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Abstract

In this work, we present a study of the nonlocal functional integro-differential equation with
the nonlocal conditions. This study is different from the rest of the previous studies as we
do the analytical study by studying the existence and uniqueness of the solution and also
the continuous dependence of the proposed system. In addition, we apply all results of the
analytical studying to some examples and find the exact solutions for them using the modified
decomposition method. Also, we offer a numerical study of this system, unless it has been
previously studied for the method of solving the proposed examples numerically using the
finite difference-Simpson’s method. Some comparisons of numerical solutions are given with
exact solutions to show the accuracy of the methods used, in addition to some figures that
illustrate this.

Keywords Nonlocal problem - Existence of solutions - Continuous dependence - Finite
difference - Simpson’s method - Modified decomposition method

Introduction

Nonlocal boundary value problems (NB VP) for nonlinear differential equations have attracted
great research efforts worldwide, as they arise from the study of many important problems
in various such as engineering, mechanics, mathematical physics, vehicular traffic theory,
queuing theory, fluid flows, electrical networks, rheology, biology and chemical physics. In
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practical applications and also several real world problems, it is important to establish the
conditions for the existence solutions. Hence, many authors have investigated the existence
solutions for various functional differential equation NBVP, “such as Srivastava et al. studied a
class of nonlinear boundary value problems for an arbitrary fractional-order with the nonlocal
integral and infinite-point boundary conditions [29], El-Sayed et al. discussed many various
types for functional differential equations see [14—17]. Also, El-Owaidy et al. studied on an
integro-differential equation of arbitrary (fractional) orders [13]. Moreover, different igniters
have been studied for the differential equations by several researchers [1-11, 19-22, 24-26,
30-32]". In this paper we study the NBVP for the functional integro-differential equation:

b
u’(x) = f(x,u(x),/ g(x,t,u’(t)dt)), x € la, b], 1)
with "
D awu(m) =uo, u'@=¢, a =0, welabl (©)
k=1

The existence of solutions u € C[a, b] will be studied. The continuous dependence of the
unique solution on ug, ¢ and a; will be proved.
As applications, the nonlocal problem of Eq. (1) with the integral condition

b
f u(s)du(s) = ug, 3)

will be studied.

In this paper, we discuss the NBVP (1) with (2) and (3). Also, we find the analytical and
numerical solutions for Eq. (1) using the modified decomposition method [33] and finite
difference-Simpson’s method since we apply the Simpson’s rule on an integral part and
finite difference method [12, 27, 28] on the derivative part and therefore the equation will
be converted into a system of nonlinear algebraic equations which can be solved together
to get the unknown function, we apply the proposed method to some problems. In addition,
we present some figures that show the accuracy of the proposed method. The form of the
proposed equation has not been studied analytically or numerically before, therefore what
we have presented is a clear contribution to this point. Also, most researchers deal with the
topic only analytically, with some examples being given, but these examples are not dealt
with numerically or analytically.

This paper is organized as follows: In “Integral Representation” section, we discuss the
integral representation of the problem. In “Existence of Solution” section, the existence of
a solution will be discussed. In “Uniqueness of the Solution” section, the uniqueness of
the solution will be discussed. In “Continuous Dependence” section, we study the continu-
ous dependence on the problem. In “Derivation of the Analytical and Numerical Methods”
section, the derivation of the analytical and numerical methods introduce. In “Application”
section, some examples are presented and we made a comparison between the exact solution
to demonstrate the applicability of the method. Finally, we give a conclusion section.

Integral Representation

Consider the NBVP (1)—-(2) with the following assumption:
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1. f : [a,b] x R? — R satisfies Carathéodory condition. There exist a function ¢| €

Li[a, b] and a constant d; > 0, such that

Lf(s,m, @) < c1(s) +diln| + di|].

2. g :la,b] x [a,b] x R — R satisfies Carathéodory condition. There exist a function

¢ :la,b] x [a,b] > R, ¢ € Lila, b] and a constant d» > 0, such that
lg(s, t, M| < ca(s, t) + dalnl.
X X
sup / ci(s)ds < My, sup / (0, )dt < M.
x€la,b] Ja x€la,b] Ja

4. 2d\b* +didab*) < 1.

Lemmal Let B = Z;le ay # 0, the solution of the NBVP (1)—(2), if it exist, then it can be

represented by the integral equation

u(x) = B—l[uo — Zak /Tk v(s)ds]—i—/x v(s)ds,
k=1 a a

where,

“

X m Tk 0 b
v(x) =¢ +/ f(@, B! [uo — Zak/ v(s)ds]—i—/ v(s)ds, / g@, 1, v(t))dt)d@.
a k=1 a a a

Proof Integrating both sides of (1), we get

X b
u'(x)=1¢ —l—/ f(@,u(@),/ g(@,t,u’(r))dt)d@, x € [a, b].

Let u'(x) = v(x) in (6), we obtain

X b
v(x) =¢ +/ f<9, u(9),/ g(0,1, v(t))dt)d&, x € [a, b],

where .
u(x) =u(a) +/ v(s)ds, x €la,b],

using the condition (2), we obtain

m m m %
Y aum) =u@)y a+ Y a / v(s)ds,
k=1 k=1 a

k=1
then,

m

u(a) = B! |:u0 — Zak /Tk v(s)dsj|,
k=1 a

from (7), (8) and (10), we get

u(x) = B_1|:uo — Zak /tk v(s)ds]—i—fx v(s)ds,

k=1

(&)

6)

)

®)

(C))

(10)
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where,

X m Tk 0 b
v(x)=¢ +/ f(@, B_ll:uo — Zak/ v(s)ds]—i—/ v(s)ds, / g, 1, v(t))dt)d@
a k=1 a a a

Existence of Solution

Theorem 2 Let the assumptions 1-4 be satisfied. Then the NBVP (1)—~(2) has at least one
solution u € Cla, b).

Proof Define the operator G associated with the integral equation (5) by

X m 7] 4 b
Gv(x) = ;-}-/ f(Q,B—ll:uo—Zak/ kv(s)ds]—i—/ v(s)ds,/ g(@,t,v(z))dt)dQ

k=1

 — el MitdibB uo|+dbMy

Let Q, ={v € R:||v||c <r}, where =, by dob?)

Then we have, for v € Q,.

m 6 b
|Gv(x)| = ‘{ + ( [uo—Zak/ v(s)ds]-i—/ v(s)ds,/ g(@,t,v(t))dt)dQ‘

k
5|C|+/

=1
m 0 b
(9 B—l[ Za/ v(s)ds] /v(s)ds,/ g(e,t,v(z))dt) do
< |¢|+/ [c1<9>+d13‘1

k=1

T
uy — Zak/ v(s)ds
k=1 @

b
—+d / g0, t, v(t))|dt]d0

7
+d1/ lv(s)|ds

x m 7 0
5|§|+M|+/ |:d13_1|'40|+d13_120k/ |v(s>|ds+d1/ |v(s)lds
a k=1 a a

b b
+d1/ |cz(9,z)|dt+d1d2/ |v(t)|dt]d9
a a

X

< &l + M +[ [d1 B~ |uo| + dibl|v]| + d1b|[v]| + dy Ma + d1dab||v]|1d6
a

< 1Z|14 My + dibB~ gl + 2d\b%r + dibM> + dydobr = 1.

