k = 0.5.

Example 7 Consider the GTFEs (1) with p(r) = t*, ¢(¢) = t*~! subject to nonlocal integral
type BCs

1 ' ,
Ik—_l<tky/(t)) — 10 _ke¥D e (0, 1)

0) =1 ! 1= 'l ds +1 ! ! 141 27
y()—ﬂ(g) y()—ﬁlzﬂw‘v+n(§>+z<— +n<4)>.

(57
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Table 12 Results of approximate solutions and the absolute errors for / = 1 and k = 0.5 of Example 6
t V4 (43 143 E4(0) Eg(t) Eg (1)

0.0 1.609437912 1.609437912 1.609437912 0.000000 0.000000 0.000000
0.1 1.629185461 1.629238881 1.629240493 5.50E—-05 1.65E—06 4.65E—08
0.2 1.648583055 1.648656336 1.648658561 7.55E—05 2.28E—06 6.47E—08
0.3 1.667616745 1.667704072 1.667706742 9.01E—-05 2.74E—06 7.83E—08
0.4 1.686297481 1.686395834 1.686398864 1.01E-04 3.11E-06 8.96E—08
0.5 1.704637192 1.704744658 1.704747993 1.10E—04 3.43E—-06 9.94E—-08
0.6 1.722647656 1.722762887 1.722766489 1.18E—04 3.71E-06 1.08E—07
0.7 1.740340227 1.740462217 1.740466058 1.25E—-04 3.95E—-06 1.16E—07
0.8 1757725774 1.757853734 1.757857793 1.32E-04 4.18E—06 1.24E—-07
0.9 1.774814660 1.774947960 1.774952219 1.37E—04 4.39E—06 1.31E-E—-07
1.0 1.791616763 1.791754885 1.791759331 1.42E—04 4.58E—06 1.38E—07

Here, y = In(3), g(s) = 1, B =In (%) + 1 (=1 +1n(%)). For any k € (0, 1), the
problem with p(f) = t*, g(r) = +*~1, is a doubly singular. The exact solution is y(f) =
In (54)-

In view of (13), we start with yo = In (%), and obtain the functions y; recursively:

1
yo(r) =In <5>,
i) = (m (1> +1 (—1 +1n (—7>> ~In (1)>t"k

3) 4 4 2
1—k "1 " lkfl 1 lkfl
+1 /OZ)’ods+/0 57/g s"7 Apdsdé _/o 57/; s* Aodsds,

(t —tl—k(/ll d +fl 1/1 vy dd)
yj(t) = gl e SS j-1dsd§

1
(L s*TA;_1dsds j=2.3
. = L3,

(58)
Using the scheme (58) (for/ = 1, kK = 0.5), we find the approximate solutions as
1 t
V(1) =In (5) +0.016449/1 — i 0.010883%/? 4 0.125¢> + 0.006530¢°/2
—0.0361117 + 0.0029761*, (59)

1 t
Y3(t) =In (5) +0.003265+/7 — 5 0.00274173/% 4 0.124822¢% 4 0.0038211/%

—0.0413821% — 0.003912:7/% + 0.014781* + 0.000483¢°/2
—0.002725¢° + 0.000150¢°. (60)

The maximum absolute error M,, are given in the Table 13 fork = 0.25, k = 0.5,k = 0.75.
The numerical results of approximate solutions and the absolute errors are listed in Table 14
fork =0.5.
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Table 13 Maximum absolute

o ooy M, k=025 k=05 k=0.75
Example 7 when ! = 1 1 5.41E—02 5.41E—02 5.605E—02
2 7.132E—03 9.867E—03 1.651E—02
3 1.258E—03 2.027E—03 4.628E—03
4 1.76E—04 3.928E—04 1.246E—03
5 2.913B—05 7.675E—05 3.112E—04
6 3.784E—06 1.376E—05 7.351E—05
7 5.8556—07 2.305E—06 1.689E—05
8 6.548E—08 3.339E—07 3.227E—06

Table 14 Results of approximate solutions and the absolute errors for / = 1 and k = 0.5 of Example 7

! V4 Ve Vs Eq(1) Eg(1) Eg(7)

0.0 —0.693147181 —0.693147181 —0.693147181 0.000000 0.000000 0.000000
0.1 —0.741755524 —0.741932648 —0.741937313 1.81E—04 4.69E—06 3.14E-08
0.2 —0.788214750 —0.788450928 —0.788457306 2.42E-04 6.43E—06 5.46E—08
0.3 —0.832626246 —0.832901413 —0.832909042 2.82E—-04 7.71E-06 8.06E—08
0.4 —0.875156313 —0.875459973 —0.875468628 3.12E-04 8.76E—06 1.09E—-07
0.5 —0.915955813 —0.916281039 —0.916290590 3.34E-04 9.69E—06 1.42E-07
0.6 —0.955159155 —0.955500892 —0.955511267 3.52E-04 1.05E—05 1.77E-07
0.7 —0.992885973 —0.993240397 —0.993251558 3.65E—-04 1.13E-05 2.15E-07
0.8 —1.029243004 —1.029607240 —1.029619163 3.76E—04 1.21E-05 2.54E—-07
0.9 —1.064325708 —1.064697771 —1.064710443 3.85E—-04 1.29E—-05 2.93E-07
1.0 —1.098219526 —1.098598528 —1.098611955 3.92E-04 1.37E-05 3.33E-07
Example8 Consider the GTFEs (1) with p(t) = t*, g(t) = ¢**'=2 subject to nonlocal

integral type BCs

I / 4 ,
5 (1Y 0) = PO —1k 41D, e ©.1)

1

1
: k.’ _ —
tlggg)t y'(#) =0, y(l)—fO 1Oy(s)ds

—% (HurwitzLerch Phi [—%, 1,1+ H +361n(5)) .

