
Int. J. Appl. Comput. Math (2022) 8:79
https://doi.org/10.1007/s40819-022-01278-5

ORIG INAL PAPER

On Solving a MFL Paradox in Linear Plus Linear Fractional
Multi- Objective Transportation Problem Using Fuzzy
Approach

Rachana Saini1 · Vishwas Deep Joshi1 · Jagdev Singh1

Accepted: 14 February 2022 / Published online: 18 March 2022
© The Author(s), under exclusive licence to Springer Nature India Private Limited 2022

Abstract
In the present work, we have introduced the more-for-less paradox situation in the linear plus
linear fractional multi-objective transportation problem (LPLF-MOTP). In this approach,
more-for-less (MFL) situation solved using the fuzzy methodology. The paradoxical solution
in multi-objective transportation problems gives us a less or equal compromise optimal solu-
tion when transfer more goods from source to destination. In this paper, we also discussed the
comparison of MFL solutions between fuzzy programming and compromise solution using
ranking procedure (Rizk-Allah). We observe that the result obtained using fuzzy approach
shown the superiority over MFL approach. The presented approach has been illustrated with
a numerical example.

Keywords Linear plus linear fractional · Multi-objective transportation problem · Fuzzy
theory · More-for-less paradox

Introduction

The real word problem with the transportation problem is a special case of linear program-
ming. Joshi et al. [9] describe the paradoxical position of the multi-objective transportation
problem with linear constraints and fractional constraints. Here paradox present in every
objective is not necessary and by using a ranking procedure to compare the paradoxical with
the compromise solution. In this articlewe discuss linear plus linear fractionalmulti-objective
transportation problem with fuzzy programming problem uses MFL.

In the literature, the transportation problem has got better concentration. When transport-
ing the same number of goods from each origin to each destination, the more-for-less (MFL)
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paradox allowsmore goods to be transported at a lower total cost. However, the transportation
paradox is rarely mentioned in the many textbooks and materials dealing with transportation
issues. Apparently, some researchers discovered the paradox independently of each other.
However, most treatises on this subject refer to the treatises by Charnes and Klingman [4]
and Szwarc [17] as their first treatises. In Charnes and Klingman [4], he named it more or
less paradox, and they wrote: Some (Charnes and Cooper; [5]) are unknown to the majority
of workers in the field of linear programming [6].

In many real-life situations, transportation problems using fractional objectives are widely
used as a performance measure, such as analyzing the financial aspects of a transportation
company and businesses, and managing transportation with individuals or groups facing
difficulties. It has been maintain the proper ratio between some important parameters and
crucial parameters related to the transportation of goods from a particular source to different
destinations. Objective functions of the fractional functions include optimizations such as
the ratio of total returns to total investment, the ratio of risk assets to capital, and total taxes
on total public spending on goods [7].

Kumar et al. [11] presented equality type constraints and conflicting objectives of multi-
objective transportation problems. Here objectives type is fuzzy of nature. Therefore they
solved three methods using fuzzy programming. Joshi et al. [10] explained that the value of
objective significance was below the optimal value and that transporting more quantities in
a linear plus linear fractional transport problem could result in a decrease in lower values.
They discussed the new heuristic conditions for the basic viable solution of open LPLFTP
and the sufficient conditions to achieve this contradictory result. Li et al. [12] presentedmulti-
objective (MO) transportation problems using a fuzzy compromise programming approach.
The comprehensive review of various objective, have the marginal assessment of individual
objectives, an overall assessment of all objectives. They use traditional optimization tech-
niques to solve fuzzy compromise programming models and get uncontrollable compromise
solutions. This solution maximizes the comprehensive membership of the global assessment
for all purposes. Prochelvi et al. [15] developed an algorithm to find linear constraints of
the paradoxical result of multi-objective transportation (MOT) problems. It obtains the best
paradoxical pair and range of flow by using the sufficient condition of the existing paradox.

A new compromise algorithm for multi-objective transportation problems was discussed
by Rizk-Allah et al. [16]. The characterized the NCPA by communicating three types of
membership methods had objective namely, truth membership and indeterminacy member-
ship respectively. The measuring validated the ranking degree used TOPSIS approach to the
presentation of the NCPA.