This is proves that G : Q, — Q, and the class of functions {Gv} is uniformly bounded
in Q,.

Now, let x1, x2 € [a, b] such that |xo — x1| < §, then

|Gv(x2) — Gu(x)]

X m 73 0 b
;‘—I—/ 2f< [MO_Zakf v(s)d€:| / v(s)ds,/ g(Q,t,v(l))dt)d@
k:l a a a
o= (087

m T 0 b
Zak/ v(s)ds:|+/ v(s)ds,/ g(9,t,v(t))dt>d9‘
@Springer
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X m T/ 6 b
/ 1 f(&, B! |:u0 — Zak/ ‘ v(s)ds]—i—/ v(s)ds,/ g, 1, v(t))dt)d@
a k=1 a a a
X2 m T 6 b
+/ f(G,B_l[uo - Zak/ v(s)ds]+/ v(s)ds,/ g(@,t,v(t))dt)d@
X1 k=1 a a a
X1 m T % b
—/ f(@, B_1|:u0 —Zak/ v(s)ds]+/ v(s)ds,/ g(@,t,v(t))dt)d@
a k:] a a a
X2 m
</
X1

T 4 b
f(@, B! |:u0 — Zak/ ' v(s)ds]+/ v(s)ds, / g(@0,1, v(t))dt)‘d&
k=] a a a

X2 m Tk %
= [c1<e>+8*1d1|uo|+B*'d12ak/ vids +di [ 1u)lds
X1 a

k=1 a

b
+d1f g, 1, v(t))|dt]a’9

X2 b
< / [61(9) + B~ dy|uo| + di|[v]l + di v +d1/ le2(8, 1) +d2|v(f)|dt]d9
X a

1

X2
< / c1(0)dO + (B~ dyug + 2dybr + dyM> + didabr)s.

X1
This is proves that the class of functions {Gv} is equi-continuous in Q,. O
Let v, € Oy, v, = v(n — 00), then from the continuity of the two functions f and g,

we get f(x, np, ) = f(x,n, @) and g(x, ny, Pn) = g(x, 0, ¢) as n — oo.
Also,

X m Tk
lim Gv,(x) = lim [;‘ +/ fa@, B! |:u0 — Zak/ vn(s)ds:|
n—0o0 n—0o0 a =1 a
0 b
+/ v (s)ds, / g(@,1, vn(t))dt)d9:|. an
a a
Using assumptions 1-2 and Lebesgue dominated convergence Theorem [23], we obtain

lim Gu, (x) :;+/' lim f
n—00 a n—o0

m T 0 b
(9, B! |:uo — Zak/ vy (s)ds:|+/ v, (8)ds, / g(0,1,v, (l))dt)d@ = Gv(x).
k=1 a a a
(12)

Then Gv, — Gv as n — oo. This mean that the operator G is continuous in Q,. Then
by Schauder Theorem [18] there exist at least one solution v € Cla, b] of the Eq. (5). Thus,
based on the Lemma 1, the NBVP (1)—(2) possess a solution u € Cla, b].

Nonlocal Integral Condition

Theorem 3 Let the assumption 1-4 be satisfied, then the NBVP (1), (3) has at least one
solution given by
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u(x) = (b) (a) / / (v)dvdu(@)—l—/ v(s)ds, (13)
where
= dsdu(0
Ve ”/a f( ) — M(a)< / / vdsdn®)
0 b
+/ v(s)ds),/ g(@,t,v(t))dt)d@. (14)
Proof Letv € Cla, b] be the solution of Eq. (5). Let ay = ju(x) — u(xk—1), i is increasing
function, 7, € (Xk_1, Xk),d = X9 < X] < X2 < X3 < --- < X = b then, as m — oo the
condition (2) will be
D (o) = plxk—1)u(m) = uo. (15)
k=1
And " )
Jim S a0 = et = [ udns) = w. (16)
k=1 @

As m — 00, the solution of the NBVP (1)—(2) will be

1
ulx) = mh—I>noo|:Z ar [0 — Zak/ v(s)ds] —I—/ v(s)ds]
k=1
1 T N
- MI}[O - Z/ v(s)ds(p(xe) — M(Xk—l):l-i-[ v(s)ds

) — ia) ,u(a)[ ff U(S)dde(G’)] /U(S)ds

ww=c+ [ (9 ) — M(a)< / / V)
6 b
+/ v(s)ds),/ g(@,t,v(t))dt)d@.

where

Uniqueness of the Solution

Let f and g satisfy the following assumptions

@G) f:la,b] x R? — R is measurable in x for any 7, ¢ € R and satisfies the Carathéodory

condition
[f(s,m,¢) = f(s,w,2)| <diln—w|+di|¢ —zl,

(i) g : [a,b] x [a,b] x R — R is measurable in x for any n,¢ € R and satisfies the
Carathéodory condition

|g(S,f, 77) _g(s7t! ¢)| = d2|77 _¢|
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Theorem 4 Let the assumptions (i)—(ii) be satisfied, then the solution of the NBVP (1)-(2)
is unique.

Proof From assumption (i) we have f is measurable in x for any 1, ¢ € R and satisfies the
Carathéodory condition, then it is continuous in 1, ¢ € R for all x € [a, b], and

[0, n, @) <dilnl+dilpl+1f(6,0,0)]

Then the first condition is satisfied. Also by the same we can see that the second condition
is satisfied by assumption (ii). Now, from Theorem 2 the solution of the Eq. (5) exists. Let
v, w be two solutions of the Eq. (5), then

m o 0 b
f(@, B! [MO - Zak/ v(s)ds +/ v(s)ds], / g(s,t, v(t))dt)
k=1 a a a
m Tk 6 b
— f<9, B! |:u0 — Zak/ w(s)ds]+/ w(s)ds, f g(s,t, w(t))dt)
k:1 a a

< /x |:d1 B! Zak /Tk (w(s) —v(s))ds
a k=1 a

6
+/ (w(s) — w(s))ds

lv(x) —w(x)| < /

de

b
(/(gWJ,MQ)—gWJ,wU»Mt
<d /x |:B_1 Zak /Tk lw(s) —v(s)|ds

a =1 a

0 b
+/ lw(s) — v(s)|ds +f lg@,t,v(t)) —g@,1, w(t)))ldt]d@

+d;

Jae

x b
<di||lw —v||b> + di||lw — v||b> + d| / / d|v(t) — w(t)|dtdo
a a

< 2di||w — v||b* + didob*||w — V|
< Q2db* + didab?)||w — v]].

Hence
[1 — (2d;b* + d1d2b>)]||w — v|| < 0.