Here, g(s) = 1. B = — 45 { HurwitzLerchPhi [—3, 1,1+ ] +361In(5)} . For the fixed
parameters, k = 0.5, 1 = 1.25 and k = 0.25, ] = 1.25, this problem with p(t) = t* and

q(t) = t**=2_is a doubly singular. The exact solution is y(r) = In (

)

According to (21), we start with yo = 8, and obtain the functions y; recursively:

1 1 1
yo(t) = —— [HurwitzLerchPhi |:—f, 1,1+ 7

40 4

b L A .
yit) = A EYj—l(S)dS— 57 A s Aj_dsdg, j=1,2,3,...
!

] + 36ln(5)} ,

(61
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Table 15 Maximum absolute error M, ,n = 1,2, 3, ..., 8 of Example 8 when/ = 1

My k=0.25 k=0.5 k=0.75 k=1 k=2

1 4.27E—-03 4.27E—-03 4.39E—03 5.25E—-03 8.39E—-03
2 1.87E—03 6.94E—04 3.24E—04 7.56E—04 1.97E—03
3 5.20E—04 1.65E—04 5.78E—05 2.05E—04 4.77E—04
4 1.49E—04 4.32E—05 1.58E—05 5.07E—05 1.00E—04
5 4.37E—05 1.15E—05 4.04E—06 1.19E—05 1.97E—05
6 1.29E—05 3.12E—E—-06 1.01E—06 2.77E-06 3.60E—06
7 3.89E—-06 8.47E—-07 2.50E—-07 6.23E—07 6.02E—07
8 1.18E—06 2.31E-07 6.18E—08 1.39E-07 9.11E—08

Table 16 Results of approximate solutions and the absolute errors for / = 1 and k = 0.5 of Example 8

! V4 V6 vs Eq(t) Eq (1) Eg(1)

0.0 —1.386337585 —1.386297481 —1.386294592 4.32E—05 3.11E-06 2.31E-07
0.1 —1.411025095 —1.410989742 —1.410987179 3.81E-05 2.76E—06 2.05E-07
0.2 —1.435118141 —1.435086977 —1.435084707 3.36E—05 2.45E—-06 1.81E—-07
0.3 —1.458644581 —1.458617188 —1.458615183 2.95E-05 2.16E—06 1.60E—07
0.4 —1.481630392 —1.481606442 —1.481604682 2.58E—05 1.90E—06 1.40E—-07
0.5 —1.504099824 —1.504079054 —1.504077519 2.24E-05 1.65E—06 1.22E—-07
0.6 —1.526075541 —1.526057732 —1.526056409 1.92E-05 1.42E—-06 1.05E-07
0.7 —1.547578752 —1.547563724 —1.547562598 1.62E—05 1.21E-06 8.96E—08
0.8 —1.568629334 —1.568616931 —1.568615993 1.34E—05 1.01E—06 7.46E—08
0.9 —1.589245940 —1.589236026 —1.589235266 1.07E-05 8.21E-07 6.04E—08
1.0 —1.609446108 —1.609438551 —1.609437959 8.19E—06 6.38E—07 4.68E—08

Using the scheme (61) (for/ = 1, kK = 0.5), we find the approximate solutions as

V(1) = —1.38699 + 0.4/7 — 0.248331 + 0.0294741% — 0.0036261> + 0.000138:*  (62)
V3 (1) = —1.38646 + 0.4/1 — 0.24975¢ + 0.£3/% 4+ 0.031011¢% 4 0.£5/% — 0.004929¢°
+0.000728¢* — 0.0000597° + 1.52 x 107°¢°. (63)

The maximum absolute error M,, are given in the Table 15 fork = 0.5,k =0.75,k =1,
k =2 and [ = 1. The numerical results of approximate solutions and the absolute errors are
listed in Table 16 for/ = 1 and k = 0.5.

Conclusion

An efficient analytical iterative method has been successfully applied for the approximate
solutions of the GTFEs and the LEFEs subject to nonlocal integral type BCs. These nonlocal
conditions arise mainly when the data on the boundary can not be measured directly. We
have first transformed the given nonlocal boundary value problem into an equivalent integral
equation in the first step. Then the modified decomposition method has been applied to the
resulting integral equation for an approximate solution with high accuracy. The sufficient

@ Springer



Int. J. Appl. Comput. Math (2022) 8:68 Page210f22 68

theorems for a unique solution and the convergence analysis of the proposed method for
the nonlocal boundary value problems have been provided and tested. Several numerical
examples are studied to confirm the accuracy, applicability, and generality of the proposed
method. Numerical results supporting theoretical expectations are given. To the best of our
knowledge, no research works on numerical methods for solving such problems subjected
to integral type BCs. Our computational results demonstrate the reliability of the numerical
treatment with the enhancements provided by using the proposed scheme.
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