Adlakha et al. [1] was analysis increasingly useless for administrator decisions (for exam-
ple, efforts to increase factory capacity or increase advertising demand in a particularmarket).
Sufficient conditions to determine the identity of the runner market and provide points. For
large-scale transportation problems, almost the more-for-less paradoxical methods apply to
this method and provide users with insight into the problem, making it an effective tool for
administrators. The method used to solve a particular transport problem has developed an
emotional alternative solution algorithm.

Afwat et al. [2] proposed a new way of product approach to solving the multi-objective
transportation problem. Use fuzzy programming in different units to convert targets to mem-
bership and accumulate per product. Finding a solution that is close to the best solution is an
easy and quick way. Bit et al. [3] proposed that all constraints are congruent equations and
the goals are essentially inconsistent. This is a special case of vector minimums for linear
multi-objective transportation problems. All existing methods create to build a compromised
solution or a set of non-dominant solutions. Linear multi- objective transportation problems
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use fuzzy linear programming to provide effective solutions and optimal compromises. This
is a comprehensive version of the Simplex algorithm. Nomani et al. [14] proposed a weight-
ing method for goal planning to solve the multi-objective transportation problem. Depending
on the expectations of decision-makers using this model, higher priority goals can be more
satisfying. Taking into account the multi-objective transportation problem, the problem of
this method is solved.

We have described a new way to resolve the MFL paradox in LPLF-MOTP using the
fuzzy method when there is no common paradox in all targets. This paper is divided into
the following sections: In the sect. “Mathematical Model”, mathematical formulations are
given; In the definition section, all the necessary definitions are discussed; Sect. “Step by
Step MFL Algorithm for LPLF-MOTP” describes the MFL paradox and ambiguity handling
process; and Sect. “Numerical Example” describes an example that supports the theory of
the problem described in Sect. “Mathematical Model”. The conclusions were explained in
Sect. “Conclusion”.

Mathematical Model

Transportation problems involve distributing products from many supply points to many
demand points with minimal total transportation costs. Consider m sources S1, S2, . . . , Sm,

n destinations points D1, D2, . . . , Dn and K objectives Z1, Z2, . . . , ZK . We assume that
minimized to all K objectives. Suppose that ai (i � 1, 2, . . . ,m) supply points are Si sources
available and b j ( j � 1, 2, . . . , n) demand points are Dj destinations required level. Let a
component of the goods from the source Si to the destination Dj is a penalty rki j associated to
transporting for each objective Zk . Let the unknown quality of goods to be transported from
source Si to destinations Dj (i � 1, 2, . . . ,m; j � 1, 2, . . . , n) represented by the variable
xi j .

Linear plus linear fractional (LPLF) multi-objective transportation problem

Suppose LPLF-MOTP is following as:

[P1]Min Zk � ∑m
i�1

∑n
j�1 r

k
i j xi j +

∑m
i�1

∑n
j�1

ski j xi j

tki j xi j
, k � 1, 2, . . . , K ,

Subject to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

j�1
xi j � ai ∀i � 1, 2, . . . ,m,

m∑

i�1
xi j � b j ∀ j � 1, 2, . . . , n,

xi j ≥ 0 ∀i � 1, 2, . . . ,m; j � 1, 2, . . . , n.

m∑

i�1

ai �
n∑

j�1

b j .

This is a necessary and sufficient condition for the existence of a feasible solution called
an equilibrium condition.where∑m

i�1
∑n

j�1 r
k
i j xi j ≥ 0;

∑m
i�1

∑n
j�1 s

k
i j xi j ≥ 0;

∑m
i�1

∑n
j�1 t

k
i j xi j > 0; rki j ≥ 0; ski j ≥ 0

and tki j ≥ 0.

rki j� From supply point i th to destination j th capital in transporting quantities per unit,
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ski j� From supply point i th to destination j th depreciation in transporting quantities per
unit,

tki j� From supply point i th to destination j th profit earned in transporting quantities per
unit.

MFL Paradox in Linear Plus Linear Fractional Multi-objective Transportation
Problem

The linear plus linear fractional multi-objective transportation problem is MFL paradox
transportation problem if the shipment volume from each supply point to all destinations
is at least the same and more total goods can be shipped at a lower total cost, even if the
shipping cost is not negative. The equality constraint for a given.