Since 2d,b* + d1d2b? < 1, then w(x) = v(x) and the solution of the Eq. (5) is unique.
Thus, based on the Lemma 1, the NBVP (1)—(2) possess a unique solution # € Cla,b]. O
Continuous Dependence
Continuous Dependence on ug

Definition 5 The solution u € C[a, b] of the NBVP (1)-(2) depends continuously on uy, if
Ve >0, 3 8(e) st |up—ujl <8=llu—u*|| <e,

where u* is the solution of the NBVP

b
u*”(x):f<x,u*(x),/ g(x,z,u*’(t)dt)>, x € [a, b], (17)
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with the condition

m
D oawt(m) =uy, u@=¢ a =0, 7 e€la,bl (18)
k=1

Theorem 6 Let the assumption of the Theorem 4 be satisfied, then the solution of the NBVP
(1)—(2) depends continuously on u.

Proof Let u, u™* be two solutions of the NBVP (1)-*(2) and (17)—(18) respectively. Then

[v(x) — v*(x)]

x m T 0 b
= ‘;+/ [f(@,B*l[uo—Zak/ v(s)ds:|+/ v(s)ds,/ g(G,t,v(t))dt)
b
—;—f( |:u —Zak/ v (s)ds] f v (s)ds,/ g(@,l,v*(t))dt>:|d9‘
k: a a a
X m T 0 b
5/ f( [uo—Za / v(s)ds:|+/ u(s)ds,/ g(G,t,v(t))dl)dQ
a k= a a
Tk 2 b
- f(9, B! |:u3 - Zak/ v*(s)dsi| —|—/ v*(s)ds,/ g@0,1, v*(l))dt) do
k=1 a a a
< /X [d1

b
/ (80,1, v(1)) — g0, 1, v (1)))dt

m T 2
B’l(uo—u[;)—l-B’lZak/ A(v*(s)—v(s))ds—k/ (W(s) — v*(s))ds
k=1 a a

Jao

X m T 0
5/ [d131|u0—u3|+d1312ak/ |v*(s)—v(s)|ds+d1/ [u(s) — v*(s)|ds
a k=1 a a

+d,

b
+d1/ |g(0,t,v(t))—g(@,t,v*(t))|dt] d6
X m T 0
5/ [dlB*1|u0—u3|+dlB*IZak/ |v*(s)—v(s)|ds—|—d1/ [u(s) — v*(s)lds
a k=1 a a
b
+d1d2/ lu(t) — v*(1)|dt1do

< di B ug — uflb + di|v — v*||b* + di||v — v*||b?

X b
+d1/ / dav(t) — v*(1)|d1do
a a
<d\bB~'8 + 2d;||v — v*||b + d1dab? ||V — V).

Hence
dibB~'s

— (2d1b* + d\drb?)’

*
vV—1v <
I =1

And

(@) = @)l = 1B wo — Y / v(s)ds] + / v(s)ds
k=1 ¢ a
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—B7 ' =Y a /Tk v*(s)ds] + /X v*(s)ds|
k=1 a a

< B 'uo — uf] + 2bllv — v*|.

Hence
=) < Blg 4 — 2HEBT
u—u =¢
- 1 — (2d1b? + d1d>rb?)
Therefor the solution of the NBVP (1)—(2) depends continuously on u. ]

Continuous Dependence on ¢

Definition 7 The solution u € C[a, b] of the NBVP (1)—(2) depends continuously on ¢, if
Ve >0, 3 8(e) st [ =" <8=|lu—u|| <e,

where u™ is the solution of the NBVP
b
" (x) = f(x, u*(x), / g(x,t, u*’(t)dt)>, x € [a, b], (19)
a

with the condition

m
Y at(m) =uo, u(@) =¢* a =0, w €la,bl. (20)
k=1

Theorem 8 Let the assumption of the Theorem 4 be satisfied, then the solution of the NBVP
(1)—(2) depends continuously on .

Proof Let u, u™* be two solutions of the NBVP (1)—(2) and (19)—(20) respectively. Then

lv(x) —v*(x)]

x m T 6 b
= ’{ —l—/ |:f<0, B! [Mo - Zak/ ' v(s)ds]+/ v(s)ds,/ g0, 1, v(t))dt)
a k:l a a a

m Tk 0 b
- = f (9, B! |:u0 - Zak/ v*(s)ds]+f v*(s)ds, / g@0,1, v*(t))dt>:|d0’
k:l a a a

<1t -7

x m T 0 b
+/ f(G,Bfl[uo—Zak/ ' v(s)ds]—F/ v(s)ds,f g(@,t,v(t))dt)d@
a k=1 a a a
m - ) b
- f<9, B! |:u0 — Zak/ v*(s)dsi| +/ v*(s)ds,/ g@0,1, v*(t))dt)
k:l a a a

§|§—§*|+/ |:d1

b
/ (g(ev z, U([)) - 8(97 z, U*([)))dt

do

m 7 0
B*IZak/ k(v*(s)—v(s))ds—k/ (v(s) — v*(s))ds
k=1 a a

Jao

x m T %
§|§—§*I+/ [dlBIZak/ |v*<s>—v<s)|ds+d1/ lu(s) — v*(s)lds
a k=1 a

+d,

1 a
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b
+d1/ |g(9,t,v(t))—g(9,t,v*(l))|dt] do

x m T 0
< |c—¢*|+/ |:dlB_]Zak/ |v*(s)—v<s>|ds+d1/ Ju(s) = v*(5)lds
a k=1 a a

b
+d1d2/ lv(r) — v*(t)ldt] do
a
< ¢ — ¥ +dillv —v¥Ib* +dy|lv — v*||b?
X b
+d1/ / da|v(t) — v*(t)|dtd6
a a

< §+2di|lv — v¥|Ib* + didab?|Jv — v¥]|.

Hence
[lv—v*[| < ’
1 — Qdb? +didrb?)’
And
m T x
lu(x) — u*(x)| = |Bi1 uy — Zak/ v(s)ds +/ v(s)ds
k=1 a a
m T X
—B ' uy - ak/ v*(s)ds +/ v (s)ds|
k:1 a a
< 2bllv—v"|.
Hence
" 2b§
lu —u™|l < EX3
1 — (2d1b? + d1d»b?)
Therefor the solution of the NBVP (1)—(2) depends continuously on ¢. O

Definition 9 The solution u € Cla, b] of the NBVP (1)—(2) depends continuously on u¢ and
g, if

Ve >0, 3 8(e) st |ug—ujl <81l¢ —¢*| <8 = llu—u*| <e,

where u* is the solution of the NBVP

b
u*”(x):f<x,u*(x),f g(x,t,u*’(t)dt)), x € [a, b], 1)
a
with the condition
m
Yoawt(w) =uf, u@=¢* a =0, 7 ela,bl. (22)
k=1

Theorem 10 Let the assumption of the Theorem 4 be satisfied, then the solution of the NBVP
(1)—(2) depends continuously on uy and ¢.

Proof Let u, u* be two solutions of the NBVP (1)—(2) and (21)—(22) respectively. Then
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[v(x) —v*(x)]

x m 7 6 b
= '{ +/ |:f<9, B_l[uo — Zakf ' v(s)ds:|+/ v(s)ds,/ g,1, v(t))dt)
a k:l a a a

m T 0 b
—* - f(@, B! |:u3 — Zak/ ‘ v*(s)ds]—l—f v*(s)ds, / g@0,1, v*(t))dt)]d@‘
k=1 a a a

<|¢—c%

x T 0 b
+/ f(@,B_l[uo—Zak/ kv(s)ds]—{—/ v(s)ds,/ g(@,t,v(r))dl)d@
a k=1 a a a
m T 0 b
_ f(@, B! |:u3 — Zak/ v*(s)ds:| +/ v*(s)ds,/ g(@,t,v*(t))dt)
k=1 a a a

<t =¥+ di B |uo — uglb
+/X[d1 B! iak/u(v*(s)—v(s))ds+/9(v(s>—v*(s))ds
a T a a
fa (800, 1, v(1)) — (0, 1, v*(1))dr ]de
<t =¥+ di B uo — uglb

x m 7) 0
+/ |:dlB_1 Zak/ ' [v*(s) — v(s)|ds + d; / lv(s) — v*(s)|ds
a k:1 a a

b
+di / lg@,t,v(t)) —g@,1, v*(t))ldt:| do

de

+d;

<I¢—¢* 1+ di B uo — ujlb
X m Tk 0
+/ dlelzak/ |v*(s)—v(s)|ds+d1/ lv(s) — v*(s)|ds
a k:l a a

+didy [b lo(t) — v*(t)|dt] do
a
<t =¥+ dy B uo — uglb + di|lv — v*[[b” + dy||v — v*||b?
+d; /X /bdzlv(t)—v*(t)|dtd9
a Ja
< diB7'81b + 85 + 2di||v — v*||b* + didab?[|v — v
Hence

diB7181b+8
o — vF|| < —1° 10 F %2
1 — (2d1b? + d1d»b?)

And

lu(x) — u*(x)| = |B~! [uo—Zak/rkv(s)ds} +/x v(s)ds

k=1

_B_l |:Ll3 — Zak /tk v*(s)dsi| + /x U*(S)ds|

k=1
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< B ug — u| + 2b]lv — v*|.

Hence X
2b(diB~ " 81b + 6
i — ) < BNy P D00
1— (2d1b2 + d1d2b2)
Therefor the solution of the NBVP (1)—(2) depends continuously on u¢ and ¢. ]

Continuous Dependence on ay

Definition 11 The solution u € Cla, b] of the NBVP (1)-(2) depends continuously on ay, if
Ve >0, 3 8(e) st lax—afl <8=|u—u*| <e,

where u™ is the solution of the NBVP

b
u*”(x)=f(x,u*(x),/ g(x,t,u*/(t)dt)>, x € la, bl, (23)
a
with the condition
m
Yo (m) =uo, @ =¢ ax=0. welabl. 24)
k=1

Theorem 12 Let the assumption of the Theorem 4 be satisfied, then the solution of the NBVP
(1)—(2) depends continuously on ay.

Proof Let B* ="}, a; # 0and v, v* be two solutions of the NBVP (1)—(2) and (23)-(24)
respectively. Then

[v(x) = v* ()]

x m ) % b
< / f(@, B! |:u0 - Zak/ ‘ v(s)dsi|+/ v(s)ds,/ g@0,t, v(z))dt)
a k:1 a a a

m T % b
- f(@, B*! |:uo - Za,’: / v*(s)ds}—i—/ v*(s)ds, / g0, 1, v"(t))dt)
=1 a a

do

a

< /x |:d1|B_l(u0) — B* Y(up) + B! Za,f /Tk v*(s)ds — B! Zak /Ik v(s)ds
a k=1 @ k=1 a
0 0 b
—l—/ v(s)ds—/ U*(S)d5|+d1|/ (g(@,t,v(t))—g(@,t,v*(t)))dt] de

a

X m Tk
sf [dﬂB“(uo)—B**‘(uo>|+dlB**‘Za7:f [v*(s) — v(s)lds
a k=1 a

m Tk m m T
+d B! <Z lai — ak|) / [v(s)|ds +dyB~'B*7! >l —af Zak/ [v(s)|ds
k=1 a k=1 k=1 a

4 b
+d; f [v(s) — v*(s)|ds + di / 1g(6, 1, v(1)) — g O, t,v*()))|dt]do

X m i
sf [dlurl(uo)—B*“(uo>|+d18*“Za,’;/ v*(s) = v(s)|ds
a k=1 a
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m

T m m T
+d B! <Z |a;g—ak|)/ |v(s)|ds+d1B_lB*_IZ|ak—a,flzak/ [u(s)lds
@ k=1 k=1 @

k=1
0 b
+d1/ |v(s)—v*(s)|ds+d1d2/ lo(t) — v*(t)|dt]de
a a
<d\B7'B* "mbug + di|Jv — v*||b> + dy B* "' md||v||b% + d1 B*'m8||v]|b>
+dy|lv — v*||b* + didab? v — v¥]|
< diB~'B* 'mbug + 2d1b* + d1dob?)||v — v*|| + 2d; B* ' ms||v||b>.

Hence
dim8ug + 2dy Bm$||v||b?

=Vl = 50+ didob?)) BB

And

lu(x) — u*(x)]

‘Z o |:uo — Zak /Tk v(s)dsi| + /‘x v(s)ds
k=1 _ a a

Z { Zak /T U*(s)ds:| + /x U*(S)ds
k=19 a

< mluol o b8 BNy 4 2b 0 — v,
BB*
Hence
i — ] < m8|uo| 2mbsE-r 4 2b dym8ug + 2dy Bmsrb? _.
[1 — (2d\b? + d1d2b%)]BB*
Therefor the solution of the NBVP (1)—(2) depends continuously on ay. O

Derivation of the Analytical and Numerical Methods

In this section, we present the methods used to study the proposed equation

A Brief Review of the Modified Decomposition Method

In this section we use the modified decomposition method to get the exact solution for
nonlocal Fredholm integro differential equation. Firstly, we use the nonlocal condition to put
Eq. (1) in the form

b
u(x) = p(x) + A/ k(x, Hu' (t)dt, (25)

where p(x) is a known function, k(x, t) is the kernel of the integro -differential equation, A
is any constant, u#(x) is the unknown function to be determined.

This method depends mainly on splitting the function p (x) into two parts, therefore it cannot
be used if the function p(x) consists of only one terms. Now, we can express the procedure
as follows

1 We substitute u(x) = Zfio u;(x) into both sides of Eq. (25).
2 Weset p(x) = p1(x) + p2(x).
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3 We use the following recurence relation

uo(x) = p1(x),

b
uy () = p2(x) + / k(x, Dup(ds,

a

b
up+1(x) = A/ k(x, t)u;(t)dt, [>1.
a

If we make a proper choise of the function p1(x), p2(x), we can obtain the exact solution
u(x) by using few iterations, and sometimes by calculating only two components.