[P2]Min Zk � ∑m
i�1

∑n
j�1 r

k
i j xi j +

∑m
i�1

∑n
j�1

ski j xi j

tki j xi j
, k � 1, 2, . . . , K ,

Subject to

⎧
⎪⎨

⎪⎩

∑n
j�1 xi j � ai + l

∑m
i�1 xi j � b j + l

xi j ≥ 0

∀i � 1, 2, . . . ,m,

∀ j � 1, 2, . . . , n,

∀i � 1, 2, . . . ,m; j � 1, 2, . . . , n.

m∑

i�1

ai + l �
n∑

j�1

b j + l � F0,

ai + l > 0, b j + l > 0, i � 1, 2, . . . ,m; j � 1, 2, . . . , n.

where
m∑

i�1

n∑

j�1

rki j xi j ≥ 0;
m∑

i�1

n∑

j�1

ski j xi j ≥ 0;

m∑

i�1

n∑

j�1

tki j xi j > 0; rki j ≥ 0; ski j ≥ 0andtki j ≥ 0

It is clear that an optimum feasible solution of [P1] is a feasible solution of [P2], cost-flow
pair (Z0, F0) yield to the objective function [10].

Linear Plus Linear Fractional Multi-objective Transportation Problem Using Fuzzy
Linear Programming

In fuzzy set theory, fuzzy linear programming is suitable for linear multi-objective decision-
making problems. In its theory, element X is Membership in set A, indicated byMembership
function ϕk(X). [0, 1] is range of the membership function. In Multi-objective decision
problems, the objective function defined via fuzzy set theory and the decision set is defined
as intersection of all Fuzzy sets and constraints.

The Multi-objective transportation problem is considered the vector minimum problem.
The first step is to assign two the values ũk (Achievement of highest acceptable level) and
l̃k (Expected achievement of the lower level) are used as upper and lower bounds Objective
function Zk . Let me d̃k � ũk-l̃k� Deterioration Marginal for objective k. All objectives are
specified to the expected level and deteriorationmarginal, create a fuzzymodel. The next step
is to convert the fuzzy model to a “crisp” model, i.e. enter the traditional linear programming
problem [3].
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The starting fuzzy model is then given by the expected achievement of the lower level for
each objective, follows as:

Zk ≤ l̃k k � 1, 2, . . . , K ,

n∑

j�1

xi j � ai , ∀i � 1, 2, . . . ,m,

m∑

i�1

xi j � b j , ∀ j � 1, 2, . . . , n,

xi j ≥ 0, ∀i � 1, 2, . . . ,m; j � 1, 2, . . . , n.

The membership function ϕk(X) for the multi-objective transportation problem [3] is
defined as:

ϕk(X) �

⎧
⎪⎨

⎪⎩

1 if Zk < l̃k
1 − Zk−l̃k

ũk−l̃k
if l̃k ≤ Zk ≤ ũk

0 if Zk > ũk

For the vector minimum problem the equivalent linear programming problem is:
Maximize α

Subject to α ≤ ũk−Zk

ũk−l̃k
, k � 1, 2, . . . , K ,

n∑

j�1

xi j � ai , ∀i � 1, 2, . . . ,m,

m∑

i�1

xi j � b j , ∀ j � 1, 2, . . . , n,

xi j ≥ 0, ∀i � 1, 2, . . . ,m; j � 1, 2, . . . , n, α ≥ 0

This linear plus linear fractional programming problem can be further simplified as [3]:
[P3] Maximize α

Subject to

⎛

⎝
m∑

i�1

n∑

j�1

rki j xi j +
m∑

i�1

n∑

j�1

ski j xi j

t ki j xi j

⎞

⎠ + α
(
ũk − l̃k

)
≤ ũk, k � 1, 2, . . . , K ,

n∑

j�1

xi j � ai , ∀i � 1, 2, . . . ,m,

m∑

i�1

xi j � b j , ∀ j � 1, 2, . . . , n,

xi j ≥ 0, ∀i � 1, 2, . . . ,m; j � 1, 2, . . . , n, α ≥ 0
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Definition

Cost-Flow Pair

If the value of the objective function is Z0 and the flow rate is F0, then this corresponds to
the feasible solution X0 of the transportation problem and the pair corresponds to the feasible
solution X0[15].