Derivation of Numerical Method
To obtain the numerical solution of Eq. (1), we divide the domain [a, b] of Eq. (1) into N finite
pointsasa =ty < t; < --- < ty—1 < ty = b. Using uniform step length h = (b —a)/N

asx; =a+ih,i =0,1,2,..., N. Then we approximate the integral part of (1) by using
the composite Simpson’s as follows

b
/ k(x, Hyu'(t)dt ~ g[k(x, to)u' (10) + 4k (x, t)u’ (11) + 2k (x, t)u' (1) + -+ -

+ 2k(x, ty—2)u' (ty—2) + 4k (x, ty—Du' (tv—1) + - 4+ k(x, tp)u’ (tn)].
By taking u = u"(x;), u; = u’(x;), k(x;, t;) = k; j, then (1) can be written as
Y h / / / I
u; —uj >~ pj + g[ki()(“o) + dkiy (uy) + 2kin(up) + - - -+ 2kiy 2 (uy_5)
ki1 Uy _y) 4 kiy ()] (26)
And, we use centeral difference to approximate the derivative part of (26) as:

g Wikl — 2u; + i)

u, ~—

1 h2
w ~ Ui+l — Ui—1
M=
Then Eq. (26) can be written as
Uit — 2u; + i) o~ '+ﬁ PR a4k, uz—u0+2k' uz —uq
2 Y 7 Ton 2700
UN—1 —UN-3 Uy —UN-2
v+ 2kinop—————— + AN —————
+ -+ 2kiN-2 0 + AKiN—-1 7
by ML TENSL 2 0,1,2,3,. N, (2])
2h
From Eq. (27), we can generate a system of equations for u_1, ug, u1, U2, ..., UN, UN+1

which can be represent in a matrix form
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MU =W

2-Copo D 2+Coo—Bo2 Aot —Ao3 Bop—Boa - Bon-—2+ Con Aon—1  Con
—Cio 2-An zZ 1 By —B14 --- Bjy—2+Ciy Ain—-1  CIN

m=| —Car -4z 2+Cxp—Bn Y E o Ban—2+Coy Aoy-1 Con

—Cno —ANn1 Cno—Bn2 ANn1 — AN3 Bno — Bng -+ N 0 2+4+Cpyn
u—1
1o
uj

un

UN+1
217 po
212y
202 py

2h% py
212 py41

noindent where Aij = %thij, B,‘j = %thij» C,'j = _Tth,'j, Z = —4—2h2+
Cio—Bia, Y =—4—2n%4+Ar1 —Axz, D=—4—-2n%—Ag, Q=—4-20%+
ANn-1, E=2+4+By—Bu, [=2+A11—A;3, S=2+4+Byny—2+Cnn.

Error Estimation

Theorem 13 Suppose that o1, o2, 03 € [a, b] such that the errors e of Second order centeral,
2

ey of first order central difference, e3 of Simpson’s rule respectively are given by %um (o1),

%u@) (02), and %h“u“) (03). Then we obtain the error estimation for the Eq. (1) by

- (b —a)? 28)
‘=Nz M
where u = max{u(4) (01), u® (02)}, and N is the number of subinterval.
Proof From Eq. (27), the exact solution fori =0, 1,2,3,..., N
Uiv] —2u; +ui_q h?
% —u; + Eu(“)(m)
h Uy —u_q Uy — ug Uz — uq
=p; + = |kio| ———— 4k; 2k;
pl+3[10< " >+ zl( " )+ 12< h )
UN—1 —UN-3 UN —UN-2
o+ 2kiNo | ————— dkin—1 | —————
+ + 1N2< h >+ 1N1< 2 )
+kin UN+1 —UN-1 4+ — h? (3)(0 )+ @ )h4 (4)( ay)]. (29)
! 2h 6 180

Substracting (27) from (29), we obtain the error terms as follows:

(b—a)
180

h?
" o) - V@)

h* 4 (4
62’12”()("‘) u(02) = ——=h*'u? (o )‘
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Let ny = u®(01), 2 = u®(07), then

h? h?
— 2

< | _
=M T

)

if we take u = max{u1, w2}, then we have

h? h? h?
<|l—u-—-—— = |—= . 30
S T Ly u’ 12“’ (30)
Substituting & = bﬁ“ in (30), we get
(b —a)?
<|—pul.
=N #
Which is the error estimation. ]

Application

In this section, the existence Theorem 2 will be applied on some examples of nonlocal
Fredholm integro differential equation and we solve it analytically by using the modified
decomposition method, numerically by using the finite difference Simpson approach. The
results obtained are tabulated in Tables 1, 2, 3, 4, 5 and, 6, all results for these examples are
performed by using Mathematica.

Example 1 Consider the equation:

u”(x)— éu(x) =24+ l (_xz_x) +2is <_x_ 7COS(X) _ l)

5 6 2

1
+ i/ (t + x + t cos(x)u' (1))dr, 31)

25 Jo
u(O)—l—u(O.S):%, ' (0) = 1. 32)

The exact solution of this equation is u(x) = x + x2.
Firstly, we prove that this example has a continous solution,

b
fx, u(x), /a glx,t,u' (t)dt) =2 + % (—x2 - x) + % (—x - 7co6s(x) — %) + %u(x)

1 1
+ — / (t +x +t cos(x)u'(t))dt.
25 J,
Then,

=

2+é(—x2 )+ 1 (—x  Tcos(x) 1)’

b
’f(x,u(X),/a glx, 1, u'(t)dr) 25 6 >

1 1 [
+ —|u(x)| + f/ —|t + x + tcos(x)u'(t)|dt,
5 5Jo 5

and also 1 )
lgCx, 1, u' (t)dt)| < g(x +1)+ glu/(t)l,
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Table 1 The exact and numerical

solution of Example 1 Xi Approximate solution Exact solution Absolute error
0 0 0 4.9272 E—-17
0.1 0.11 0.11 5.5511 E-17
0.2 0.24 0.24 5.5511 E—-17
0.3 0.39 0.39 5.5511 E—17
0.4 0.56 0.56 1.1102 E-16
0.5 0.75 0.75 1.1102 E—-16
0.6 0.96 0.96 22205 E—-16
0.7 1.19 1.19 4.4409 E—16
0.8 1.44 1.44 8.8818 E—16
0.9 1.71 1.71 1.1102 E—-15
1 2 2 1.3323 E-15

where c¢(x) = 2—|—%(—x2—x) + %(—x—% —%),cz(x,t) = %(x +1),d =

Ldy =1 b=1, then2d\p? +didrb* = 2 + 5 = 1L < 1. 1tis clear that the Assumption

1-4 of Theorem 2 is satisfied, therefore the given NBVP has a continuous solution. Then, we
use the modified decomposition method to obtain the exact solution of this example. From
Eq. (31) we get

u(x) ~ 0.038889 cos(x) + x + x> — 0.036056 cosh (%)

1
+ (0.030905 cosh <i> —0.033333 cos(x)) / 1 (1)dt.
NG 0

By using the modified decomposition method we can get the following recurrence relation
uo(x) = x + x2,

X
u(x) 2~ 0.03889 cos(x) — 0.036056 cosh (—)
1 NG

1
) —0.033333 cos(x)) / tug()dt ~ 0,
0

7

1
Up+1(x) :/ K(x,t)u;(t)dt =0, [>1.
0

+ (0.030905 cosh (

It is clear that each component of u;, [ > 1 is zero. This, in turn, gives the exact solution
by
ux) =x+ x2.