Paradoxical Solution

A solution X pof [P2] yielding the objective function–flow pair (Z0, F0) is called the ‘Para-
doxical Solution’ if, for any other feasible solution of [P2] yielding a flow pair (Z , F), we
have

(Z , F) >
(
Z p, F p)

Or
Z � Z p, but F < F p

Or
F � F p, butZ > Z p

Let the optimum feasible solution of [P1] yield a value Z0 � r0 + s0

t0
of the objective

function r(x) + s(x)
t(x) [10].

Step by StepMFL Algorithm for LPLF-MOTP

Step 1:Using [8, 14] solve the above problem and get the compromise optimal solution. Each
objective using modified distribution method to get individual ideal and anti-ideal optimal
solutions.
Step 2: Generate the combined shadow price matrix for the LPLF-MOTP.
Step 3: In the table recognize the position of negative shadow prices obtained by step 2. If
no negative entries are established in the shadow price matrix go to step 6.
Step 4: In step 3 choose the most negative entry established for the MFL solution and fuzzy
programming problem. Relax the demand and supply (max (ai , b j )) to getting the MFL
solution for the LPLF-MOTP.
Step 5: Repeat the procedure for finding the other paradoxical solution.
Step 6: Solve the reduced problem as a regular unbalanced problem.

Remark In these MFL procedure and fuzzy condition, it is not necessary that both situations
are present in every objective function.

Numerical Example

In LPLF-MOTP, The linear function represents the transporting cost when goods are trans-
ported from different sources to their destinations, and the fractional part represents the ratio
of sales tax to total public spending. Our objective is to determine a transporting schedule
that minimizes the total sales tax paid by the sum of the ratio of total transporting costs to
total public spending.
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Fig. 1 Comparison’s ranking for LPLF-MOTP among MFL, compromise (com), fuzzy solution

Polyfilm companies process PET chips to produce polyfilm products such as transparent
films, metalized films, and specialty PET films. The company has 3 branches and 4 depots
in various locations in India. The company transports polyfilm from its branch offices by
truck to the depot on the highway. Decision-makers want a ratio of shipping costs to sales
tax to total public speed. The shipping cost is Rs per KM and the sales tax is Rs per KG.
Decision-makers also want to find the amount of polyfilm that will be shipped from the
i th branch to the j th depot to meet the requirements. Using MFL paradox [P2] and MFL
algorithm for LPLF-MOTP when transport more polyfilm from branches to destination then
transportation cost and sales tax is minimized. Next we can use fuzzy linear programming
[P3] in LPLF-MOTP objective matrix in Table 1 represents the shipping cost and sales tax.
Now we solve this example using Lingo 17.0 software.

We obtain the individual optimum solution for each objective for flow 100 as follows:
X1=(25,0,0,0,10,25,0,5,0,0,15,20), Z1(X1)� 285.5763,
X2=(0,20,5,0,35,5,0,0,0,0,10,25), Z2(X2)� 485.8667,
X3=(25,0,0,0,0,15,0,25,10,10,15,0), Z3(X3)=555.8385.
Solving the LPLF-MOTP for flow 105 and weight (0.3, 0.3, 0.4), we get the compromise

optimal solution as follows:
X � (25,0,0,0,10,25,0,5,0,0,15,20),
Z1(X )� 285.5763,
Z2(X )� 635.6667,
Z3(X )� 675.750.
Compromise optimal solution is represented in Table 2 (Shadow price matrix).

At point (1,2) individual optimum solution for the flow 105

Where shadow prices are negative for each individual objective not to find any common cell.
So we select the negative shadow price entry in three objectives. We got negative shadow
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price entries in cells (1,2), (1,3), (2,3), (3,1), (3,2). We increase the flow in demand and
supply for the corresponding row and column by 5, the MFL, compromising, fuzzy solution
are representing rank in Table 3 (Fig. 1).

Conclusion

In this paper solve the MFL paradox and fuzzy method in LPLF-MOTP. Here approach
allows easy identification of such MFL paradox cells in the objective matrix and calculation
of the matrix and the calculation of the maximal allowable units and distribution of these
excesses in a systematic approach. No common results in MFL, Fuzzy and compromise
solutions in above table compare to same flow each-other give to ranking [13]. We found
that our approach gives a result in ranking procedure to comparison with the compromise
optimal solutions obtained by [8–10, 13]. The reader can see the graphic in the above figure.
The contents of this article can open a new dimension to create a MFL paradox in linear plus
linear fractional multi-level multi- objective transportation problem using fuzzy approach.
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