Now, we use the finite difference Simpson’s approach to find the numerical solution of
this example. Table 1 and Fig. 1 below give the approximate solution of this example and
compare with tha exact solution.

Now, we study the continous dependence on ug. If we take u*(0) 4+ u*(0.5) = 0.75001,
u*(0) = 1.00001. Then, the exact solution of Example 1 is given by

X X
u*(x) = x + x> + 2.44838 x 107° cosh — + 2.23607 x 107> sinh —.
N& NG
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FT T T T T T T T T T T T T T T T T T T T ™

20r

15

05/

0.0
0.0 0.2 0.4 0.6 0.8 1.0

X

Fig.1 Comparison between the approximate and exact solutions of Example 1

Then,

luo — ) = 0.00001 = [|u — u*|| = 2.44838 x 1076 cosh %

4223607 x 105 sinh —— < 1.3034 x 107>,
NG

Then, Example 1 is a continous dependence on u¢. It is showing that in Fig. 2.
Now, we study the continous dependence on ai. If we take 1.00001*(0)41.00001*(0.5)
= 0.75, u*'(0) = 1. Then, the exact solution of Example 1 is given by

W) = x + x2 — 3.70348 x 10~ cosh ——.

NG

Then,

lax — a| = 0.00001 => [lu — u*|| = —3.70348 x 10~ cosh % < 4.08004 x 107°.

Then, Example 1 is a continous dependence on ay. It is showing that in Fig. 3.

Example 2 Consider the equation:

, 1 2sin(x) 1 (! '
u (x) + gM(x) =-—3 + 6/ (sin(tx) + xtu'(t))dt, (33)
-1
u(—0.8) + 2u(—1) = sin(—0.8) + 2sin(—1), u'(—1) = cos(—1). (34)

The exact solution of this equation is u(x) = sin(x).
Firstly we apply the assumption of Theorem 2 to prove that this example has a continuous
solution:

2 sin(x) 1() 1 1('(,) tu'(1)dt
3 —3ux+9[151nx+xu :

b
S (s u(x),/ glx, t,u'(t)dt) = —
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0.5F .
X |
S 00
= L
-0.5 I == Exact |
I === ADp. ]
-1.0 -0.5 0.0 0.5 1.0

Fig.2 Comparison between the exact solutions of « and u*

Fig.3 Comparison between the exact solutions of u and u*

Then,

1
1 G o), / oot u (1)dn)| <2300 20 4 Sl (>|+1f IsinGen) -+ e (0,
—1
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Table 2 The exact and numerical solution of Example 2

X; Approximate solution Exact solution Absolute error
—1 —0.84173 —0.841471 2.5958 E—4
-0.8 —0.71684 —0.717356 5.1915E—-4
—-0.6 —0.56325 —0.564642 1.3897 E-3
—-04 —0.38710 —0.389418 23193 E-3
—-0.2 —0.19531 —0.198669 32714 E-3
0. 0.004207 0. 4.2072 E-3
0.2 0.203756 0.198669 5.0869 E-3
0.4 0.39529 0.389418 5.8715E-3
0.6 0.571167 0.564642 6.5243 E-3
0.8 0.724369 0.717356 7.0126 E-3
1 0.84878 0.841471 7.3086 E-3
and also

1 1
lgCx, t,u'()dt)| < 3 sin(xt) + glu/(t)l,

where ¢ (x) = =29 oy (x, 1) = Lsin(er), dy = Lo = 1 b =1, 24107 + dydab? =

% + %% = % < 1. Itis clear that the Assumption 1-4 of Theorem 2 is satisfied, therefore the
given NBVP has a continuous solution. Then, we use the modified decomposition to find the

exact solution of this example. From Eq. (33) we get

X X
u(x) ~ 1.64363 x 1070 sin — — 1.191 x 107" cos —= + sin(x)
V3 V3

1
X X
+ { 0.333333x — 0.666082 sin (—) —0.0352372 cos (—) )/ tu' (t)dt.
( V3 V3 —1

By using the modified decomposition method we can get the following recurrence relation
ug(x) = sin(x),

w1 (x) ~ 1.64363 x 100 sin —— — 1.191 x 1017 cos ——
V3 V3

!
X X
+ {0.333333x — 0.666082 sin <—> — 0.0352372 cos <—> )f tup (t)dt ~ 0,
( V3 V3 400

1
u1(x) = / K(x, Huj(n)dt =0, 1> 1.
—1

It is clear that each component of u;, [ > 1 is zero. This in turn gives the exact solution by
u(x) = sin(x).

Now, we use the finite diffrence Simpson’s approach to find the numerical solution of
this example. Table 2 and Fig. 4 below give the approximate solution of this example and
compare it with the exact solution to show the accuracy of the method.

Now, we study the continous dependence on ug. If we take

u*(—0.8) + 2u*(—1) = sin(—0.8) + 2 sin(—1) + 0.00001, (u*)'(—1) = cos(—1) + 0.00001.
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——
1.2F N
1.0r 1

0.8F

T

u(x)

0.6 ]

0.4}

[ == Exact
0.2}

=== ADD.

0.0 | pmm———— R _—
0.0 0.2 0.4 0.6 0.8 1.0

1 L L L 1 L L L 1

X

Fig.4 Comparison between the approximate and exact solutions of Example 2

Then, the exact solution of Example 2 is
X X
u*(x) = 1.sin(x) + 0.0000130535 sin (—) + 0.0000116943 cos (—) .
NE] V3
Since

lup — ugl = 0.00001

X X
= |lu — u™*||=0.0000130535sin [ — |} + 0.0000116943 cos | — | < 1.69235 x 1074.
e =l (ﬁ) (ﬁ)

Then, Example 2 is a continous dependence on u. It is showing that in Fig. 5.
Now, we study the continous dependence on ai. If we take

1.00001u*(—0.8) + 2.00001u*(—1) = sin(—0.8) + 2sin(—1), (™)' (—=1) = cos(—1).
Then, the exact solution of Example 2 is

X X
u*(x) = sin(x) — 2.84235 x 10~ % sin — + 4.36352 x 10~% cos —.
V3 V3

Since

lay — aff| = 0.00001
X X
= |lu — u™||=—2.84235 x 10 "% sin — + 4.36352 x 1070 cos — < 2.10488 x 107°.
| | V3 V3

Then, Example 2 is a continous dependence on ay. It is showing that in Fig. 6
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0.6
0.5
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u(x)

0.3

0.2

0.1

0.0

0.8r i

0.6 4

0.2

=== E xact
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Fig.6 Comparison between the exact solutions of # and u*
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Example 3 Consider the equation:

” I~ 6eosh(x) (2+ex 1 ! ,
u”(x) — 7u(x) = 7 T + 7 /0 (tx + txu'())dt, 35)
u(1) —u(0) = cosh(l) =1, u'(0) = 0. (36)

The exact solution of this equation is u(x) = cosh(x).
Firstly, we apply the assumption of Theorem 2 to prove that this example has a continuous
solution:

6 cosh(x) B 24+ex 1

1 1
7 e + ?u(x) + 7 ./0 (tx + txu'(t))dt.

b
f(x,u(X),/ glx,t,u'(t)dt) =

Then,

6 cosh(x) B 2+e)x
7

b
If(x,M(X),/a g, t,u' (dn)| < | 2%

1 11
|+5|u(x)|+5/0 Eltx—l-txu’(t)ldl,

and also 1 1
lgCx, t,u'()dt)| < Sl Elu’(t)l,

where ¢ (x) = 98 GHx oy 1y = Lix oy = L doy = L b = 1,241 02 +didob? =
% + %% = % < 1. Itis clear that the Assumption 14 of Theorem 2 is satisfied, therefore the
given NBVP has a continuous solution. Then, we use the modified decomposition method to
find the exact solution of this example. From Eq. (35) we get

u(x)

_x _ X x+1 xX+2 2x 1 2
e V1 1<eﬁx+26ﬁx+eﬁx7ﬁe 77<ﬁ+l)eﬁ +eﬁ<\/>71)+eﬁ 7)
= cosh(x) +

A 2
1
_ 5 / tu'(t)dt.
€
2(1 +eﬁ> 0

By using the modified decomposition method we can get the following recurence relation

up(x) = cosh(x),

_ oy x4l
7

X a4l 242 2x
e V1 (eﬁx+26ﬁx+eﬁxf«/7eﬁ7<ﬁ+l)ef

N2
2(1+eﬁ)
2

+e% («/771>+e%«ﬁ>

uj(x) =

1 1
/(; tug()dt =0, w1 (x) = _/0 K(x)uj()dt =0, [>1.
It is clear that each component of u;, [ > 1 is zero. This in turn gives the exact solution by

u(x) = cosh(x).
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Table 3 The exact and numerical

solution of Example 3 Xi Approximate solution Exact solution Absolute error
0 1.00022 1 2.1892E—4
0.1 1.00522 1.005 2.1491 E—4
0.2 1.02027 1.02007 2.0285 E—4
0.3 1.04552 1.04534 1.8262 E—4
0.4 1.08123 1.08107 1.5401 E—4
0.5 1.12774 1.12763 1.1669 E—4
0.6 1.18554 1.18547 7.0258 E-5
0.7 1.25518 1.25517 14179 E-5
0.8 1.33738 1.33743 5.2183 E-5
0.9 1.43296 1.43309 1.2959 E—4
1 1.54286 1.54308 2.1892 E—4

20~

1.5+

100 ==imi Exact u

== Exact u*
0.5

1 1 1
0.2 0.4 0.6 0.8 1.0

Fig.7 Comparison between the approximate and exact solutions of Example 3

Now, we use the finite difference Simpson’s approach to finding the numerical solution
of this example.

Table 3 and Fig. 7 below give the approximate solution of this example and compare it
with the exact solution to show the accuracy of the presented method.

Example 4 Consider the equation:
1 1 3
u”(x) — Zu(x) = 2cosh(x) + g(—4 — sinh(1)) — sinh(x) + Zx sinh(x)
! 1
+ / <t + sinh(x) + gu’(t)> dt, (37)
0

u(0.5) + u(0) = 0.5sinh(0.5), u'(0) = 0. (38)

The exact solution of this equation is u(x) = x sinh(x).
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Firstly, we apply the assumption of Theorem 2 to prove that this example has a continuous
solution:

b
fx,u(x), / g(x, t,u'(t)dt) = 2 cosh(x) + %(—4 — sinh(1)) — sinh(x) + %x sinh(x)

1
+ lu(x) + / (t + sinh(x) + 1Lt'(t)) dt.
4 0 8

Then
b
If(x,u(X),/ gx, 1, u' (t)dr)|
1 . . 3. 1
< |2cosh(x) + g(—4 —sinh(1)) — sinh(x) + Zx sinh(x)| + Z|u(x)|
1! ) 1,
4y [ sy + o,

4 Jo 2

and also

|g(x, 1, u’(t)dt)| < 4(t + sinh(x)) + %Iu/(t)l,

where c1(x) = 2cosh(x) + é(—4 — sinh(1)) — sinh(x) + %x sinh(x), ca(x,t) = 4(t +
sinh(x)), d; = 1,

dy=%,b=1,2d1b* +d1drb* =2} + ;1 = 3 < 1. Itis clear that the Assumption 1-4
of Theorem 2 is satisfied, therefore the given NBVP has a continuous solution. Then, we use

the modified decomposition method to obtain the exact solution of this example. From Eq.
(37) we get
1
u(x) ~ x sinh(x) + 0.5876 — 0.5785 cosh (%) + (0.5 +0.4923 cosh (%)) / W (t)dt.
0

By using modified decomposition method we can write the following recurence relation

ug(x) = x sinh(x),

11 (x) = 0.5876 — 0.5785 cosh (%) n (—0.5 +0.4923 cosh (%)) /1 W (1)t
0

1
u1+1(x)=/ K(x,Hu()dt =0, [>1.
0

It is clear that each component of u;, [ > 1 is zero. This in turn gives the exact solution by
u(x) = x sinh(x).

Now, we use the finite difference Simpson’s approach to finding the numerical solution
of this example.

Table 4 and Fig. 8 below give the approximate solution of this example and compare it
with the exact solution to show the accuracy of the method.

Example 5 Consider the equation:

” ] _ L s L[ ey + wende, (39
M(x)—gu(x)——xj— 5 +@( —n(x))+@/l(n(x)+u(t)) , (39
u(D) +u@) =), (1) =1. (40)
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Table 4 The exact and numerical

solution of Example 4 Xi Approximate solution Exact solution Absolute error
0 0.0001970 0 1.9700E—4
0.1 0.0101985 0.0100167 1.8182E—4
0.2 0.0404032 0.0402672 1.3600E—4
0.3 0.0914148 0.0913561 5.8668E—5
0.4 0.164249 0.164301 5.1642E—-5
0.5 0.260351 0.260548 1.9700E—4
0.6 0.381612 0.381992 3.8013E—4
0.7 0.530404 0.531009 6.0443E—4
0.8 0.709611 0.710485 8.7402E—4
0.9 0.922671 0.923865 1.1938E—-3
1 1.17363 1.1752 1.5696E—2

=i Exact atu

-0.5¢ m—ew= Exact at u*

Fig.8 Comparison between the approximate and exact solutions of Example 4

The exact solution of this equation is u(x) = In(x).
Firstly, we apply the assumption of Theorem 2 to prove that this example has a continuous
solution:

b , 1 In®)
f(x,u(X),f gx, t,u' ()dt) = —— —
a )C 15

*(1 —In(8x)) + —u(X)

1 [? ,
+ @/1 (In(xt)) + u'(t)dt.

Then
b , 1 In(x)
[fx ux), [ glx,t,u(n)dt)] < I—xj— 15 *(I—IH(SX))I-I-*IM(X)I
121 1 "(t)|d
+E Z|(U(Xf))+u ()ldt,
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and also | |
lg(x, t,u(n)dt)| < - 7 InGen) + flu/(t)l,

where ¢y (x) = — % — 1B + 60(1 —In(8x)), e2(x, 1) = LIn(xt), dy = &, do = L, b =
2,2d1b* + didab* = 15 + 15 = 15 < 1. It is clear that the Assumption 1-4 of Theorem 2
is satisfied, therefore the given NBVP has a continuous solution. Then, we use the modified
decomposition to find the exact solution of this example. From Eq. (39) we get

N x+2
e m<ef—26f+26f+ef—26f>ln(2)

N2
4(1—#—65)

o x+1 x+2 2
e m(ef—2ef—|—2ef+ef—26f) 2
/u(t)dz

1 2 1
4(1+e~/l>5)

By using the modified decomposition method we can get the following recurence relation

u(x) = + In(x)

uo(x) = In(x),

X X 2x xtl 2
e m(e/ﬁ—Zex/ﬁ-l—Zef—i- f 2e f)ln(2)

ui(x) = ( )
__x x+2 2
e m(ef—Zef—i—Zef—}—ef—Z f) )
/u@(r)dtzo,
1

T N\2
4<1+em>
2
ul+1(x>=—f K. Dudi =0, 1> 1.
1

It is clear that each component of u;, [ > 1 is zero. This in turn gives the exact solution by
u(x) = In(x).

Now, we use the finite difference Simpson’s approach to finding the numerical solution
of this example.

Table 5 and Fig. 9 below give the approximate solution of this example and compare it
with the exact solution to show the accuracy of the method.

From the results in Table 5 we can say that the proposed method is effective.

Example 6 Consider the equation:

") = L) = — = x (26 + 3sin’(1) — 651“(")+2/1 (tx)2 + x sin(t)u'(¢) ) dt
u (X —SMX —45x X SIH 5 15 ) ( X X Sin u ) ,
@1
1
/ u(s)ds =1 —cos(l), u/(O) =1. 42)
0
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Table 5 The exact and numerical

solution of Example 5 Xi Approximate solution Exact solution Absolute error
1. 0.00114268 0. 1.1427E-3
1.1 0.096143 0.0953102 8.3280E—4
1.2 0.182879 0.182322 5.5763E—4
1.3 0.262671 0.262364 3.0689E—4
1.4 0.336546 0.336472 7.3764E—5
1.5 0.405319 0.405465 1.4643E—4
1.6 0.469647 0.470004 3.5699E—4
1.7 0.530068 0.530628 5.6031E—4
1.8 0.587028 0.587787 7.5818E—4
1.9 0.640902 0.641854 9.5195E—4
2. 0.692004 0.693147 1.1427E-3

0.8 -

0.6 -

0.4 -
I === Exact at u

0.2~
=—ee== Exact at u*

0.2 0.4 0.6 0.8 1.0

Fig.9 Comparison between the approximate and exact solutions of Example 5

The exact solution of this equation is u(x) = sin(x).
Firstly we prove that this example has a continous solution:

b .
flx, u(x), / glx, 1, u/(t)dt) = —%x (2x + 3sin*(1)) — @ + %u(x)

1
+ 2 ((tx)2 +x sin(t)u/(t))dt.
15 Jo

Then,

6sin(x)

1 .
—Ex (2x+3sm (1))— 5

b 1
If(x,u(x),/ gCr 1 i (1)d)] < + 2l

12 5 ) ,
+ = | Z1@x)? + xsin(@)u’ ¢)|dt,
5/ 3
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Table 6 The exact and numerical

solution of Example 6 Xi Approximate solution Exact solution Absolute error
0 —0.000787671 0 7.8767 E—4
0.1 0.0992115 0.0998334 6.2188 E—4
0.2 0.198211 0.198669 4.5814 E—4
0.3 0.295223 0.29552 2.9696 E—4
0.4 0.38928 0.389418 1.3881 E—4
0.5 0.479441 0.479426 1.5874 E—4
0.6 0.564809 0.564642 1.6664 E—4
0.7 0.644531 0.644218 3.1311 E—4
0.8 0.717811 0.717356 4.5491 E—4
0.9 0.783919 0.783327 59173 E—4
1 0.842194 0.841471 7.2330 E—4

and also
/ 2 2 2 /
lgx, 1, u (dD)| < g(IX) + glu ®1,

where ¢ (x) = —kx (2x +3sin®(1)) = 890 oy, 1) = 202, dy = L, da = 2, b =1,

then 2d b? + d drb? = % + % = % < 1. Itis clear that the Assumption 1-4 of Theorem 2
is satisfied, therefore the given NBVP has a continuous solution. Then, we use the modified
decomposition method to obtain the exact solution of this example. From Eq. (41) we get

P

u(x) ~ 0.236024x + sin(x) — 0.262926(3% +0.264841e 5
X X 1

+ (—0.666667)6 +0.742651e V5 — 0.748061e ﬁ) / sin()u’(t)dt.
0

By using modified decomposition method we can get the following recurence relation
ug(x) = sin(x),

11 () ~ 0.236024x — 0.262926¢ V5 + 0.264841¢” 5

+ (—0.666667x +0.742651¢ %% — 0.748061¢™ 5 ) /0 l sin(t)ul(1)dr ~ 0,
up+1(x) = k(x, t)u;(t)dt, [>1.
It is clear that each component of u;, [ > 1 is zero. This in turn gives the exact solution by
u(x) = sin(x).

Now, we use the finite difference Simpson’s approach to finding the numerical solution
of this example.

Table 6 and Fig. 10 below give the approximate solution of this example and compare it
with the exact solution to show the accuracy of the presented method.

Now, we study the continous dependence on ug.

If we take fol u*(s)ds = 1.00001 — cos(1), u¥ (0) = 1.00001. then the exact solution
of Example 6 is given by

X X
u*(x) = sin(x) + 4.122539 x 1017 x 4+ 2.23607 x 107> sinh — + 4.5086196 x 107° cosh —.
NG NG
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2.0]

15¢

1.0F
I =g Exact u

0.5
m—wm== Exact u*

0.2 0.4 0.6 0.8 1.0

Fig. 10 Comparison between the approximate and exact solutions of Example 6

Fig. 11 Comparison between the d exact solutions of u and u™*

Since [ug — uf| = 0.00001 = |lu — u*|| = 4.122539 x 10~'7x + 2.23607 x
1073 sinh %5 +4.5086196 x 10~° cosh % < 1.53037 x 1075.

Then, Example 6 is a continous dependence on ug. It is showing that in Fig. 9.

Conclusion

In this work, the existence, uniqueness and the continuous dependence of the NBVP have
been studied. Some examples are introduced to illustrate the benefits of our results, also, by
using the modified decomposition method, we get the exact solution. Furthermore a numerical
study of this system has been presented, by solving the proposed models numerically using
the finite difference Simpson’s method. Some numerical solutions are compared with exact
answers to show the accuracy of our methods, and some figures are obtained that illustrate
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this approach. It is evident from the presented Figs. 1, 2, 3,4, 5,6, 7, 8,9, 10 and 11 that
the numerical results that we obtained are entirely consistent with the analytical study that
we have carried out. Thus, through the survey that we conducted on some examples, one can
say that we have made a clear contribution in solving the integral differential equations in
the form of the proposed system analytically and numerically, in full accordance with the
analytical study that conducted.
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